
JavaScript Enlightenment
Cody Lindley

First Edition, based on JavaScript 1.5, ECMA-262, Edition 3

Table of Contents

..About the Author 8

..About the Technical Editors 9

..Michael Richardson 9

...Kyle Simpson 9

..Nathan Smith 9

..Ben Nadel 9

..Ryan Florence 10

..Nathan Logan 10

...Introduction 11

..Why did I write this book? 11

..Who should read this book? 12

..Why JavaScript 1.5 & ECMA-262 Edition 3? 12

...Why didn't I cover the Date(), Error(), RegEx() objects? 12

...Preface 13

..More code, less words 13

...Exhaustive code and repetition 13

...Color-coding Conventions 13

...jsFiddle, JS Bin, and Firebug lite-dev 14

...Chapter 1 - JavaScript Objects 15

...Creating objects 15

...JavaScript constructors construct and return object instances 20

...The JavaScript native/built-in object constructors 21

..User-defined/non-native object constructor functions 23

2

..Instantiating constructors using the new operator 24

..Creating shorthand/literal values from constructors 25

..Primitive (aka simple) values 27

..The primitive values null, undefined, "string", 10, true, and false are not objects 28

..How primitive values are stored/copied in JavaScript 29

..Primitive values are equal by value 30

............................The string, number, and boolean primitive values act like objects when used like objects 31

...Complex (aka composite) values 32

...How complex values are stored/copied in JavaScript 33

..Complex objects are equal by reference 34

..Complex objects have dynamic properties 35

...The typeof operator used on primitive and complex values 35

..Dynamic Properties allow for mutable objects 36

.......................All constructor instances have constructor properties that point to their constructor function 37

..Verify that an object is an instance of a particular constructor function 39

..An instance created from a constructor can have its own independent properties (aka instance properties) 40

..The semantics between "JavaScript objects" vs. "Object() objects" 42

...Chapter 2 - Working with Objects and Properties 43

...Complex objects can contain most of the JavaScript values as properties 43

...Encapsulating complex objects in a programmatically beneficial way 44

................................Getting/setting/updating an object's properties using dot notation or bracket notation 45

...Deleting object properties 48

...How references to object properties are resolved 48

.................................Using hasOwnProperty, verify that an object property is not from the prototype chain 51

..Checking if an object contains a given property using the in operator 51

...Enumerate (loop over) an object’s properties using the for in loop 52

..Host objects vs. native objects 53

...Enhancing & extending objects with Underscore.js 54

...Chapter 3 - Object() 57

...Conceptual overview of using Object() objects 57

3

...Object() parameters 58

...Object() properties and methods 58

...Object() object instance properties and methods 59

..Creating Object() objects using "object literals" 59

...All objects inherit from Object.prototype 61

...Chapter 4 - Function() 63

..Conceptual overview of using Function() objects 63

..Function() parameters 63

..Function() properties and methods 64

...Function object instance properties and methods 65

..Functions always return a value 65

..Functions are first-class citizens (not just syntax, but values) 66

...Passing parameters to a function 67

...this & arguments values available to all functions 67

...The arguments.callee property 68

...The function instance length property & arguments.length 69

...Redefining function parameters 70

..Return a function before it is done (i.e. cancel function execution) 70

...Defining a function (statement, expression, or constructor) 71

..Invoking a function (function, method, constructor, or call() & apply()) 72

...Anonymous functions 73

...Self-invoking function expression 73

..Self-invoking anonymous function statements 74

...Functions can be nested 74

...Passing functions to functions & returning functions from functions 75

...Invoking function statements before they are defined (aka function hoisting) 76

...A function can call itself (aka recursion) 77

...Chapter 5 - The Head/Global Object 78

...Conceptual overview of the head object 78

..Global functions contained within the head object 79

4

..The head object vs. global properties and global variables 79

...Referring to the head object 80

..The head object is implied and typically not referenced explicitly 81

...Chapter 6 - The this Keyword 83

...Conceptual overview of this and how it refers to objects 83

...How is the value of this determined? 84

..The this keyword refers to the head object in nested functions 85

...Working around the nested function issue by leveraging the scope chain 87

..Controlling the value of this using call() or apply() 87

..Using the this keyword inside a user-defined constructor function 88

...The keyword this inside a prototype method refers to a constructor instance 90

...Chapter 7 - Scope & Closures 92

...Conceptual overview of JavaScript scope 92

..JavaScript does not have block scope 93

..Use var inside of functions to declare variables and avoid scope gotchas 93

..The scope chain (aka lexical scoping) 94

..The scope chain lookup returns the first found value 96

...Scope is determined during function definition, not invocation 96

...Closures are caused by the scope chain 97

...Chapter 8 - Function Prototype Property 99

...Conceptual overview of the prototype chain 99

..Why care about the prototype property? 100

..Prototype is standard on all Function() instances 101

...The default prototype property is an Object() object 101

................Instances created from a constructor function are linked to the constructor’s prototype property 102

...Last stop in the prototype chain is Object.prototype 103

...The prototype chain returns the first property match it finds in the chain 104

....................Replacing the prototype property with a new object removes the default constructor property 105

..Instances that inherit properties from prototype will always get the latest values 106

5

...............................Replacing the prototype property with a new object does not update former instances 107

....................User-defined constructors can leverage the same prototype inheritance as native constructors 108

...Creating inheritance chains (the original intention) 109

...Chapter 9 - Array() 111

...Conceptual overview of using Array() objects 111

...Array() parameters 112

..Array() properties & methods 112

...Array object instance properties & methods 112

..Creating arrays 113

..Adding & updating values in arrays 114

..Length vs. index 115

...Defining arrays with a predefined length 115

...Setting array length can add or remove values 116

...Arrays containing other arrays (aka multidimensional arrays) 117

...Looping over an array, backwards and forwards 117

..Chapter 10 - String() 119

..Conceptual overview of using the String() object 119

..String() parameters 119

..String() properties and methods 120

...String object instance properties and methods 120

...Chapter 11 - Number() 122

...Conceptual overview of using the Number() object 122

...Integers and floating-point numbers 122

...Number() parameters 123

..Number() properties 124

..Number object instance properties and methods 124

..Chapter 12 - Boolean() 125

...Conceptual overview of using the Boolean() object 125

...Boolean() parameters 125

6

..Boolean() properties and methods 126

..Boolean object instance properties and methods 126

..Non-primitive false boolean objects convert to true 127

..Certain things are false, everything else is true 127

...Working with Primitive String, Number and Boolean values 129

..Primitive/literal values are converted to objects when properties are accessed 129

..You should typically use primitive string, number, and boolean values 130

..Chapter 13 - Null 132

...Conceptual overview of using the null value 132

..typeof returns null values as "object" 132

..Chapter 14 - Undefined 134

..Conceptual overview of the undefined value 134

....................JavaScript ECMA-262 edition 3 (and later) declares the undefined variable in the global scope 135

..Chapter 15 - Math Function 136

...Conceptual overview of the built in Math Object 136

...Math properties and methods 136

...Math is not a constructor function 137

...Math has constants you cannot augment/mutate 137

..Review 138

..Conclusion 141

7

About the Author

Cody Lindley is a client-side engineer (aka front-end developer) and recovering Flash developer. He
has an extensive background working professionally (11+ years) with HTML, CSS, JavaScript, Flash,
and client-side performance techniques as it pertains to web development. If he is not wielding client-
side code he is likely toying with interface/interaction design or authoring material and speaking at
various conferences. When not sitting in front of a computer, it is a sure bet he is hanging out with his
wife and kids in Boise, Idaho – training for triathlons, skiing, mountain biking, road biking, alpine
climbing, reading, watching movies, or debating the rational evidence for a Christian worldview.

8

About the Technical Editors

Michael Richardson

Michael Richardson is a web and application developer living in Boise, Idaho. Way back when, he got
an MFA in creative writing from Sarah Lawrence and published a novel in 2003 called Plans for a
Mushroom Radio. These days, when he's not spending quality time with his lovely wife and rascal kid,
he's managing his little web-based application called Timeglider.

Kyle Simpson

Kyle Simpson is a JavaScript Systems Architect from Austin, TX. He focuses on JavaScript, web
performance optimization, and "middle-end" application architecture. If something can't be done in
JavaScript or web stack technology, he's probably bored by it. He runs several open-source projects,
including LABjs, HandlebarJS, and BikechainJS. Kyle works as a Software Engineer on the
Development Tools team for Mozilla.

Nathan Smith

Nathan Smith is a UX developer at HP. He holds a MDiv from Asbury Theological Seminary. He began
building sites late last century and enjoys hand coding HTML, CSS, and JavaScript. He created the 960
Grid System, a design and CSS framework for sketching, designing, and coding page layouts. He also
made Formalize, a JavaScript and CSS framework that endeavors to bring sanity to form styling.

Ben Nadel

Ben Nadel is the chief software engineer at Epicenter Consulting, a Manhattan-based web application
development firm specializing in innovative custom software that transforms the way its clients do
business. He is also an Adobe Community Professional as well as an Adobe Certified Professional in

9

http://timeglider.com/
http://timeglider.com/
http://labjs.com/
http://labjs.com/
http://handlebarjs.com/
http://handlebarjs.com/
http://bikechainjs.com/
http://bikechainjs.com/
http://sonspring.com
http://sonspring.com
http://960.gs/
http://960.gs/
http://960.gs/
http://960.gs/
http://formalize.me
http://formalize.me

Advanced ColdFusion. In his spare time, he blogs extensively about all aspects of obsessively thorough
web application development at www.bennadel.com.

Ryan Florence

Ryan Florence is a front-end web developer from Salt Lake City, Utah and has been creating websites
since the early 90's. He is especially interested in creating experiences that are pleasing to both the
end user and the developer inheriting the project. Ryan is active in the JavaScript community writing
plugins, contributing to popular JavaScript libraries, speaking at conferences & meet-ups, and writing
about it on the web. He currently works as a Senior Technical Consultant at Clock Four.

Nathan Logan

Nathan Logan has been a professional web developer for 8 years. His focus is on client-side
technologies, but he also digs the server-side. He currently works for Memolane, alongside the author
of this book. Personally, Nathan is blessed with a wonderful wife and son, and enjoys mountain biking,
hot springs, spicy food, scotch, and Christian faith/theology.

10

http://www.bennadel.com/
http://www.bennadel.com/
http://ryanflorence.com/
http://ryanflorence.com/
http://nathanlogan.com/
http://nathanlogan.com/

Introduction

This book is not about JavaScript design patterns or implementing an object-oriented paradigm with
JavaScript code. It was not written to distinguish the good features of the JavaScript language from the
bad. It is not meant to be a complete reference guide. It is not targeted at people new to programming
or those completely new to JavaScript. Nor is this a cookbook of JavaScript recipes. Those books have
been written.

It was my intention to write a book to give the reader an accurate JavaScript worldview through an
examination of native JavaScript objects and supporting nuances: complex values, primitive values,
scope, inheritance, the head object, etc. I intend this book to be a short and digestible summary of the
ECMA-262, Edition 3 specification, focused on the nature of objects in JavaScript.

If you are a designer or developer who has only used JavaScript under the mantle of libraries (such as
jQuery, Prototype, etc), it is my hope that the material in this book will transform you from a JavaScript
library user into a JavaScript developer.

Why did I write this book?

First, I must admit that I wrote this book for myself. Truth be told, I crafted this material so I could drink
my own Kool-Aid and always remember what it tastes like. In other words, I wanted a reference written
in my own words used to jog my memory as needed. Additionally:

✴ Libraries facilitate a "black box" syndrome that can be beneficial in some regards but detrimental in
others. Things may get done fast and efficiently but you have no idea how or why. And the how and
why really matter when things go wrong or performance becomes an issue. The fact is that anyone
who intends to implement a JavaScript library or framework when building a web application (or just
a good signup form) ought to look under the hood and understand the engine. This book was
written for those who want to pop the hood and get their hands dirty in JavaScript itself.

✴Mozilla has provided the most up-to-date and complete reference guide for JavaScript 1.5. I believe
what is missing is a digestible document, written from a single point of view, to go along with their
reference guide. It is my hope that this book will serve as a "what you need to know" manual for
JavaScript values, detailing concepts beyond what the Mozilla reference covers.

11

✴Version 1.5 of JavaScript is going to be around for a fair amount of time, but as we move towards
the new additions to the language found in ECMA edition 5, I wanted to document the cornerstone
concepts of JavaScript that will likely be perennial.

✴Advanced technical books written about programing languages are often full of monolithic code
examples and pointless meanderings. I prefer short explanations that get to the point, backed by
real code that I can run instantly. I coined a term, "technical thin-slicing," to describe what I am
attempting to employ in this book. This entails reducing complex topics into smaller, digestible
concepts taught with minimal words and backed with comprehensive/focused code examples.

✴Most JavaScript books worth reading are three inches thick. Definitive guides, like David Flaniganʼs
certainly have their place, but I wanted to create a book that hones in on the important stuff without
being exhaustive.

Who should read this book?

This book is targeted at two types of people. The first is an advanced beginner or intermediate
JavaScript developer who wishes to solidify his or her understanding of the language through an in-
depth look at JavaScript objects. The second type is JavaScript library veteran who is ready to look
behind the curtain. This book is not ideal for newbies to programming, JavaScript libraries, or
JavaScript itself.

Why JavaScript 1.5 & ECMA-262 Edition 3?

In this book, I focus on version 1.5 of JavaScript (equivalent to ECMA-262 Edition 3) because it is the
most widely implemented version of JavaScript to date. The next version of this book will certainly be
geared towards the up-and-coming ECMA-262 Edition 5.

Why didn't I cover the Date(), Error(), RegEx() objects?

Like I said, this book is not an exhaustive reference guide to JavaScript. Rather, it focuses on objects
as a lens through which to understand JavaScript. So I have decided not to cover the Date(), Error(),
or RegEx() objects because, as useful as they are, grasping the details of these objects will not make
or break your general understanding of objects in JavaScript. My hope is that you simply apply what
you learn here to all objects available in the JavaScript environment.

12

Preface

Before you begin, it is important to understand various styles employed in this book. Please do not skip
this section, because it contains important information that will aid you as you read the book.

More code, less words

Please examine the code examples in detail. The text should be viewed as secondary to the code itself.
It is my opinion that a code example is worth a thousand words. Do not worry if youʼre initially confused
by explanations. Examine the code. Tinker with it. Reread the code comments. Repeat this process
until the concept being explained becomes clear. I hope you achieve a level of expertise such that well-
documented code is all you need to grok a programming concept.

Exhaustive code and repetition

You will probably curse me for repeating myself and for being so comprehensive with my code
examples. And while I might deserve it, I prefer to err on the side of being exact, verbose, and
repetitive, rather than make false assumptions authors often make about their reader. Yes, both can be
annoying, depending upon what knowledge you bring to the subject, but they can also serve a useful
purpose for those who want to learn a subject in detail.

Color-coding Conventions

In the JavaScript code examples (example shown below), orange is used to highlight code directly
relevant to the concept being discussed. Any additional code used to support the orange colored code
will be green. The color gray in the code examples is reserved for JavaScript comments (example
shown below).

<!DOCTYPE html><html lang="en"><body><script>

13

// this is a comment about a specific part of the code
var foo = 'calling out this part of the code';

</script></body></html>

In addition to code examples being color-coded, the text in this book is colored so as to denote
JavaScript words/keywords v.s. JavaScript code v.s. regular text. Below, I take an excerpt from the
book to demonstrate this coloring semantic.

"Consider that the cody object created from the Object() constructor function (i.e var cody = new
Object()) is not really different from a string object created via the String() constructor function. To
drive this fact home, examine the code below:"

Notice the use of gray italic text for code references, orange text for JavaScript words/keywords, and
regular black text for everything in-between.

jsFiddle, JS Bin, and Firebug lite-dev

The majority of code examples in this book are linked to a corresponding jsFiddle page, where the code
can be tweaked and executed online. The jsFiddle examples have been configured to use the Firebug
lite-dev plugin so that the log function (i.e. console.log) will work in most any modern browser
regardless of if the browser has its own console. Before reading this book make sure you are
comfortable with the usage and purpose of console.log.

In situations where jsFiddle & Firebug lite-dev caused complications with the JavaScript code JS Bin &
Firebug Lite-dev will be used. I've tried to avoid a dependency on a browser console by using Firebug
lite-dev but with certain code examples the solution itself gets in the way of code execution. In these
situations the console built into your web browser will have to be leveraged to output logs. If you are not
using a browser with a built in JavaScript console I would suggest upgrading or switching browsers.

When JS Bin is used, keep in mind that the code has to be executed manually (clicking 'Render') which
differs from the page load execution done by jsFiddle.

14

http://jsfiddle.net/
http://jsfiddle.net/
http://fbug.googlecode.com/svn/lite/branches/firebug1.3/content/firebug-lite-dev.js
http://fbug.googlecode.com/svn/lite/branches/firebug1.3/content/firebug-lite-dev.js
http://fbug.googlecode.com/svn/lite/branches/firebug1.3/content/firebug-lite-dev.js
http://fbug.googlecode.com/svn/lite/branches/firebug1.3/content/firebug-lite-dev.js
http://stackoverflow.com/questions/4743730/javascript-what-is-console-log-and-how-do-i-use-it
http://stackoverflow.com/questions/4743730/javascript-what-is-console-log-and-how-do-i-use-it
http://jsbin.tumblr.com/about
http://jsbin.tumblr.com/about
http://browsehappy.com/
http://browsehappy.com/

Chapter 1 - JavaScript Objects

Creating objects

In JavaScript, objects are king: Almost everything is an object or acts like an object. Understand objects
and you will understand JavaScript. So let's examine the creation of objects in JavaScript.

An object is just a container for a collection of named values (aka properties). Before we look at any
JavaScript code, let's first reason this out. Take myself, for example. Using plain language, we can
express in a table, a "cody":

codycody

property: property value:

living true

age 33

gender male

The word "cody" in the table above is just a label for the group of property names and corresponding
values that make up exactly what a cody is. As you can see from the table I am living, 33, and a male.

JavaScript, however, does not speak in tables. It speaks in objects, which are not unlike the parts
contained in the "cody" table. Translating the above table into an actual JavaScript object would look
like this:

<!DOCTYPE html><html lang="en"><body><script>

// create the cody object...
var cody = new Object();

// then fill the cody object with properties (using dot notation)
cody.living = true;
cody.age = 33;

live code: http://jsfiddle.net/javascriptenlightenment/ckVA5/

15

http://jsfiddle.net/javascriptenlightenment/ckVA5/
http://jsfiddle.net/javascriptenlightenment/ckVA5/

cody.gender = 'male';

console.log(cody); // logs Object {living = true, age = 33, gender = 'male'}

</script></body></html>

Keep this at the forefront of your mind: objects are really just containers for properties, each of which
has a name and a value. This notion of a container of properties with named values (i.e. an object) is
used by JavaScript as the building blocks for expressing values in JavaScript. The cody object is a
value which I expressed as a JavaScript object by creating an object, giving the object a name, and
then give the object properties.

Up to this point, the cody object we are discussing has only static information. Since we are dealing
with a programing language, we want to program our cody object to actually do something. Otherwise,
all we really have is a database, akin to JSON. In order to bring the cody object to life, I need to add a
property method. Property methods perform a function. To be precise, in JavaScript, methods are
properties that contain a Function() object, whose intent is to operate on the object the function is
contained within.

If I were to update the cody table with a getGender method, in plain English it would look like this:

cody objectcody object

property: property value:

living true

age 33

gender male

getGender return the value of gender

Using JavaScript, the getGender method from the updated cody table above would look like so:

<!DOCTYPE html><html lang="en"><body><script>

var cody = new Object();
cody.living = true;
cody.age = 33;
cody.gender = 'male';
cody.getGender = function(){return cody.gender;};

live code: http://jsfiddle.net/javascriptenlightenment/3gBT4/

16

http://jsfiddle.net/javascriptenlightenment/3gBT4/
http://jsfiddle.net/javascriptenlightenment/3gBT4/
http://www.json.org/
http://www.json.org/
http://bclary.com/2004/11/07/%23a-4.3.3
http://bclary.com/2004/11/07/%23a-4.3.3

console.log(cody.getGender()); // logs 'male'

</script></body></html>

The getGender method, a property of the cody object, is used to return one of codyʼs other property
values: the value "male" stored in the gender property. What you must realize is that without methods,
our object would not do much except store static properties.

The cody object we have discussed thus far is what is known as an Object() object. We created the
cody object using a blank object that was provided to us by invoking the Object() constructor function.
Think of constructor functions as a template or cookie cutter for producing pre-defined objects. In the
case of the cody object I used the Object() constructor function to produce an empty object which I
named cody. Now since cody is an object constructed from the Object() constructor, we call cody an
Object() object. What you really need to grok, beyond the creation of a simple Object() object like
cody, is that the majority of values expressed in JavaScript are objects (primitive values like "foo", 5,
and true are the exception but have equivalent wrapper objects).

Consider that the cody object created from the Object() constructor function is not really different from
say a string object created via the String() constructor function. To drive this fact home, examine and
contrast the code below:

<!DOCTYPE html><html lang="en"><body><script>

var myObject = new Object(); // produces an Object() object
myObject['0'] = 'f';
myObject['1'] = 'o';
myObject['2'] = 'o';

console.log(myObject); // logs Object { 0="f", 1="o", 2="o"}

var myString = new String('foo'); // produces a String() object

console.log(myString); // logs foo { 0="f", 1="o", 2="o"}

</script></body></html>

As it turns out, myObject and myString are both . . . objects! They both can have properties, inherit
properties, and are produced from a constructor function. The myString variable containing the 'foo'
string value seems to be as simple as it goes, but amazingly itʼs got an object structure under its
surface. If you examine both of the objects produced you will see that they are identical objects in

live code: http://jsfiddle.net/javascriptenlightenment/XcfC5/

17

http://jsfiddle.net/javascriptenlightenment/XcfC5/
http://jsfiddle.net/javascriptenlightenment/XcfC5/

substance but not in type. More importantly I hope you begin to see that JavaScript uses objects to
express values.

- You might find it odd to see the string value 'foo' in the object form because typically a string is represented in JavaScript as a primitive
value (e.g. var myString = 'foo';). I specifically used a string object value here to highlight that anything can be an object, including values
that we might not typically think of as an object (i.e. string, number, boolean). Also, I think this helps explain why some say that everything
in JavaScript can be an object.

JavaScript bakes the String() and Object() constructor functions into the language itself to make the
creation of a String() object and Object() object trivial. But you, as a coder of the JavaScript
language, can also create equally powerful constructor functions. Below, I demonstrate this by defining
a non-native custom Person() constructor function, so that I can create people from it.

<!DOCTYPE html><html lang="en"><body><script>

// define Person constructor function in order to create custom Person() objects later
var Person = function(living, age, gender) {
! this.living = living;
! this.age = age;
! this.gender = gender;
! this.getGender = function() {return this.gender;};
};

// instantiate a Person object and store it in the cody variable
var cody = new Person(true, 33, 'male');

console.log(cody);

/* The String() constructor function below, having been defined by JavaScript, has the same
pattern. Because the string constructor is native to JavaScript, all we have to do to get a
string instance is instantiate it. But the pattern is the same whether we use native
constructors like String() or user-defined constructors like Person(). */

// instantiate a String object stored in the myString variable
var myString = new String('foo');

console.log(myString);

</script></body></html>

The user-defined Person() constructor function can produce person objects, just as the native

Notes

live code: http://jsfiddle.net/javascriptenlightenment/zQDSw/

18

http://jsfiddle.net/javascriptenlightenment/zQDSw/
http://jsfiddle.net/javascriptenlightenment/zQDSw/

String() constructor function can produce string objects. The Person() constructor is no less capable,
and is no more or less malleable, than the native String() constructor or any of the native
constructors found in JavaScript.

Remember how the cody object we first looked at was produced from an Object(). Itʼs important to
note that the Object() constructor function and the new Person() constructor shown in the last code
example can give us identical outcomes. Both can produce an identical object with the same properties
and property methods. Examine the two sections of code below, showing that codyA and codyB have
the same object values, even though they are produced in different ways.

<!DOCTYPE html><html lang="en"><body><script>

// create a codyA object using the Object() constructor

var codyA = new Object();
codyA.living = true;
codyA.age = 33;
codyA.gender = 'male';
codyA.getGender = function() {return codyA.gender;};

console.log(codyA); // logs Object {living=true, age=33, gender="male", ...}

/* The same cody object is created below, but instead of using the native Object()
constructor to create a one-off cody, we first define our own Person() constructor that can
create a cody object (and any other Person object we like) and then instantiate it with
"new". */

var Person = function(living, age, gender) {
! this.living = living;
! this.age = age;
! this.gender = gender;
! this.getGender = function() {return this.gender;};
};

// logs Object {living=true, age=33, gender="male", ...}
var codyB = new Person(true, 33, 'male');

console.log(codyB);

</script></body></html>

The main difference between the codyA and codyB objects is not found in the object itself, but in the
constructor functions used to produce the objects. The codyA object was produced using an instance of
the Object() constructor. The Person() constructor, constructed codyB but can also be used as a
powerful, centrally defined object "factory" to be used for creating more Person() objects. Crafting your

live code: http://jsfiddle.net/javascriptenlightenment/Du5YV/

19

http://jsfiddle.net/javascriptenlightenment/Du5YV/
http://jsfiddle.net/javascriptenlightenment/Du5YV/
http://livepage.apple.com/
http://livepage.apple.com/

own constructors for producing custom objects also sets up prototypal inheritance for Person()
instances.

Both solutions resulted in the same complex object being created. Itʼs these two patterns that are the
most commonly used for constructing objects.

JavaScript is really just a language that is pre-packaged with a few native object constructors used to
produce complex objects which express a very specific type of value (e.g. numbers, strings, functions,
object, arrays etc...) as well as the raw materials via Function() objects for crafting user-defined object
constructors (e.g. Person()). The end result—no matter the pattern for creating the object—is typically
the creation of a complex object.

Understanding the creation, nature, and usage of objects and their primitive equivalents is the focus of
the rest of this book.

JavaScript constructors construct and return object instances

The role of a constructor function is to create multiple objects that share certain qualities and behaviors.
Basically a constructor function is a cookie cutter for producing objects that have default properties and
property methods.

If you said, "A constructor is nothing more than a function," then I would reply, "You are correct —
unless that function is invoked using the new keyword." (e.g. new String('foo')). When this happens,
a function takes on a special role, and JavaScript treats the function as special by setting the value of
this for the function to the new object that is being constructed. In addition to this special behavior, the
function will return the newly created object (i.e this) by default instead of the value false. The new
object that is returned from the function is considered to be an instance of the constructor function that
constructs it.

Consider the Person() constructor again, but this time read the comments in the code below carefully,
as they highlight the effect of the new keyword.

<!DOCTYPE html><html lang="en"><body><script>

/* Person is a constructor function. It was written with the intent of being used with the
new keyword. */

var Person = function Person(living, age, gender) {

live code: http://jsfiddle.net/javascriptenlightenment/YPR6Q/

20

http://jsfiddle.net/javascriptenlightenment/YPR6Q/
http://jsfiddle.net/javascriptenlightenment/YPR6Q/

! // "this" below is the new object that is being created (i.e. this = new Object();)
! this.living = living;
! this.age = age;
! this.gender = gender;
! this.getGender = function() {return this.gender;};
! // when the function is called with the new keyword "this" is returned instead of false
};

// instantiate a Person object named cody
var cody = new Person(true, 33, 'male');

// cody is an object and an instance of Person()
console.log(typeof cody); // logs object
console.log(cody); // logs the internal properties and values of cody
console.log(cody.constructor); // logs the Person() function

</script></body></html>

The above code leverages a user-defined constructor function (i.e. Person()) to create the cody
object. This is no different from the Array() constructor creating an Array() object (e.g. new Array
()):

<!DOCTYPE html><html lang="en"><body><script>

// instantiate an Array object named myArray
var myArray = new Array(); // myArray is an instance of Array

// myArray is an object and an instance of Array() constructor
console.log(typeof myArray); // logs object! What? Yes, arrays are type of object

console.log(myArray); // logs []

console.log(myArray.constructor); // logs Array()

</script></body></html>

In JavaScript, most values (excluding primitive values) involve objects being created, or instantiated,
from a constructor function. An object returned from a constructor is called an instance. Make sure you
are comfortable with these semantics, as well as the pattern of leveraging constructors to construct
objects.

The JavaScript native/built-in object constructors

live code: http://jsfiddle.net/javascriptenlightenment/cKa3a/

21

http://jsfiddle.net/javascriptenlightenment/cKa3a/
http://jsfiddle.net/javascriptenlightenment/cKa3a/

The JavaScript language contains nine native (or built-in) object constructors. These objects are used
by JavaScript to construct the language, and by "construct" I mean these objects are used to express
object values in JavaScript code, as well as orchestrate several features of the language. Thus, the
native object constructors are multifaceted in that they produce objects, but are also leveraged in
facilitating many of the languageʼs programming conventions. For example, functions are objects
created from the Function() constructor, but are also used to create other objects when called as
constructor functions using the new keyword.

Below, I list the 9 native object constructors that come pre-packaged with JavaScript:

✴Number()
✴String()
✴Boolean()
✴Object()
✴Array()
✴ Function()
✴Date()
✴RegExp()
✴Error()

JavaScript is mostly constructed from just these nine objects (as well as string, number, and boolean
primitive values). Understanding these objects in detail is key to taking advantage of JavaScriptʼs
unique programming power and language flexibility.

- The Math object is the oddball here. It's a static object, rather than a constructor function, meaning you canʼt do this: var x = new Math().
But you can use it as if it has already been instantiated (e.g. Math.PI). Truly, Math is a just an object namespace set up by JavaScript to
house math functions.

- The native objects are sometimes referred to as "global objects" since they are the objects that JavaScript has made natively available for
use. Do not confuse the term global object with the "head" global object that is the topmost level of the scope chain, for example, the
window object in all web browsers.

- The Number(), String(), and Boolean() constructors not only construct objects; they also provide a primitive value for a string, number and
boolean, depending upon how the constructor is leveraged. If you called these constructors directly, then a complex object is returned. If
you simply express a number, string, or boolean value in your code (primitive values like 5, "foo" and true), then the constructor will return a
primitive value instead of a complex object value.

Notes

22

https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Number
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Number
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/String
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/String
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Boolean
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Boolean
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Function
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Function
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Date
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Date
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/RegExp
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/RegExp
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Error
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Error

User-defined/non-native object constructor functions

As you saw with the Person() constructor, we can make our own constructor functions, from which we
can produce not just one but multiple custom objects.

Below, I present the familiar Person() constructor function:

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(living, age, gender) {
 this.living = living;
 this.age = age;
 this.gender = gender;
 this.getGender = function() {return this.gender;};
};

var cody = new Person(true, 33, 'male');
console.log(cody); // logs Object {living=true, age=33, gender="male", ...}

var lisa = new Person(true, 34, 'female');
console.log(lisa); // logs Object {living=true, age=34, gender="female", ...}

</script></body></html>

As you can see, by passing unique parameters and invoking the Person() constructor function, you
could easily create a vast number of unique people objects. This can be pretty handy when you need
more than two or three objects that possess the same properties, but with different values. Come to
think of it, this is exactly what JavaScript does with the native objects. The Person() constructor follows
the same principles as the Array() constructor. So new Array('foo','bar') is really not that
different than new Person(true, 33, 'male'). Creating your own constructor functions is just using the
same pattern that JavaScript itself uses for its own native constructor functions.

- It is not required, but when creating custom constructor functions intended to be used with the new operator, itʼs best practice to make the
first character of the constructor name uppercase: Person() rather than person()

- One tricky thing about constructor functions is the use the this value inside of the function. Remember, a constructor function is just a
cookie cutter. When used with the new keyword, it will create an object with properties and values defined inside of the constructor
function. When new is used the value this literally means the new object/instance that will be created based on the statements inside the
constructor function. On the other hand, if you create a constructor function and call it without the use of the new keyword the this value will
refer to the "parent" object that contains the function. More detail about this topic can be found in chapter 6.

- It's possible to forgo the use of the new keyword and the concept of a constructor function by explicitly having the function return an object.
The function would have to be written explicitly to build an Object() object and return it: var myFunction = function() {return {prop: val}};

live code: http://jsfiddle.net/javascriptenlightenment/GLMr8/

Notes

23

http://jsfiddle.net/javascriptenlightenment/GLMr8/
http://jsfiddle.net/javascriptenlightenment/GLMr8/

Instantiating constructors using the new operator

A constructor function is basically a cookie cutter template used to create pre-configured objects. Take
String() for example. This function, when used with the new operator (new String('foo')) creates a
string instance based on the String() "template". Let's look at an example.

<!DOCTYPE html><html lang="en"><body><script>

var myString = new String('foo');

console.log(myString); // logs foo {0 = "f", 1 = "o", 2 = "o"}

</script></body></html>

Above, we created a new string object that is an instance of the String() constructor function. Just
like that, we have a string value expressed in JavaScript.

- I'm not suggesting that you use constructor functions instead of their literal/primitive equivalents — like var string="foo"; . I am, however,
suggesting that you understand what is going on behind literal/primitive values.

As previously mentioned, the JavaScript language has the following native predefined constructors:
Number(), String(), Boolean(), Object(), Array(), Function(), Date(), RegExp(), Error(). We can
instantiate an object instance from any of these constructor functions by applying the new operator.
Below, I construct these nine native JavaScript objects.

<!DOCTYPE html><html lang="en"><body><script>

// instantiate an instance for each native constructor using the new keyword

var myNumber = new Number(23);
var myString = new String('male');
var myBoolean = new Boolean(false);
var myObject = new Object();
var myArray = new Array('foo','bar');

live code: http://jsfiddle.net/javascriptenlightenment/FKdsp/

Notes

live code: http://jsfiddle.net/javascriptenlightenment/M9cWA/

24

http://jsfiddle.net/javascriptenlightenment/FKdsp/
http://jsfiddle.net/javascriptenlightenment/FKdsp/
http://jsfiddle.net/javascriptenlightenment/M9cWA/
http://jsfiddle.net/javascriptenlightenment/M9cWA/
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Number
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Number
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/String
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/String
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Boolean
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Boolean
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Object
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Function
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Function
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Date
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Date
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/RegExp
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/RegExp
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Error
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Error

var myFunction = new Function("x", "y", "return x*y");
var myDate = new Date();
var myRegExp = new RegExp('\bt[a-z]+\b');
var myError = new Error('Crap!');

// log/verify which constructor created the object
console.log(myNumber.constructor); // logs Number()
console.log(myString.constructor); // logs String()
console.log(myBoolean.constructor); // logs Boolean()
console.log(myObject.constructor); // logs Object()
console.log(myArray.constructor); //logs Array(), in modern browsers
console.log(myFunction.constructor); // logs Function()
console.log(myDate.constructor); // logs Date()
console.log(myRegExp.constructor); // logs RegExp()
console.log(myError.constructor); // logs Error()

</script></body></html>

By using the new operator, we are telling the JavaScript interpreter that we would like an object that is
an instance of the corresponding constructor function. For example, in the code above, the Date()
constructor function is used to create date objects. The Date() constructor function is a cookie cutter
for date objects. That is, it produces date objects from a default pattern defined by the Date()
constructor function.

At this point, you should be well acquainted with creating object instances from native (e.g. new String
('foo')) and user-defined constructor functions (e.g. new Person(true, 33, 'male')).

- Keep in mind that Math is a static object — a container for other methods — and is not a constructor that uses the new operator.

Creating shorthand/literal values from constructors

JavaScript provides shortcuts — called "literals" — for manufacturing most of the native object values
without having to use new Foo() or new Bar(). For the most part, the literal syntax accomplishes the
same thing as using the new operator. The exceptions are: Number(), String(), and Boolean() —
see notes below.

If you come from other programming backgrounds, you are likely more familiar with the literal way of
creating objects. Below, I instantiate the native JavaScript constructors using the new operator and then
create corresponding literal equivalents.

Notes

25

<!DOCTYPE html><html lang="en"><body><script>

var myNumber = new Number(23); // an object
var myNumberLiteral = 23; // primitive number value, not an object

var myString = new String('male'); // an object
var myStringLiteral = 'male'; // primitive string value, not an object

var myBoolean = new Boolean(false); // an object
var myBooleanLiteral = false; // primitive boolean value, not an object

var myObject = new Object();
var myObjectLiteral = {};

var myArray = new Array('foo', 'bar');
var myArrayLiteral = ['foo', 'bar'];

var myFunction = new Function("x", "y", "return x*y");
var myFunctionLiteral = function(x, y) {return x*y};

var myRegExp = new RegExp('\bt[a-z]+\b');
var myRegExpLiteral = /\bt[a-z]+\b/;

// verify that literals are created from same constructor

console.log(myNumber.constructor,myNumberLiteral.constructor);
console.log(myString.constructor,myStringLiteral.constructor);
console.log(myBoolean.constructor,myBooleanLiteral.constructor);
console.log(myObject.constructor,myObjectLiteral.constructor);
console.log(myArray.constructor,myArrayLiteral.constructor);
console.log(myFunction.constructor,myFunctionLiteral.constructor);
console.log(myRegExp.constructor,myRegExpLiteral.constructor);

</script></body></html>

What you need to take away here is the fact that, in general, using literals simply conceals the
underlying process identical to using the new operator. Maybe more importantly, itʼs a lot more
convenient!

Okay, things are a little more complicated with respect to the primitive string, number, and boolean
values. In these cases, literal values take on the characteristics of primitive values rather than complex
object values. See my notes below.

- When using literal values for string, number, and boolean, an actual complex object is never created until the value is treated as an object.
In other words, you are dealing with a primitive datatype until you attempt to use methods or retrieve properties associated with the
constructor (e.g. var charactersInFoo = 'foo'.length). When this happens, JavaScript creates a wrapper object for the literal value behind

live code: http://jsfiddle.net/javascriptenlightenment/Nbkw4/

Notes

26

http://jsfiddle.net/javascriptenlightenment/Nbkw4/
http://jsfiddle.net/javascriptenlightenment/Nbkw4/

the scenes, allowing the value to be treated as an object. Then, after the method is called, JavaScript discards the wrapper object and the
value returns to a literal type. This is why string, number, and boolean are considered primitive (or simple) datatypes. I hope this clarifies
the misconception that "everything in JavaScript is an object" with the concept that "everything in JavaScript can act like an object".

Primitive (aka simple) values

The JavaScript values 5, 'foo', true, and false , as well as null and undefined, are considered
primitive because they are irreducible. That is, a number is a number, a string is a string, a boolean is
either true or false, and null and undefined are just that, null and undefined. These values are
inherently simple, and do not represent values that can be made up of other values.

Examine the code below and ask yourself if the string, number, boolean, null, and undefined values
could be more complex. Contrast this to what you know of an Object()instance or Array()instance or
really any complex object.

<!DOCTYPE html><html lang="en"><body><script>

var myString = 'string'
var myNumber = 10;
var myBoolean = false; // could be true or false, but that is it
var myNull = null;
var myUndefined = undefined;

console.log(myString, myNumber, myBoolean, myNull, myUndefined);

/* Consider that a complex object like array or object can be made up of multiple primitive
values, and thus becomes a complex set of multiple values. */

var myObject = {
! myString: 'string',
! myNumber: 10,
! myBoolean: false,
! myNull: null,
! myUndefined: undefined
};

console.log(myObject);

var myArray = ['string', 10, false, null, undefined];

console.log(myArray);

</script></body></html>

live code: http://jsfiddle.net/javascriptenlightenment/xUQTC/

27

http://jsfiddle.net/javascriptenlightenment/xUQTC/
http://jsfiddle.net/javascriptenlightenment/xUQTC/

Quite simply, primitive values represent the lowest form (i.e simplest) of datum/information available in
JavaScript.

- As opposed to creating values with literal syntax, when a String(), Number(), or Boolean() value is created using the new keyword, the
object created is actually a complex object.

- Itʼs critical that you understand the fact that the String(), Number(), and Boolean() constructors are dual-purpose constructors used to
create literal/primitive values as well as complex values. These constructors do not always return objects, but instead, when used without
the "new" operator, can return a primitive representation of the actual complex object value.

The primitive values null, undefined, "string", 10, true, and false are not
objects

The null and undefined values are such trivial values that they do not require a constructor function,
nor the use of the new operator to establish them as a JavaScript value. To use null or undefined,
all you do is use them as if they were an operator. The remaining primitive values string, number, and
boolean, while technically returned from a constructor function, are not objects.

Below, I contrast the difference between primitive values and the rest of the native JavaScript objects.

<!DOCTYPE html><html lang="en"><body><script>

// no object is created when producing primitive values, notice no use of the "new" keyword
var primitiveString1 = "foo";
var primitiveString2 = String('foo');
var primitiveNumber1 = 10;
var primitiveNumber2 = Number('10');
var primitiveBoolean1 = true;
var primitiveBoolean2 = Boolean('true');

// confirm the typeof is not object
console.log(typeof primitiveString1, typeof primitiveString2); // logs 'string,string'
console.log(typeof primitiveNumber1, typeof primitiveNumber2); // logs 'number,number,
console.log(typeof primitiveBoolean1, typeof primitiveBoolean2); // logs 'boolean,boolean'

// versus the usage of a constructor and new keyword for creating objects

var myNumber = new Number(23);
var myString = new String('male');

Notes

live code: http://jsfiddle.net/javascriptenlightenment/ZwgqD/

28

http://jsfiddle.net/javascriptenlightenment/ZwgqD/
http://jsfiddle.net/javascriptenlightenment/ZwgqD/

var myBoolean = new Boolean(false);
var myObject = new Object();
var myArray = new Array('foo', 'bar');
var myFunction = new Function("x", "y", "return x * y");
var myDate = new Date();
var myRegExp = new RegExp('\\bt[a-z]+\\b');
var myError = new Error('Crap!');

// logs 'object object object object object function object function object'
console.log(
typeof myNumber,
typeof myString,
typeof myBoolean,
typeof myObject,
typeof myArray,
typeof myFunction, // BE AWARE typeof returns function for all function objects
typeof myDate,
typeof myRegExp, // BE AWARE typeof returns function for RegExp()
typeof myError
);

</script></body></html>

What I would like you to grasp from the previous code example is that primitive values are not objects.
Primitive values are special in that they are used to represent simple values.

How primitive values are stored/copied in JavaScript

It is extremely important to grok that primitive values are stored and manipulated at "face value". It
might sound simple, but this means that if I store the string value "foo" in a variable called myString,
then the value "foo" is literally stored in memory as such. Why is this important? Once you begin
manipulating (e.g. copying) values, you have to be equipped with this knowledge, because primitive
values are copied literally.

In the example below, we store a copy of the myString value ('foo') in the variable myStringCopy, and
its value is literally copied. Even if we change the original value, the copied value, referenced by the
variable myStringCopy, remains unchanged.

<!DOCTYPE html><html lang="en"><body><script>

var myString = 'foo' // create a primitive string object
var myStringCopy = myString; // copy its value into a new variable

var myString = null; // manipulate the value stored in the myString variable

live code: http://jsfiddle.net/javascriptenlightenment/Gh3dW/

29

http://jsfiddle.net/javascriptenlightenment/Gh3dW/
http://jsfiddle.net/javascriptenlightenment/Gh3dW/

/*The original value from myString was copied to myStringCopy. This is confirmed by updating
the value of myString then checking the value of myStringCopy*/

console.log(myString, myStringCopy); // logs 'null foo'

</script></body></html>

The take away here is that primitive values are stored and manipulated as irreducible values. Referring
to them transfers their value. In the example above, we copied, or cloned, the myString value to the
variable myStringCopy. When we updated the myString value, the myStringCopy value still had a copy
of the old myString value. Remember this and contrast the mechanics here with complex objects
(discussed below).

Primitive values are equal by value

Primitives can be compared to see if their values are literally the same. As logic would suggest, if you
compare a variable containing the numeric value 10 with another variable containing the numeric value
10, JavaScript will consider these equal because 10 is the same as 10 (i.e 10 === 10). The same, of
course, would apply if you compare the primitive string 'foo' to another primitive string with a value of
'foo'. The comparison would say that they are equal to each other based on their value (i.e. 'foo' ===
'foo').

In the code below, I demonstrate the "equal by value" concept using primitive numbers, as well as
contrast this with a complex number object.

<!DOCTYPE html><html lang="en"><body><script>

var price1 = 10;
var price2 = 10;
var price3 = new Number('10'); // a complex numeric object because new was used
var price4 = price3;

console.log(price1 === price2); // logs true

/* logs false because price3 contains a complex number object and price 1 is a primitive
value */
console.log(price1 === price3);

// logs true because complex values are equal by reference, not value
console.log(price4 === price3);

live code: http://jsfiddle.net/javascriptenlightenment/NewQU/

30

http://jsfiddle.net/javascriptenlightenment/NewQU/
http://jsfiddle.net/javascriptenlightenment/NewQU/

// what if we update the price4 variable to contain a primitive value?
price4 = 10;

console.log(price4 === price3); // logs false: price4 is now primitive rather than complex

</script></body></html>

The take away here is that primitives, when compared, will check to see if the expressed values are
equal. When a string, number, or boolean value is created using the new keyword (e.g. new Number
('10')), the value is no longer primitive. As such, comparison does not work the same as if the value
had been created via literal syntax. This is not surprising, given that primitive values are stored by value
(i.e. does 10 === 10), while complex values are stored by reference (i.e. does price3 and price4 contain
a reference to the same value).

The string, number, and boolean primitive values act like objects when used
like objects

When a primitive value is used as if it were an object created by a constructor, JavaScript converts it to
an object in order to respond to the expression at hand, but then discards the object qualities and
changes it back to a primitive value. In the code below, I take primitive values and showcase what
happens when the values are treated like objects.

<!DOCTYPE html><html lang="en"><body><script>

// Produce primitive values
var myNull = null;
var myUndefined = undefined;
var primitiveString1 = "foo";
var primitiveString2 = String('foo'); // did not use new, so we get primitive
var primitiveNumber1 = 10;
var primitiveNumber2 = Number('10'); // did not use new, so we get primitive
var primitiveBoolean1 = true;
var primitiveBoolean2 = Boolean('true'); // did not use new, so we get primitive

/* Access the toString() property method (inherited by objects from object.prototype) to
demonstrate that the primitive values are converted to objects when treated like objects. */

// logs "string string"
console.log(primitiveString1.toString(), primitiveString2.toString());

// logs "number number"
console.log(primitiveNumber1.toString(), primitiveNumber2.toString());

live code: http://jsfiddle.net/javascriptenlightenment/gSTNp/

31

http://jsfiddle.net/javascriptenlightenment/gSTNp/
http://jsfiddle.net/javascriptenlightenment/gSTNp/

// logs "boolean boolean"
console.log(primitiveBoolean1.toString(), primitiveBoolean2.toString());

/* This will throw an error and not show up in firebug lite, as null and undefined do not
convert to objects and do not have constructors. */
console.log(myNull.toString());
console.log(myUndefined.toString());

</script></body></html>

In the above code example, all of the primitive values (except null and undefined) are converted to
objects, so as to leverage the toString() method, and then are returned to primitive values once the
method is invoked and returned.

Complex (aka composite) values

The native object constructors Object(), Array(), Function(), Date(), Error(), and RegExp() are
complex because they can contain one or or more primitive or complex values. Essentially, complex
values can be made up of many different types of JavaScript objects. It could be said that complex
objects have an unknown size in memory because complex objects can contain any value and not a
specific known value. In the code below, we create an object and an array that houses all of the
primitive objects.

<!DOCTYPE html><html lang="en"><body><script>

var object = {
! myString: 'string',
! myNumber: 10,
! myBoolean: false,
! myNull: null,
! myUndefined: undefined
};

var array = ['string', 10, false, null, undefined];

/* Contrast this to the simplicity of the primitive values below. In a primitive form, none
of the values below can be more complex than what you see while complex values can
encapsulate any of the JavaScript values (seen above). */

var myString = 'string';
var myNumber = 10;
var myBoolean = false;
var myNull = null;
var myUndefined = undefined;

</script></body></html>

live code: http://jsfiddle.net/javascriptenlightenment/JeFqt/

32

http://jsfiddle.net/javascriptenlightenment/JeFqt/
http://jsfiddle.net/javascriptenlightenment/JeFqt/

The take away here is that complex values are a composite of values and differ in complexity and
composition to primitive values.

- The term "complex object" has also been expressed in other writings as "composite objects" or "reference types". If it's not obvious all
these names describe the nature of a JavaScript value excluding primitive values. Primitive values are not "referenced by value" and can
not represent a composite (i.e. A thing made up of several parts or elements) of other values. While complex objects are "referenced by
value" and can contain or encapsulate other values.

How complex values are stored/copied in JavaScript

It is extremely important to grok that complex values are stored and manipulated by reference. When
creating a variable containing a complex object, the value is stored in memory at an address. When you
reference a complex object, youʼre using its name (i.e variable or object property) to retrieve the value
at that address in memory. The implications are significant when you consider what happens when you
attempt to copy a complex value. Below, we create an object stored in the variable myObject. Then the
value in myObject is copied to the variable copyOfMyObject. Really, it is not a copy of the object —
more like a copy of the address of the object.

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {};

var copyOfMyObject = myObject; // not copied by value, just the reference is copied

myObject.foo = 'bar'; // manipulate the value stored in myObject

/* Now if we log myObject & copyOfMyObject, they will have a foo property because they
reference the same object. */
console.log(myObject, copyOfMyObject); // logs 'Object { foo="bar"} Object { foo="bar"}'

</script></body></html>

What you need to realize is that, unlike primitive values that would copy a value, objects (aka complex
values) are stored by reference. As such, the reference (aka address) is copied, but not the actual
value. This means that objects are not copied at all. Like I said, what is copied is the address or

Notes

live code: http://jsfiddle.net/javascriptenlightenment/hypZC/

33

http://jsfiddle.net/javascriptenlightenment/hypZC/
http://jsfiddle.net/javascriptenlightenment/hypZC/

reference to the object in the memory stack. In our code example, myObject and copyOfMyObject point
to the same object stored in memory.

The big take away here is that when you change a complex value — because it is stored by reference
— you change the value stored in all variables that reference that complex value. In our code example,
both myObject and copyOfMyObject are changed when you update the object stored in either variable.

- When the values String(), Number(), and Boolean() are created using the new keyword, or converted to complex objects behind the
scenes, the values continue to be stored/copied by value. So, even though primitive values can be treated like complex values, they do not
take on the quality of being copied by reference.

- To truly make a copy of an object, you have to extract the values from the old object, and inject them into a new object.

Complex objects are equal by reference

When comparing complex objects, they are equal only when they reference the same object (i.e. have
the same address). Two variables containing identical objects, are not equal to each other since they
do not actually point at the same object.

Below, objectFoo and objectBar have the same properties and are, in fact, identical objects, but when
asked if they are equal via === JavaScript tells us they are not.

<!DOCTYPE html><html lang="en"><body><script>

var objectFoo = {same: 'same'};
var objectBar = {same: 'same'};

// logs false, JS does not care that they are identical and of the same object type
console.log(objectFoo === objectBar);

// how complex objects are measured for equality
var objectA = {foo: 'bar'};
var objectB = objectA;

console.log(objectA === objectB); // logs true because they reference the same object

</script></body></html>

Notes

live code: http://jsfiddle.net/javascriptenlightenment/g4CfS/

34

http://jsfiddle.net/javascriptenlightenment/g4CfS/
http://jsfiddle.net/javascriptenlightenment/g4CfS/

The take away here is that variables that point to a complex object in memory are equal only because
they are using the same "address". Conversely, two independently created objects are not equal even if
they are of the same type and possess the exact same properties.

Complex objects have dynamic properties

A new variable that points to an existing complex object does not copy the object. This is why complex
objects are sometimes called reference objects. A complex object can have as many references as you
want, and they will always refer to the same object, even as that object changes.

<!DOCTYPE html><html lang="en"><body><script>

var objA = {property: 'value'};
var pointer1 = objA;
var pointer2 = pointer1;

// update the objA.property, and all references (pointer1 & pointer2) are updated
objA.property = null;

// logs 'null null null' because objA, pointer1, and pointer2 all reference the same object
console.log(objA.property, pointer1.property, pointer2.property);

</script></body></html>

This allows for dynamic object properties because you can define an object, create references, update
the object, and all of the variables referring to the object will "get" that update.

The typeof operator used on primitive and complex values

The typeof operator can be used to return the type of value you are dealing with. But the values
returned from it are not exactly consistent or what some might say, logical. The following code exhibits
the returned values from using the typeof operator.

<!DOCTYPE html><html lang="en"><body><script>

// primitive values
var myNull = null;

live code: http://jsfiddle.net/javascriptenlightenment/SSsVC/

live code: http://jsfiddle.net/javascriptenlightenment/QM95R/

35

http://jsfiddle.net/javascriptenlightenment/SSsVC/
http://jsfiddle.net/javascriptenlightenment/SSsVC/
http://jsfiddle.net/javascriptenlightenment/QM95R/
http://jsfiddle.net/javascriptenlightenment/QM95R/

var myUndefined = undefined;
var primitiveString1 = "string";
var primitiveString2 = String('string');
var primitiveNumber1 = 10;
var primitiveNumber2 = Number('10');
var primitiveBoolean1 = true;
var primitiveBoolean2 = Boolean('true');

console.log(typeof myNull); // logs object? WHAT? Be aware...
console.log(typeof myUndefined); // logs undefined
console.log(typeof primitiveString1, typeof primitiveString2); // logs string string
console.log(typeof primitiveNumber1, typeof primitiveNumber2); // logs number number
console.log(typeof primitiveBoolean1, typeof primitiveBoolean2); // logs boolean boolean

// Complex Values
var myNumber = new Number(23);
var myString = new String('male');
var myBoolean = new Boolean(false);
var myObject = new Object();
var myArray = new Array('foo', 'bar');
var myFunction = new Function("x", "y", "return x * y");
var myDate = new Date();
var myRegExp = new RegExp('\\bt[a-z]+\\b');
var myError = new Error('Crap!');

console.log(typeof myNumber); // logs object
console.log(typeof myString); // logs object
console.log(typeof myBoolean); // logs object
console.log(typeof myObject); // logs object
console.log(typeof myArray); // logs object
console.log(typeof myFunction); // logs function? WHAT? Be aware...
console.log(typeof myDate); // logs object
console.log(typeof myRegExp); // logs function? WHAT? Be aware...
console.log(typeof myError); // logs object

</script></body></html>

When using this operator on values, you should be aware of the potential values returned given the
type of value (primitive or complex) that you are dealing with.

Dynamic Properties allow for mutable objects

Complex objects are made up of dynamic properties. This allows for user-defined objects, and most of
the native objects, to be mutated. This means that the majority of objects in JavaScript can be updated
or changed at any time. Because of this, we can change the native pre-configured nature of JavaScript
itself by augmenting its native objects. However, I am not telling you to do this; in fact I do not think you
should. But let's not cloud what is possible with opinions.

36

This means its possible to store properties on native constructors and add new methods to the native
objects with additions to their prototype objects.

In the code below, I mutate the String() constructor function and String.prototype.

<!DOCTYPE html><html lang="en"><body><script>

// augment the built-in String constructor Function() with the augmentedProperties property
String.augmentedProperties = [];

if (!String.prototype.trimIT) { // if the prototype does not have trimIT() add it
! String.prototype.trimIT = function() {
! ! return this.replace(/^\s+|\s+$/g, '');
! }

! // now add trimIT string to the augmentedProperties array
! String.augmentedProperties.push('trimIT');
}
var myString = ' trim me ';
console.log(myString.trimIT()); // invoke our custom trimIT string method, logs 'trim me'

console.log(String.augmentedProperties.join()); // logs 'trimIT'

</script></body></html>

I want to drive home the fact that objects in JavaScript are dynamic. This allows objects in JavaScript to
be mutated. Essentially, the entire language can be mutated into a custom version (e.g. trimIT string
method). Again, I am not recommending this—I am just pointing out that it is part of the nature of
objects in JavaScript.

- Careful! If you mutate the native inner workings of JavaScript, you potentially have a custom version of JavaScript to deal with. Proceed
with caution, as most people will assume that JavaScript is that same whenever itʼs available.

All constructor instances have constructor properties that point to their
constructor function

When any object is instantiated, the constructor property is created behind the scenes as a property
of that object/instance. This points to the constructor function that created the object. Below, we create

live code: http://jsfiddle.net/javascriptenlightenment/QvbDw/

Notes

37

http://jsfiddle.net/javascriptenlightenment/QvbDw/
http://jsfiddle.net/javascriptenlightenment/QvbDw/

an Object() object, stored in the foo variable, and then verify that the constructor property is
available for the object we created.

<!DOCTYPE html><html lang="en"><body><script>

var foo = {};

console.log(foo.constructor === Object) // logs true, because object() constructed foo
console.log(foo.constructor) // points to the Object() constructor function

</script></body></html>

This can be handy: if Iʼm working with some instance, and I canʼt see who or what created it (especially
if it was someone elseʼs code), I can determine if itʼs an array, an object, or whatever.

Below, you can see that I have instantiated most of the pre-configured objects that come included with
the JavaScript language. Note that using literal/primitive values does not mean that the constructor
pointer is not resolved when the primitive literal value is treated as an object.

<!DOCTYPE html><html lang="en"><body><script>

var myNumber = new Number('23');
var myNumberL = 23; // literal shorthand
var myString = new String('male');
var myStringL = 'male'; // literal shorthand
var myBoolean = new Boolean('true');
var myBooleanL = true; // literal shorthand
var myObject = new Object();
var myObjectL = {}; // literal shorthand
var myArray = new Array();
var myArrayL = []; // literal shorthand
var myFunction = new Function();
var myFunctionL = function() {}; // literal shorthand
var myDate = new Date();
var myRegExp = new RegExp('/./');
var myRegExpL = /./; // literal shorthand
var myError = new Error();

console.log(// all of these return true
! myNumber.constructor === Number,
! myNumberL.constructor === Number,
! myString.constructor === String,
! myStringL.constructor === String,
! myBoolean.constructor === Boolean,
! myBooleanL.constructor === Boolean,
! myObject.constructor === Object,
! myObjectL.constructor === Object,
! myArray.constructor === Array,

live code: http://jsfiddle.net/javascriptenlightenment/ZtewV/

live code: http://jsfiddle.net/javascriptenlightenment/yJqaF/

38

http://jsfiddle.net/javascriptenlightenment/ZtewV/
http://jsfiddle.net/javascriptenlightenment/ZtewV/
http://jsfiddle.net/javascriptenlightenment/yJqaF/
http://jsfiddle.net/javascriptenlightenment/yJqaF/

! myArrayL.constructor === Array,
! myFunction.constructor === Function,
! myFunctionL.constructor === Function,
! myDate.constructor === Date,
! myRegExp.constructor === RegExp,
! myRegExpL.constructor === RegExp,
! myError.constructor === Error
);

</script></body></html>

The constructor property also works on user-defined constructor functions. Below, we define a
CustomConstructor() constructor function, then using the keyword new, we invoke the function to
produce an object. Once we have our object, we can then leverage the constructor property.

<!DOCTYPE html><html lang="en"><body><script>

var CustomConstructor = function CustomConstructor(){ return 'Wow!'; };
var instanceOfCustomObject = new CustomConstructor();

// logs true
console.log(instanceOfCustomObject.constructor === CustomConstructor);

// returns a reference to CustomConstructor() function
// returns 'function() { return 'Wow!'; };'
console.log(instanceOfCustomObject.constructor);

</script></body></html>

- You might be confused as to why primitive values have constructor properties that point to constructor functions when objects are not
returned. By using a primitive value, the constructor is still called, so there is still a relationship with primitive values and constructor
functions. However, the end result is a primitive value.

- If you would like the constructor property to log the actual name of the constructor for user-defined constructor functions you have to give the
constructor function an actual name (e.g var Person = function Person(){};)

Verify that an object is an instance of a particular constructor function

By using the instanceof operator, we can determine (true or false) if an object is an instance of a
particular constructor function.

live code: http://jsfiddle.net/javascriptenlightenment/MDs2t/

Notes

39

http://jsfiddle.net/javascriptenlightenment/MDs2t/
http://jsfiddle.net/javascriptenlightenment/MDs2t/

Below, we are verifying if the object InstanceOfCustomObject is an instance of the CustomConstructor
constructor function. This works with user-defined objects as well as native objects created with the new
operator.

<!DOCTYPE html><html lang="en"><body><script>

// user-defined object constructor
var CustomConstructor = function() {this.foo = 'bar';};

// instantiate an instance of CustomConstructor
var instanceOfCustomObject = new CustomConstructor();

console.log(instanceOfCustomObject instanceof CustomConstructor); // logs true

// works the same as a native object
console.log(new Array('foo') instanceof Array) // logs true

</script></body></html>

- One thing to watch out for when dealing with the instanceof operator is that it will return true any time you ask if an object is an instance of
Object since all objects inherit from the Object() Constructor.

- The instanceof operator will return false when dealing with primitive values that leverage object wrappers (e.g. 'foo' instanceof String //
returns false). Had the string 'foo' been created with the new operator, the instanceof operator would have returned true. So, keep in mind
that instanceof really only works with complex objects and instances created from constructor functions that return objects.

An instance created from a constructor can have its own independent
properties (aka instance properties)

In JavaScript, objects can be augmented at any time (i.e dynamic properties). As previously mentioned,
and to be exact, JavaScript has mutable objects. This means that objects created from a constructor
function can be augmented with properties.

Below, I create an instance from the Array() constructor and then augment it with its own property.

live code: http://jsfiddle.net/javascriptenlightenment/g9Tt6/

Notes

live code: http://jsfiddle.net/javascriptenlightenment/RuQfJ/

40

http://jsfiddle.net/javascriptenlightenment/g9Tt6/
http://jsfiddle.net/javascriptenlightenment/g9Tt6/
http://jsfiddle.net/javascriptenlightenment/RuQfJ/
http://jsfiddle.net/javascriptenlightenment/RuQfJ/

<!DOCTYPE html><html lang="en"><body><script>

var myArray = new Array();
myArray.prop = 'test';

console.log(myArray.prop) // logs 'test'

</script></body></html>

This could be done with Object(), RegExp() or any of the other non-primitive constructors — even
Boolean().

<!DOCTYPE html><html lang="en"><body><script>

// this can be done with any of the native constructors that actual produce an object
var myString = new String();
var myNumber = new Number();
var myBoolean = new Boolean(true);
var myObject = new Object();
var myArray = new Array();
var myFunction = new Function('return 2+2');
var myRegExp = new RegExp('\bt[a-z]+\b');

myString.prop = 'test';
myNumber.prop = 'test';
myBoolean.prop = 'test';
myObject.prop = 'test';
myArray.prop = 'test';
myFunction.prop = 'test';
myRegExp.prop = 'test';

// logs 'test', 'test', 'test', 'test', 'test', 'test', 'test'
console.log
(myString.prop,myNumber.prop,myBoolean.prop,myObject.prop,myArray.prop,myFunction.prop,
myRegExp.prop);

// be aware: instance properties do not work with primitive/literal values
var myString = 'string';
var myNumber = 1;
var myBoolean = true;

myString.prop = true;
myNumber.prop = true;
myBoolean.prop = true;

// logs undefined, undefined, undefined
console.log(myString.prop, myNumber.prop, myBoolean.prop);

</script></body></html>

live code: http://jsfiddle.net/javascriptenlightenment/GnbPf/

41

http://jsfiddle.net/javascriptenlightenment/GnbPf/
http://jsfiddle.net/javascriptenlightenment/GnbPf/

Adding properties to objects created from a constructor function is not uncommon. Remember: object
instances created from constructor functions are just plain old objects.

- Keep in mind that, besides their own properties, instances can have properties inherited from the prototype chain. Or, as we just saw in the
code, properties added to the constructor after instantiation. This highlights the dynamic nature of objects in JavaScript.

The semantics between "JavaScript objects" vs. "Object() objects"

Do not confuse the general term "JavaScript objects", which refers to the notion of objects in
JavaScript, with Object() objects. An Object() object (e.g. var myObject = new Object()) is a
very specific type of value expressed in JavaScript. Just as an Array() object is a type of object called
array, an Object() object is a type of object called object. The gist is that the Object() constructor
function produces an empty generic object container, which is referred to as an Object() object.
Similarly, the Array() constructor function produces an array object, and we refer to these objects as
Array() objects.

The term "JavaScript objects" in this book is used to refer to all objects in JavaScript, because most of
the values in JavaScript can act like objects. This is due to the fact that the majority of JavaScript
values are created from a native constructor function which produces a very specific type of object.

What you need to remember is that an Object() object is a very specific kind of value. Itʼs a generic
empty object. Do not confuse this with the term "JavaScript objects" used to refer to most of the values
that can be expressed in JavaScript as an object.

Notes

42

Chapter 2 - Working with Objects and Properties

Complex objects can contain most of the JavaScript values as properties

A complex object can hold any permitted JavaScript value. Below, I create an Object() object called
myObject and then add properties representing the majority of values available in JavaScript.

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {};

// contain properties inside of myObject representing most of the native JavaScript values

myObject.myFunction = function() {};
myObject.myArray = [];
myObject.myString = 'string';
myObject.myNumber = 33;
myObject.myDate = new Date();
myObject.myRegExp = /a/;
myObject.myNull = null;
myObject.myUndefined = undefined;
myObject.myObject = {};
myObject.myMath_PI = Math.PI;
myObject.myError = new Error('Crap!');

console.log
(myObject.myFunction,myObject.myArray,myObject.myString,myObject.myNumber,myObject.myDate,myO
bject.myRegExp,myObject.myNull,myObject.myNull,myObject.myUndefined,myObject.myObject,myObjec
t.myMath_PI,myObject.myError);

/* works the same with any of the complex objects, for example a function */

var myFunction = function() {};

myFunction.myFunction = function() {};
myFunction.myArray = [];
myFunction.myString = 'string';
myFunction.myNumber = 33;
myFunction.myDate = new Date();
myFunction.myRegExp = /a/;
myFunction.myNull = null;
myFunction.myUndefined = undefined;
myFunction.myObject = {};

live code: http://jsfiddle.net/javascriptenlightenment/JAEMd/

43

http://jsfiddle.net/javascriptenlightenment/JAEMd/
http://jsfiddle.net/javascriptenlightenment/JAEMd/

myFunction.myMath_PI = Math.PI;
myFunction.myError = new Error('Crap!');

console.log
(myFunction.myFunction,myFunction.myArray,myFunction.myString,myFunction.myNumber,myFunction.
myDate,myFunction.myRegExp,myFunction.myNull,myFunction.myNull,myFunction.myUndefined,myFunct
ion.myObject,myFunction.myMath_PI,myFunction.myError);

</script></body></html>

The simple take away here is that complex objects can contain — or refer to — anything you can
nominally express in JavaScript. You should not be surprised when you see this done, as all of the
native objects can be mutated. This even applies to String(), Number(), and Boolean() values in
their object form – i.e. when they are created with the new operator.

Encapsulating complex objects in a programmatically beneficial way

The Object(), Array(), and Function() objects can contain other complex objects. Below, I
demonstrate this by setting up an object tree using Object() objects.

<!DOCTYPE html><html lang="en"><body><script>

// encapsulation using objects, creates object chains
var object1 = {
! object1_1: {
! ! object1_1_1: {foo: 'bar'},
! ! object1_1_2: {},
! },
! object1_2: {
! ! object1_2_1: {},
! ! object1_2_2: {},
! }
};

console.log(object1.object1_1.object1_1_1.foo); // logs 'bar'

</script></body></html>

The same thing could be done with an Array() object (aka multidimensional array), or with a Function
() object.

live code: http://jsfiddle.net/javascriptenlightenment/mLYfe/

live code: http://jsfiddle.net/javascriptenlightenment/9J6Ya/

44

http://jsfiddle.net/javascriptenlightenment/mLYfe/
http://jsfiddle.net/javascriptenlightenment/mLYfe/
http://jsfiddle.net/javascriptenlightenment/9J6Ya/
http://jsfiddle.net/javascriptenlightenment/9J6Ya/

<!DOCTYPE html><html lang="en"><body><script>

// encapsulation using arrays, creates multidimensional array chain
var myArray= [[[]]]; // an empty array, inside an empty array, inside an empty array

/* Here is an example of encapsulation using functions: an empty function inside an empty
function inside an empty function. */
var myFunction = function() {
! // empty
! var myFunction = function() {
! ! // empty
! ! var myFunction = function() {
! ! ! // empty
! ! };
! };
};

// we can get crazy and mix and match too
var foo = [{foo: [{bar: {say: function() {return 'hi';}}}]}];
console.log(foo[0].foo[0].bar.say()); // logs 'hi'

</script></body></html>

The main take away here is that some of the complex objects are designed to encapsulate other
objects in a programmatically beneficial way.

Getting/setting/updating an object's properties using dot notation or
bracket notation

We can get, set, or update an object's properties using either dot notation or bracket notation.

Below, I demonstrate dot notation, which is accomplished by using the object name followed by a
period and then followed by the property to get, set, or update (e.g. objectName.property).

<!DOCTYPE html><html lang="en"><body><script>

// create cody Object() object
var cody = new Object();

// setting properties
cody.living = true;
cody.age = 33;
cody.gender = 'male';
cody.getGender = function() {return cody.gender;};

// getting properties
console.log(
 cody.living,

live code: http://jsfiddle.net/javascriptenlightenment/DYkey/

45

http://jsfiddle.net/javascriptenlightenment/DYkey/
http://jsfiddle.net/javascriptenlightenment/DYkey/

 cody.age,
 cody.gender,
 cody.getGender()
); // logs 'true 33 male male'

// updating properties, exactly like setting
cody.living = false;
cody.age = 99;
cody.gender = 'female';
cody.getGender = function() {return 'Gender = ' + cody.gender;};

console.log(cody);

</script></body></html>

Dot notation is the most common notation for getting, setting, or updating an object's properties.

Bracket notation, unless required, is not as commonly used. Below, I replace the dot notation used
above with bracket notation. The object name is followed by an opening bracket, the property name (in
quotes), and then a closing bracket:

<!DOCTYPE html><html lang="en"><body><script>

// creating cody Object() object
var cody = new Object();

// setting properties
cody['living'] = true;
cody['age'] = 33;
cody['gender'] = 'male';
cody['getGender'] = function() {return cody.gender;};

// getting properties
console.log(
 cody['living'],
 cody['age'],
 cody['gender'],
 cody['getGender']() // just slap the function invocation on the end!
); // logs 'true 33 male male'

// updating properties, very similar to setting
cody['living'] = false;
cody['age'] = 99;
cody['gender'] = 'female';
cody['getGender'] = function() {return 'Gender = ' + cody.gender;};

console.log(cody);

</script></body></html>

live code: http://jsfiddle.net/javascriptenlightenment/94GXg/

46

http://jsfiddle.net/javascriptenlightenment/94GXg/
http://jsfiddle.net/javascriptenlightenment/94GXg/

Bracket notation can be very handy when you need to access a property key and what you have to
work with is a variable that contains a string value representing the property name. Below, I
demonstrate the advantage of bracket notion over dot notation by using it to access the property
foobar. I do this using two variables that, when joined, produce the string version of the property key
contained in foobarObject.

<!DOCTYPE html><html lang="en"><body><script>

var foobarObject = {foobar: 'Foobar is code for no code'};

var string1 = 'foo';
var string2 = 'bar';

console.log(foobarObject[string1 + string2]); // Let's see dot notation do this!

</script></body></html>

Additionally, bracket notion can come in handy for getting at property names that are invalid JavaScript
identifiers. Below, I use a number and a reserved keyword as a property name (valid as a string) that
only bracket notion can access.

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {'123':'zero','class':'foo'};

// Let's see dot notation do this! Keep in mind 'class' is a keyword in JavaScript
console.log(myObject['123'], myObject['class']); //logs 'zero foo'

// it can't do what bracket notation can do, in fact it causes an error
// console.log(myObject.0, myObject.class);

</script></body></html>

- Because objects can contain other objects, it is not uncommon to see cody.object.object.object.object or cody['object']['object']['object']
['object']. This is called object chaining. The encapsulation of object(s) can go on indefinitely.

- Objects are mutable in JavaScript, meaning that getting, setting, or updating them can be performed on most objects at any time. By using
the bracket notation (e.g cody['age']), you can mimic Associative Arrays found in other languages.

- If a property inside an object is a method, all you have to do is use the () operators (e.g. cody.getGender()) to invoke the property method.

live code: http://jsfiddle.net/javascriptenlightenment/RQB6N/

live code: http://jsfiddle.net/javascriptenlightenment/D6GhN/

Notes

47

http://jsfiddle.net/javascriptenlightenment/RQB6N/
http://jsfiddle.net/javascriptenlightenment/RQB6N/
http://jsfiddle.net/javascriptenlightenment/D6GhN/
http://jsfiddle.net/javascriptenlightenment/D6GhN/

Deleting object properties

The delete operator can be used to completely remove properties from an object. Below, we delete
the bar property from the foo object.

<!DOCTYPE html><html lang="en"><body><script>

var foo = {bar: 'bar'};
delete foo.bar;
console.log('bar' in foo); // logs false, because bar was deleted from foo

</script></body></html>

- Delete will not delete properties that are found on the prototype chain.

- Deleting is the only way to actually remove a property from an object. Setting the property to undefined or null only changes the value of a
property. It does not remove the property from the object.

How references to object properties are resolved

If you attempt to access a property that is not contained in an object, JavaScript will attempt to find the
property or method using the prototype chain. Below, I create an array and then attempt to access a
property called foo that has not yet been defined. You might think that because myArray.foo is not a
property of the myArray object, JavaScript will immediately return undefined. But JavaScript will look in
two more places (Array.prototype and then Object.prototype) for the value of foo before it returns
undefined.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = [];

live code: http://jsfiddle.net/javascriptenlightenment/Zwg8T/

Notes

live code: http://jsfiddle.net/javascriptenlightenment/DjC6E/

48

http://jsfiddle.net/javascriptenlightenment/Zwg8T/
http://jsfiddle.net/javascriptenlightenment/Zwg8T/
http://jsfiddle.net/javascriptenlightenment/DjC6E/
http://jsfiddle.net/javascriptenlightenment/DjC6E/

console.log(myArray.foo); // logs undefined

/* JS will look at Array.prototype for Array.prototype.foo, but it is not there. Then it will
look for it at Object.prototype, but it is not there either, so undefined is returned! */

</script></body></html>

When I attempt to access a property of an object, it will check that object instance for the property. If it
has the property, it will return the value of the property, and there is no inheritance occurring because
the prototype chain is not leveraged. If the instance does not have the property, JavaScript will then
look for it on the object's constructor function prototype object.

All object instances have a property that is a secret link (aka __proto__) to the constructor function that
created the instance. This secret link can be leveraged to grab the constructor function, specifically the
prototype property of the instanceʼs constructor function.

This is one of the most confusing aspects of objects in JavaScript. But let's reason this out. Remember
that a function is also an object with properties. It makes sense to allow objects to inherit properties
from other objects. Just like saying: "Hey object B, I would like you to share all the properties that object
A has." JavaScript wires this all up for native objects by default via the prototype object. When you
create your own constructor functions, you can leverage prototype chaining as well.

How exactly JavaScript accomplishes this is confusing until you see it for what it is: just a set of rules.
Let's create an array to examine the prototype property closer.

<!DOCTYPE html><html lang="en"><body><script>

// myArray is an Array object
var myArray = ['foo', 'bar'];

console.log(myArray.join()); // join() is actually defined at Array.prototype.join

</script></body></html>

Our Array() instance is an object with properties and methods. As we access one of the array
methods, like join(), letʼs ask ourselves: Does the myArray instance created from the Array()
constructor have its own join() method? Let's check.

<!DOCTYPE html><html lang="en"><body><script>

live code: http://jsfiddle.net/javascriptenlightenment/VBRyb/

live code: http://jsfiddle.net/javascriptenlightenment/bceyR/

49

http://jsfiddle.net/javascriptenlightenment/VBRyb/
http://jsfiddle.net/javascriptenlightenment/VBRyb/
http://jsfiddle.net/javascriptenlightenment/bceyR/
http://jsfiddle.net/javascriptenlightenment/bceyR/
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/proto
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/proto

var myArray = ['foo', 'bar'];

console.log(myArray.hasOwnProperty('join')); // logs false

</script></body></html>

No it does not. Yet myArray has access to the join() method as if it were its own property. What
happened here? Well, you just observed the prototype chain in action. We accessed a property that,
although not contained in the myArray object, could be found by JavaScript somewhere else. That
somewhere else is very specific. When the Array() constructor was created by JavaScript, the join()
method was added (among others) as a property of the prototype property of Array().

To reiterate, If you try to access a property on an object that does not contain it, JavaScript will search
the prototype chain for this value. First It will look at the constructor function that created the object
(e.g. Array), and inspect its prototype (e.g. Array.prototype) to see if the property can be found
there. If the first prototype object does not have the property, then JavaScript keeps searching up the
chain at the constructor behind the initial constructor. It can do this all the way up to the end of the
chain.

Where does the chain end? Let's examine the example again, invoking the toLocaleString() method
on myArray.

<!DOCTYPE html><html lang="en"><body><script>

// myArray & Array.prototype contains no toLocaleString() method
var myArray = ['foo', 'bar'];

// toLocaleString() is actually defined at Object.prototype.toLocaleString
console.log(myArray.toLocaleString()); // logs 'foo,bar'

</script></body></html>

The toLocaleString() method is not defined within the myArray object. So, the prototype chaining
rule is invoked and JavaScript looks for the property in the Array constructorʼs prototype property (e.g.
Array.prototype). It is not there either, so the chain rule is invoked again and we look for the property
in the Object() prototype property (Object.prototype). And yes, it is found there. Had it not been
found there, JavaScript would have produced an error stating that the property was undefined.

Since all prototype properties are objects, the final link in the chain is Object.prototype. There is no
other constructor prototype property that can be examined.

live code: http://jsfiddle.net/javascriptenlightenment/vVVeM/

50

http://jsfiddle.net/javascriptenlightenment/vVVeM/
http://jsfiddle.net/javascriptenlightenment/vVVeM/

There is an entire chapter ahead that breaks down the prototype chain into smaller parts, so if this was
completely lost on you, read that chapter and then come back to this explanation to solidify your
understanding. From this short read on the matter, I hope you understand that when a property is not
found (and deemed undefined), JavaScript will have looked at several prototype objects to determine
that a property is undefined. A lookup always occurs, and this lookup process is how JavaScript
handles inheritance as well as simple property lookups.

Using hasOwnProperty, verify that an object property is not from the
prototype chain

While the in operator can check for properties of an object, including properties from the prototype
chain, the hasOwnProperty method can check an object for a property that is not from the prototype
chain.

Below, we want to know if myObject contains the property foo, and that it is not inheriting the property
from the prototype chain. To do this, we ask if myObject has its own property called foo.

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {foo: 'value'};

console.log(myObject.hasOwnProperty('foo')) // logs true

// vs. a property from the prototype chain
console.log(myObject.hasOwnProperty('toString'); // logs false

</script></body></html>

The hasOwnProperty method should be leveraged when you need to determine whether a property is
local to an object or inherited from the prototype chain.

Checking if an object contains a given property using the in operator

The in operator is used to verify (true or false) if an object contains a given property. Below, we are
checking to see if foo is a property in myObject.

live code: http://jsfiddle.net/javascriptenlightenment/5ecJb/

51

http://jsfiddle.net/javascriptenlightenment/5ecJb/
http://jsfiddle.net/javascriptenlightenment/5ecJb/

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {foo: 'value'};
console.log('foo' in myObject); // logs true

</script></body></html>

You should be aware that the in operator not only checks for properties contained in the object
referenced, but also for any properties that object inherits via the prototype chain. Thus, the same
property lookup rules apply and the property, if not in the current object, will be searched for on the
prototype chain.

This means that myObject in the above code actually contains a toString property method via the
prototype chain (Object.prototype.toString), even if we did not specify one (e.g.
myObject.toString = 'foo').

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {foo: 'value'};
console.log('toString' in myObject); // logs true

</script></body></html>

In the last code example, the toString property is not literally inside of the myObject object. However, it
is inherited from Object.prototype and so the in operator, concludes that myObject does in fact have
an inherited toString() property method.

Enumerate (loop over) an object’s properties using the for in loop

By using for in, we can loop over each property in an object. In the code below, we are using the for
in loop to retrieve the property names from the cody object.

<!DOCTYPE html><html lang="en"><body><script>

var cody = {

live code: http://jsfiddle.net/javascriptenlightenment/z6Bet/

live code: http://jsfiddle.net/javascriptenlightenment/Z3B87/

live code: http://jsfiddle.net/javascriptenlightenment/fwr2B/

52

http://jsfiddle.net/javascriptenlightenment/z6Bet/
http://jsfiddle.net/javascriptenlightenment/z6Bet/
http://jsfiddle.net/javascriptenlightenment/Z3B87/
http://jsfiddle.net/javascriptenlightenment/Z3B87/
http://jsfiddle.net/javascriptenlightenment/fwr2B/
http://jsfiddle.net/javascriptenlightenment/fwr2B/

 age : 23,
 gender : 'male'
};

for (var key in cody) { // key is a variable used to represent each property name
! // avoid properties inherited from the prototype chain
 if(cody.hasOwnProperty(key)) {
 console.log(key);
 }
}

</script></body></html>

- The for in loop has a drawback. It will not only access the properties of the specific object being looped over. It will also include in the loop
any properties inherited (via the prototype chain) by the object. Thus, if this is not the desired result, and most of the time it is not, we have
to use a simple if statement inside of the loop to make sure we only access the properties contained within the specific object we are
looping over. This can be done by using the hasOwnProperty() method, inherited by all objects.

- The order in which the properties are accessed in the loop is not always in the order they are defined within the loop. Additionally the order
in which you defined properties is not necessarily the order they are accessed.

- Only properties that are enumerable (i.e. available when looping over an objects properties) show up with the for in loop. For example, the
constructor property will not show up. It is possible to check which properties are enumerable with the propertyIsEnumerable() method.

Host objects vs. native objects

You should be aware that the environment (e.g. a web browser) in which JavaScript is executed
typically contains what are known as host objects. Host objects are not part of the ECMAScript
implementation, but are available as objects during execution. Of course, the availability and behavior
of a host object depends completely on what the host environment provides.

For example, in the web browser environment the window/head object and all of its containing objects
(excluding what JavaScript provides) are considered host objects.

Below, I examine the properties of the window object.

<!DOCTYPE html><html lang="en"><body><script>

for (x in window) {

Notes

live code: http://jsfiddle.net/javascriptenlightenment/zn4rY/

53

http://jsfiddle.net/javascriptenlightenment/zn4rY/
http://jsfiddle.net/javascriptenlightenment/zn4rY/
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/propertyIsEnumerable
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/propertyIsEnumerable
https://developer.mozilla.org/en/Gecko_DOM_Reference
https://developer.mozilla.org/en/Gecko_DOM_Reference

! console.log(x); //logs all of the properties of the window/head object
}

</script></body></html>

You might have noticed that native JavaScript objects are not listed among the host objects. Itʼs fairly
common that a browser distinguishes between host objects and native objects.

As it pertains to web browsers, the most famous of all hosted objects is the interface for working with
HTML documents, also known as the DOM. Below, is a method to list all of the objects contained inside
the window.document object provided by the browser environment.

<!DOCTYPE html><html lang="en"><body><script>

for (x in window.document) {
! console.log();
}

</script></body></html>

What I want you to grok here is that the JavaScript specification does not concern itself with host
objects and vice versa. There is a dividing line between what JavaScript provides (e.g. JavaScript 1.5,
ECMA-262, Edition 3 v.s. Mozilla's JavaScript 1.6, 1.7, 1.8, 1.8.1, 1.8.5) and what the host environment
provides, and these two should not be confused.

- The host environment (e.g. a web browser) that runs JavaScript code typically provides the head object (e.g. window object in web
browser) where the native portions of the language are stored along with host objects (e.g. window.location in web browser) and user-
defined objects (e.g. the code your write to run in the web browser).

- It's not uncommon for a web browser manufacturer as the host of the JavaScript interrupter to push forward the version of JavaScript or
add future specifications to JavaScript before they have been approved (e.g. Mozilla's Firefox JavaScript 1.6, 1.7, 1.8, 1.8.1, 1.8.5).

Enhancing & extending objects with Underscore.js

JavaScript 1.5 is lacking when it comes time to seriously manipulate and manage objects. If you are
running JavaScript in web browser, I would like to be bold here and suggest the usage of Underscore.js

live code: http://jsfiddle.net/javascriptenlightenment/fTS7X/

Notes

54

http://jsfiddle.net/javascriptenlightenment/fTS7X/
http://jsfiddle.net/javascriptenlightenment/fTS7X/
https://developer.mozilla.org/en/DOM/document
https://developer.mozilla.org/en/DOM/document
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.6
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.6
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.7
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.7
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8
https://developer.mozilla.org/En/JavaScript/New_in_JavaScript/1.8.1
https://developer.mozilla.org/En/JavaScript/New_in_JavaScript/1.8.1
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8.5
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8.5
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.6
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.6
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.7
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.7
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8
https://developer.mozilla.org/En/JavaScript/New_in_JavaScript/1.8.1
https://developer.mozilla.org/En/JavaScript/New_in_JavaScript/1.8.1
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8.5
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8.5
http://documentcloud.github.com/underscore/
http://documentcloud.github.com/underscore/

when you need more functionality than is provided by JavaScript 1.5. Underscore.js provides the
following functionality when dealing with objects.

These functions work on all objects and arrays:

✴ each()
✴map()
✴ reduce()
✴ reduceRight()
✴ detect()
✴ select()
✴ reject()
✴ all()
✴ any()
✴ include()
✴ invoke()
✴ pluck()
✴max()
✴min()
✴ sortBy()
✴ sortIndex()
✴ toArray()
✴ size()

These functions work on all objects:

✴ keys()
✴ values()
✴ functions()
✴ extend()
✴ clone()
✴ tap()
✴ isEqual()
✴ isEmpty()
✴ isElement()
✴ isArray()
✴ isArguments
✴ isFunction()
✴ isString()

55

✴ isNumber
✴ isBoolean
✴ isDate
✴ isRegExp
✴ isNaN
✴ isNull
✴ isUndefined

I like this library because it takes advantage of the new native additions to JavaScript where browsers
support them, but also provides the same functionality to browsers that do not, all without changing the
native implementation of JavaScript unless it has to.

- Before you start to use Underscore.js, make sure the functionality you need is not already provided by a JavaScript library or framework
that might already be in use in your code.

Notes

56

Chapter 3 - Object()

Conceptual overview of using Object() objects

Using the built-in Object() constructor function, we can create generic empty objects on the fly. In fact,
if you remember back to the beginning of Chapter 1, this is exactly what we did by creating the cody
object. Letʼs re-create the cody object.

<!DOCTYPE html><html lang="en"><body><script>

var cody = new Object(); // create an empty object with no properties

for (key in cody) { // confirm that cody is an empty generic object
! if(cody.hasOwnProperty(key)) {
! ! console.log(key); // should not see any logs, because cody itself has no properties
! }
}

</script></body></html>

Here, all we are doing is using the Object() constructor function to create a generic object called cody.
You can think of the Object() constructor as a cookie cutter for creating empty objects that have no
predefined properties or methods (except, of course, those inherited from the prototype chain).

- If itʼs not obvious, the Object() constructor is an object itself. That is, the constructor function is based on an object created from the
Function constructor. This can be confusing. Just remember that like the Array constructor, the Object constructor simply spits out blank
objects. And yes, you can create all the empty objects you like. However, creating an empty object like cody is very different than creating
your own constructor function with predefined properties. Make sure you grok that cody is just an empty object based on the Object()
constructor. To really harness the power of JavaScript, you will need to grok not only how to create empty object containers from Object(),
but also how to build your own "class" of objects (e.g. Person()) like the Object() constructor function itself.

live code: http://jsfiddle.net/javascriptenlightenment/EZ52Q/

Notes

57

http://jsfiddle.net/javascriptenlightenment/EZ52Q/
http://jsfiddle.net/javascriptenlightenment/EZ52Q/

Object() parameters

The Object() constructor function takes one optional parameter. That parameter is the value you
would like to create. If you provide no parameter, then a null or undefined value will be assumed.

<!DOCTYPE html><html lang="en"><body><script>

// create an empty object with no properties
var cody1 = new Object();
var cody2 = new Object(undefined);
var cody3 = new Object(null);

console.log(typeof cody1, typeof cody2, typeof cody3); // logs 'object object object'

</script></body></html>

If a value besides null or undefined is passed to the Object constructor, the value passed will be
created as an object. So theoretically, we can use the Object() constructor to create any of the other
native objects that have a constructor. Below, I do just that.

<!DOCTYPE html><html lang="en"><body><script>

/* Use Object() constructor to create a string, number, array, function, boolean, and regex
object. */

// logs below confirm object creation
console.log(new Object('foo'));
console.log(new Object(1));
console.log(new Object([]));
console.log(new Object(function() {}));
console.log(new Object(true));
console.log(new Object(/\bt[a-z]+\b/));

/* Creating a string, number, array, function, boolean, and regex object instance via the
Object() constructor is really never done. I am just demonstrating that it can be done */

</script></body></html>

Object() properties and methods

The Object() object has the following properties (not including inherited properties and methods):

live code: http://jsfiddle.net/javascriptenlightenment/L5bvU/

live code: http://jsfiddle.net/javascriptenlightenment/M7cgC/

58

http://jsfiddle.net/javascriptenlightenment/L5bvU/
http://jsfiddle.net/javascriptenlightenment/L5bvU/
http://jsfiddle.net/javascriptenlightenment/M7cgC/
http://jsfiddle.net/javascriptenlightenment/M7cgC/

Properties (e.g. Object.prototype;):
✴ prototype

Object() object instance properties and methods

Object() object instances have the following properties and methods (does not include inherited properties and
methods):

Instance Properties (e.g. var myObject = {}; myObject.constructor;):
✴ constructor

Instance Methods (e.g. var myObject = {}; myObject.toString();):
✴ hasOwnProperty()
✴ isPrototypeOf()
✴ propertyIsEnumerable()
✴ toLocaleString()
✴ toString()
✴ valueOf()

- The prototype chain ends with Object.prototype and thus all of the properties and methods of Object() (shown above) are inherited by all
JavaScript objects.

Creating Object() objects using "object literals"

Creating an "object literal" entails instantiating an object with or without properties using braces (e.g.
var cody = {};). Remember back to the beginning of Chapter 1, when we created the one-off cody object
and then gave the cody object properties using dot notation? Let's do that again.

Notes

live code: http://jsfiddle.net/javascriptenlightenment/5RBny/

59

http://jsfiddle.net/javascriptenlightenment/5RBny/
http://jsfiddle.net/javascriptenlightenment/5RBny/
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/isPrototypeOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/isPrototypeOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/propertyIsEnumerable
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/propertyIsEnumerable
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/toLocaleString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/toLocaleString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/valueOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/valueOf

<!DOCTYPE html><html lang="en"><body><script>

var cody = new Object();
cody.living = true;
cody.age = 33;
cody.gender = 'male';
cody.getGender = function() {return cody.gender;};

console.log(cody); // logs cody object and properties

</script></body></html>

Notice in the code above that creating the cody object and its properties took five statements. Using the
"object literal" notation we can express the same cody object in one statement.

<!DOCTYPE html><html lang="en"><body><script>

var cody = {
! living: true,
! age: 23,
! gender: 'male',
! getGender: function() {return cody.gender;}
};
// notice the last property has no comma after it

console.log(cody); // logs cody object and properties

</script>
</body>

Using literal notation gives us the ability to create objects, including defined properties, with less code
and visually encapsulate the related data. Notice the use of the : and , operators in a single
statement. This is actually the preferred syntax for creating objects in JavaScript because of it's
terseness and readability.

You should be aware that property names can also be specified as strings:

<!DOCTYPE html><html lang="en"><body><script>

var cody = {
! 'living': true,
! 'age': 23,
! 'gender': 'male',
! 'getGender': function() {return cody.gender;}
};

live code: http://jsfiddle.net/javascriptenlightenment/aYmTQ/

live code: http://jsfiddle.net/javascriptenlightenment/jLgsU/

60

http://jsfiddle.net/javascriptenlightenment/aYmTQ/
http://jsfiddle.net/javascriptenlightenment/aYmTQ/
http://jsfiddle.net/javascriptenlightenment/jLgsU/
http://jsfiddle.net/javascriptenlightenment/jLgsU/

console.log(cody); // logs cody object and properties

</script>
</body>

Itʼs not necessary to specify properties as strings unless the property name:

✴ is one of the reserved keywords (e.g. class)
✴ contains spaces or special characters (anything other than numbers, letters, the dollar sign ($) or

the underscore (_) character)
✴ starts with a number

- Careful! The last property of an object should not have a trailing comma. This will cause an error in some JavaScript environments.

All objects inherit from Object.prototype

The Object() constructor function in JavaScript is special, as its prototype property is the last stop in
the prototype chain.

Below, I augment the Object.prototype with a foo property, then create a string and attempt to
access the foo property as if it were a property of the string instance. Since the myString instance does
not have a foo property, the prototype chain kicks in and the value is looked for at String.prototype.
It is not there, so the next place to look is Object.prototype, which is the final location JavaScript will
look for an object value. The foo value is found because I added it, thus it returns the value of foo.

<!DOCTYPE html><html lang="en"><body><script>

Object.prototype.foo = 'foo';

var myString = 'bar';

// logs 'foo', being found at Object.prototype.foo via prototype chain
console.log(myString.foo);

Notes

live code: http://jsfiddle.net/javascriptenlightenment/NtPXk/

61

http://jsfiddle.net/javascriptenlightenment/NtPXk/
http://jsfiddle.net/javascriptenlightenment/NtPXk/
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Reserved_Words
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Reserved_Words

</script>
</body>

- Careful! Anything added to Object.prototype will show up in a for in loop and the prototype chain. Because of this, itʼs been said that
changing Object.prototype is forbidden or verboten, as some might say.

Notes

62

http://erik.eae.net/archives/2005/06/06/22.13.54/
http://erik.eae.net/archives/2005/06/06/22.13.54/

Chapter 4 - Function()

Conceptual overview of using Function() objects

A function is a container of code statements that can be invoked using the parentheses () operator.
Parameters can be passed inside of the parentheses during invocation so that the statements in the
function can access certain values when the function is invoked.

Below, we create two versions of an addNumbers function object — one using the new operator and
another using the more common, literal pattern. Both are expecting two parameters. In each case, we
invoke the function, passing parameters in the parentheses () operator.

<!DOCTYPE html><html lang="en"><body><script>

var addNumbersA = new Function('num1', 'num2', 'return num1 + num2');

console.log(addNumbersA(2, 2)); // logs 4

// could also be written the literal way, which is much more common
var addNumbersB = function(num1, num2) {return num1 + num2;};

console.log(addNumbersB(2, 2)); // logs 4

</script></body></html>

A function can be used to return a value, construct an object, or as a mechanism to simply run code.
JavaScript has several uses for functions, but in its most basic form, a function is simply a unique
scope of executable statements.

Function() parameters

The Function() constructor takes an indefinite number of parameters, but the last parameter expected
by Function() constructor is a string containing statements that comprise the body of the function. Any

live code: http://jsfiddle.net/javascriptenlightenment/dMrDk/

63

http://jsfiddle.net/javascriptenlightenment/dMrDk/
http://jsfiddle.net/javascriptenlightenment/dMrDk/

parameters passed to the constructor before the last will be available to the function being created. Itʼs
also possible to send multiple parameters as a comma separated string.

Below, I contrast the usage of the Function() constructor with the more common patterns of
instantiating a function object.

<!DOCTYPE html><html lang="en"><body><script>

var addFunction = new Function('num1', 'num2', 'return num1 + num2');

/* Alternately, a single comma-separated string with arguments can be
 the first parameter of the constructor, with the function body following. */
var timesFunction = new Function('num1,num2', 'return num1 * num2');

console.log(addFunction(2,2),timesFunction(2,2)); // logs '4 4'

// versus the more common patterns for instantiating a function
var addFunction = function(num1, num2) {return num1 + num2;}; // expression form
function addFunction(num1, num2) {return num1 + num2;} // statement form

</script></body></html>

- Directly leveraging the Function() constructor is not recommended or typically ever done because JavaScript will use eval() to parse the
string containing the functionʼs logic. Many consider eval() to be unnecessary overhead. If itʼs in use, a flaw in the design of the code is
highly possible.

- Using the Function() constructor without the new keyword has the same effect as using only the constructor to create function objects (e.g.
new Function('x','return x') v.s. function(('x','return x')).

- No closure is created (see Chapter 7) when invoking the Function() constructor directly.

Function() properties and methods

The function object has the following properties (not including inherited properties and methods):

Properties (e.g. Function.prototype;):

live code: http://jsfiddle.net/javascriptenlightenment/RT8QD/

Notes

64

http://jsfiddle.net/javascriptenlightenment/RT8QD/
http://jsfiddle.net/javascriptenlightenment/RT8QD/

✴ prototype

Function object instance properties and methods

Function object instances have the following properties and methods (not including inherited properties and
methods):

Instance Properties (e.g. var myFunction = function(x, y, z) {}; myFunction.length;):
✴ arguments
✴ constructor
✴ length

Instance Methods (e.g. var myFunction = function(x, y, z) {}; myFunction.toString();):
✴ apply()
✴ call()
✴ toString()

Functions always return a value

While itʼs possible to create a function simply to execute code statements, itʼs also very common for a
function to return a value. Below, we are returning a string from the sayHi function.

<!DOCTYPE html><html lang="en"><body><script>

var sayHi = function() {
! return 'Hi';
};

console.log(sayHi()); // logs "Hi"

</script></body></html>

If a function does not specify a return value, then undefined is returned. Below, we call the yelp
function which logs the string 'yelp' to the console without explicitly returning a value.

live code: http://jsfiddle.net/javascriptenlightenment/G6YrQ/

live code: http://jsfiddle.net/javascriptenlightenment/LbenJ/

65

http://jsfiddle.net/javascriptenlightenment/G6YrQ/
http://jsfiddle.net/javascriptenlightenment/G6YrQ/
http://jsfiddle.net/javascriptenlightenment/LbenJ/
http://jsfiddle.net/javascriptenlightenment/LbenJ/
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/arguments
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/arguments
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/length
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/length
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/toString

<!DOCTYPE html><html lang="en"><body><script>

var yelp = function() {
! console.log('I am yelping!');
! //functions return undefined even if we don't
}

/* logs true because a value is always returned, even if we don't specifically return one */
console.log(yelp() === undefined);

</script></body></html>

The take away here is that all functions return a value, even if you do not explicitly provide a value to
return. If you do not specify a value to return, the value returned is undefined.

Functions are first-class citizens (not just syntax, but values)

In JavaScript, functions are objects. This means that a function can be stored in a variable, array, or
object. Also, a function can be passed to, and returned from, a function. A function has properties
because it is an object. All of these factors make functions first-class citizens in JavaScript.

<!DOCTYPE html><html lang="en"><body><script>

// functions can be stored in variables (funcA), arrays (funcB), and objects (funcC)
var funcA = function(){}; // called like so: funcA()
var funcB = [function(){}]; // called like so: funcB[0]()
var funcC = {method: function(){}}; // too.method() or funcC['method']()

// functions can be sent to, and sent back from, functions
var funcD = function(func){
! return func
};

var runFuncPassedToFuncD = funcD(function(){console.log('Hi');});

runFuncPassedToFuncD();

// functions are objects, which means they can have properties
var funcE = function(){};
funcE.answer = 'yup'; // instance property
console.log(funcE.answer); // logs 'yup'

</script></body></html>

live code: http://jsfiddle.net/javascriptenlightenment/2BTjU/

66

http://jsfiddle.net/javascriptenlightenment/2BTjU/
http://jsfiddle.net/javascriptenlightenment/2BTjU/

It is crucial that you realize a function is an object, and thus a value. It can be passed around or
augmented like any other expression in JavaScript.

Passing parameters to a function

Parameters are vehicles for passing values into the scope of a function when it is invoked. Below, as
we invoke addFunction(), since we have predefined it to take two parameters, two added values
become available within its scope.

<!DOCTYPE html><html lang="en"><body><script>

var addFunction = function(number1, number2) {
! var sum = number1 + number2;
! return sum;
}

console.log(addFunction(3, 3)); // logs 6

</script></body></html>

- In contrast to some other programming languages, it is perfectly legal in JavaScript to omit parameters even if the function has been
defined to accept these arguments. The missing parameters are simply given the value of undefined. Of course, by leaving out values for
the parameters, the function might not work properly.

- If you pass a function unexpected parameters (those not defined when the function was created), no error will occur. And it's possible to
access these parameters from the arguments object, which is available to all functions.

this & arguments values available to all functions

Inside the scope/body of all functions is available the this and arguments values.

The arguments object is an array-like object containing all of the parameters being passed to the
function. In the code below, even though we forgo specifying parameters when defining the function, we
can rely on the arguments array passed to the function to access parameters if they are sent upon
invocation.

live code: http://jsfiddle.net/javascriptenlightenment/MBhkj/

Notes

67

http://jsfiddle.net/javascriptenlightenment/MBhkj/
http://jsfiddle.net/javascriptenlightenment/MBhkj/

<!DOCTYPE html><html lang="en"><body><script>

var add = function() {
! return arguments[0] + arguments[1];
};

console.log(add(4, 4)); // returns 8

</script></body></html>

The this keyword, passed to all functions, is a reference to the object that contains the function. As
you might expect, functions contained within objects as properties (i.e. methods) can use this to gain a
reference to the "parent" object. When a function is defined in the global scope, the value of this is the
global object. Review the code below and make sure you understand what this is returning.

<!DOCTYPE html><html lang="en"><body><script>

var myObject1 = {
! name: 'myObject1',
! myMethod: function(){console.log(this);}
};

myObject1.myMethod(); // logs 'myObject1'

var myObject2!= function(){console.log(this);};

myObject2(); // logs window

</script></body></html>

The arguments.callee property

The arguments object has a property called callee which is a reference to the function currently
executing. This property can be used to reference the function from within the scope of the function
(e.g. arguments.callee) — a self-reference. In the code below, we use this property to gain a
reference to the calling function.

live code: http://jsfiddle.net/javascriptenlightenment/2R2Vz/

live code: http://jsfiddle.net/javascriptenlightenment/WFzW3/

live code: http://jsfiddle.net/javascriptenlightenment/TdZVg/

68

http://jsfiddle.net/javascriptenlightenment/2R2Vz/
http://jsfiddle.net/javascriptenlightenment/2R2Vz/
http://jsfiddle.net/javascriptenlightenment/WFzW3/
http://jsfiddle.net/javascriptenlightenment/WFzW3/
http://jsfiddle.net/javascriptenlightenment/TdZVg/
http://jsfiddle.net/javascriptenlightenment/TdZVg/

<!DOCTYPE html><html lang="en"><body><script>

var foo = function foo() {
! console.log(arguments.callee); // logs foo()
! // callee could be used to invoke recursively the foo function (e.g. arguments.callee())
}();

</script></body></html>

This can be useful when a function needs to be called recursively.

The function instance length property & arguments.length

The arguments object has a unique length property. While you might think this length property will
give you the number of defined arguments, it actually gives the number of parameters sent to the
function during invocation.

<!DOCTYPE html><html lang="en"><body><script>

var myFunction = function(z, s, d) {
! return arguments.length;
};

console.log(myFunction()); // logs 0 because no parameters were passed to the function

</script></body></html>

Using the length property of all Function() instances, we can actually grab the total number of
parameters the function is expecting.

<!DOCTYPE html><html lang="en"><body><script>

var myFunction = function(z, s, d, e, r, m, q) {
! return myFunction.length;
};

console.log(myFunction()); //logs 7

</script></body></html>

live code: http://jsfiddle.net/javascriptenlightenment/CbgrD/

live code: http://jsfiddle.net/javascriptenlightenment/Uhjbb/

69

http://jsfiddle.net/javascriptenlightenment/CbgrD/
http://jsfiddle.net/javascriptenlightenment/CbgrD/
http://jsfiddle.net/javascriptenlightenment/Uhjbb/
http://jsfiddle.net/javascriptenlightenment/Uhjbb/

- The arguments.length property beginning with JavaScript 1.4 is deprecated, and the number of arguments sent to a function can be
accessed from the length property of the function object. So, moving forward, you can get the length value by leveraging the callee
property to first gain reference to the function being invoked (i.e. arguments.callee.length).

Redefining function parameters

A functionʼs parameters can be redefined inside the function either directly, or by using the arguments
array. Take a look at this code:

<!DOCTYPE html><html lang="en"><body><script>

var foo = false;
var bar = false;

var myFunction = function(foo, bar) {
! arguments[0] = true;
! bar = true;
! console.log(arguments[0], bar); // logs true true
}

myFunction();

</script></body></html>

Notice that I can redefine the value of the bar parameter using the arguments index or by directly
reassigning a new value to the parameter.

Return a function before it is done (i.e. cancel function execution)

Functions can be cancelled at any time during invocation by using the return keyword with or without
a value. Below, we are canceling the add function if the parameters are undefined or not a number.

Notes

live code: http://jsfiddle.net/javascriptenlightenment/bE7cn/

live code: http://jsfiddle.net/javascriptenlightenment/FQUje/

70

http://jsfiddle.net/javascriptenlightenment/bE7cn/
http://jsfiddle.net/javascriptenlightenment/bE7cn/
http://jsfiddle.net/javascriptenlightenment/FQUje/
http://jsfiddle.net/javascriptenlightenment/FQUje/

<!DOCTYPE html><html lang="en"><body><script>

var add = function(x, y) {
! // If the parameters are not numbers, return error.
! if (typeof x !== 'number' || typeof y !== 'number') {return 'pass in numbers';}
! return x + y;
}
console.log(add(3,3)); // logs 6
console.log(add('2','2')); // logs 'pass in numbers'

</script></body></html>

The take away here is that you can cancel a function's execution by using the return keyword at any
point in the execution of the function.

Defining a function (statement, expression, or constructor)

A function can be defined in three different ways: a function constructor, a function statement, or a
function expression. Below, I demonstrate each variation.

<!DOCTYPE html><html lang="en"><body><script>

/* function constructor: the last parameter is the function logic,
 everything before it is a parameter */
var addConstructor = new Function('x', 'y', 'return x + y');

// function statement
function addStatement(x, y) {
! return x + y;
}

// function expression
var addExpression = function(x, y) {
 return x + y;
};

console.log(addConstructor(2,2), addStatement (2,2), addExpression (2,2)); // logs '4 4 4'

</script></body></html>

- Some have said that there is a fourth type of definition for functions, called the "named function expression." A named function expression
is simply a function expression that also contains a name (e.g. var add = function add(x, y) {return x+y}).

live code: http://jsfiddle.net/javascriptenlightenment/DLrAk/

Notes

71

http://jsfiddle.net/javascriptenlightenment/DLrAk/
http://jsfiddle.net/javascriptenlightenment/DLrAk/

Invoking a function (function, method, constructor, or call() & apply())

Functions are invoked using four different scenarios or patterns.

✴As a function
✴As a method
✴As a constructor
✴Using apply() or call()

In the code below, we examine each of these invocation patterns.

<!DOCTYPE html><html lang="en"><body><script>

// function pattern
var myFunction = function(){return 'foo'};
console.log(myFunction()); // log 'foo'

// method pattern
var myObject = {myFunction: function(){return 'bar';}}
console.log(myObject.myFunction()); // log 'bar'

// constructor pattern
var Cody = function(){
! this.living = true;
! this.age = 33;
! this.gender = 'male';
! this.getGender = function() {return this.gender;};
}
var cody = new Cody(); // invoke via Cody constructor
console.log(cody); // logs cody object and properties

// apply() and call() pattern
var greet = {
! runGreet: function(){
! ! console.log(this.name,arguments[0],arguments[1]);
! }
}

var cody = {name:'cody'};
var lisa = {name:'lisa'};

// invoke the runGreet function as if it were inside of the cody object
greet.runGreet.call(cody,'foo','bar'); // logs 'cody foo bar'

// invoke the runGreet function as if it were inside of the lisa object

live code: http://jsfiddle.net/javascriptenlightenment/aqbQ9/

72

http://jsfiddle.net/javascriptenlightenment/aqbQ9/
http://jsfiddle.net/javascriptenlightenment/aqbQ9/

greet.runGreet.apply(lisa, ['foo','bar']); // logs 'lisa foo bar'

/* Notice the difference between call() and apply() in how parameters are sent to the
function being invoked */

</script></body></html>

Make sure you are aware of all four of the invocation patterns, as code you will encounter may contain
any of them.

Anonymous functions

An anonymous function is a function that is not given an identifier. Anonymous functions are mostly
used for passing functions as a parameter to another function.

<!DOCTYPE html><html lang="en"><body><script>

// function(){console.log('hi');}; // anonymous function, but no way to invoke it

// create a function that can invoke our anonymous function
var sayHi = function(f){
! f(); // invoke anonymous function
}

// pass an anonymous function as parameter
sayHi(function(){console.log('hi');}); // log 'hi'

</script></body></html>

Self-invoking function expression

A function expression (really any function except one created from the Function() constructor) can be
immediately invoked after definition by using the parentheses operator. Below, we create a sayWord()
function expression and then immediately invoke the function. This is considered to be a self-invoking
function.

<!DOCTYPE html><html lang="en"><body><script>

live code: http://jsfiddle.net/javascriptenlightenment/4nAX5/

live code: http://jsfiddle.net/javascriptenlightenment/w9jMG/

73

http://jsfiddle.net/javascriptenlightenment/4nAX5/
http://jsfiddle.net/javascriptenlightenment/4nAX5/
http://jsfiddle.net/javascriptenlightenment/w9jMG/
http://jsfiddle.net/javascriptenlightenment/w9jMG/

var sayWord = function() {console.log('Word 2 yo mo!');}(); // logs 'Word 2 yo mo!'

</script></body></html>

Self-invoking anonymous function statements

Itʼs possible to create an anonymous function statement that is self-invoked. This is called a self-
invoking anonymous function. Below, we create several anonymous functions that are immediately
invoked.

<!DOCTYPE html><html lang="en"><body><script>

// most commonly used/seen in the wild
(function(msg) {
! console.log(msg);
})('Hi');

// slightly different but achieving the same thing:
(function(msg) {
! console.log(msg)
}('Hi'));

// the shortest possible solution
!function sayHi(msg) {console.log(msg);}('Hi');

// FYI, this does NOT work!
// function sayHi() {console.log('hi');}();

</script></body></html>

- According to the ECMAScript standard, the parentheses around the function (or anything that transforms the function into an expression)
are required if the function is to be invoked immediately.

Functions can be nested

live code: http://jsfiddle.net/javascriptenlightenment/yUwFG/

Notes

74

http://jsfiddle.net/javascriptenlightenment/yUwFG/
http://jsfiddle.net/javascriptenlightenment/yUwFG/

Functions can be nested inside of other functions indefinitely. Below, we encapsulate the goo function
inside of the bar function, which is inside of the foo function.

<!DOCTYPE html><html lang="en"><body><script>

var foo = function() {
! var bar = function() {
! ! var goo = function() {
! ! ! console.log(this); // logs reference to head window object
! ! }();
! }();
}();

</script></body></html>

The simple take away here is that functions can be nested and that there is no limit to how deep the
nesting can go.

- Remember, the value of this for nested functions will be the head object (e.g. window object in a web browser) in JavaScript 1.5,
ECMA-262, edition 3.

Passing functions to functions & returning functions from functions

As previously mentioned, functions are first-class citizens in JavaScript. And since a function is a value,
and a function can be passed any sort of value, a function can be passed to a function. Functions that
take and/or return other functions are sometimes called "higher-order functions".

Below, we are passing an anonymous function to the foo function which we then immediately return
from the foo function. It is this anonymous function that the variable bar points to, since foo accepts and
then returns the anonymous function.

<!DOCTYPE html><html lang="en"><body><script>

live code: http://jsfiddle.net/javascriptenlightenment/ZsHua/

Notes

live code: http://jsfiddle.net/javascriptenlightenment/w2C75/

75

http://jsfiddle.net/javascriptenlightenment/ZsHua/
http://jsfiddle.net/javascriptenlightenment/ZsHua/
http://jsfiddle.net/javascriptenlightenment/w2C75/
http://jsfiddle.net/javascriptenlightenment/w2C75/

// functions can be sent to, and sent back from, functions
var foo = function(f) {
! return f;
}

var bar = foo(function() {console.log('Hi');});

bar(); // logs 'Hi'

</script></body></html>

So when bar is invoked, it invokes the anonymous function that was passed to the foo() function, which
is then passed back from the foo() function and referenced from the bar variable. All this is to showcase
the fact that functions can be passed around just like any other value.

Invoking function statements before they are defined (aka function hoisting)

A function statement can be invoked during execution before its actual definition. This is a bit odd, but
you should be aware of it so you can leverage it, or at least know whatʼs going on when you encounter
it. Below, I invoke the sayYo() and sum() function statements before they are defined.

<!DOCTYPE html><html lang="en"><body><script>

// Example 1

var speak = function() {
 sayYo(); // sayYo() has not been defined yet but it can still be invoked, logs 'yo'
 function sayYo() {console.log('Yo');}
}(); // invoke

// Example 2

console.log(sum(2, 2)); // invoke sum(), which is not defined yet, but can still be invoked
function sum(x, y) {return x + y;}

</script></body></html>

This happens because before the code runs, function statements are interpreted and added to the
execution stack/context. Make sure you are aware of this as you use function statements.

- Functions, defined as 'function expressions' are not hoisted only 'function statements' are hoisted.

live code: http://jsfiddle.net/javascriptenlightenment/7hvUw/

Notes

76

http://jsfiddle.net/javascriptenlightenment/7hvUw/
http://jsfiddle.net/javascriptenlightenment/7hvUw/

A function can call itself (aka recursion)

Itʼs perfectly legitimate for a function to call itself. In fact, this is often used in well-known coding
patterns. In the code below, we kick off the countDownFrom function, which then calls itself via the
function name countDownFrom. Essentially, this creates a loop that counts down from 5 to 0.

<!DOCTYPE html><html lang="en"><body><script>

var countDownFrom = function countDownFrom(num) {
! console.log(num);
! num--; // change the parameter value
! if (num < 0){return false;} // if num < 0 return function with no recursion
! // could have also done arguments.callee(num) if it was an anonymous function
! countDownFrom(num);
};

countDownFrom(5); // kick off the function, which logs separately 5,4,3,2,1,0

</script></body></html>

You should be aware that itʼs not uncommon for a function to invoke itself (a.k.a recursion) or to do so
repetitively.

live code: http://jsfiddle.net/javascriptenlightenment/xacLe/

77

http://jsfiddle.net/javascriptenlightenment/xacLe/
http://jsfiddle.net/javascriptenlightenment/xacLe/

Chapter 5 - The Head/Global Object

Conceptual overview of the head object

JavaScript code, itself, must be contained within an object. As an example, when crafting JavaScript
code for a web browser environment, JavaScript is contained and executed within the window object.
This window object is considered to be the "head object," or sometimes confusingly referred to as "the
global object." All implementations of JavaScript require the use of a single head object.

The head object is set up by JavaScript behind the scenes to encapsulate user-defined code and to
house the native code with which JavaScript comes prepackaged. User-defined code is placed by
JavaScript inside the head object for execution. Let's verify this as it pertains to a web browser.

Below, I am creating some JavaScript values and verifying the values are placed in the head window
object.

<!DOCTYPE html><html lang="en"><body><script>

var myStringVar = 'myString';
var myFunctionVar = function() {};
myString = 'myString';
myFunction = function() {};

console.log('myStringVar' in window); // returns true
console.log('myFunctionVar' in window); // return true
console.log('myString' in window); // returns true
console.log('myFunction' in window); // return true

</script></body></html>

You should always be aware that when you write JavaScript, it will be written in the context of the head
object. The remaining material in this chapter assumes you are aware that the term "head object" is
synonymous with "global object."

live code: http://jsbin.com/upotis/edit

Notes

78

http://jsbin.com/upotis/edit
http://jsbin.com/upotis/edit

- The head object is the highest scope/context available in a JavaScript environment.

Global functions contained within the head object

JavaScript ships with some predefined functions. The following native functions are considered
methods of the head object (e.g. in a web browser window.parseInt('500')). You can think of these as
ready-to-use functions/methods (of the head object) provided by JavaScript.

✴ decodeURI()
✴ decodeURIComponent()
✴ encodeURI()
✴ encodeURIComponent()
✴ eval()
✴ isFinite()
✴ isNaN()
✴ parseFloat()
✴ parseInt()

The head object vs. global properties and global variables

Do not confuse the head object with global properties or global variables contained within the global
scope. The head object is an object that contains all objects. The term "global properties" or "global
variables" is used to refer to values directly contained inside the head object and are not specifically
scoped to other objects. These values are considered global because no matter where code is currently
executing, in terms of scope, all code has access (via the scope chain) to these global properties/
variables.

Below, I place a foo property in the the global scope, then access this property from a different scope.

<!DOCTYPE html><html lang="en"><body><script>

var foo = 'bar'; // foo is a global object and a property of the head/window object

var myApp = function() { // remember functions create scope
! var run = function() {
! ! // logs bar, foo's value is found via the scope chain in the head object

live code: http://jsbin.com/utaloy/edit

79

http://jsbin.com/utaloy/edit
http://jsbin.com/utaloy/edit
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/decodeURI
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/decodeURI
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/decodeURIComponent
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/decodeURIComponent
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/encodeURI
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/encodeURI
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/isFinite
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/isFinite
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/isNaN
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/isNaN
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/parseFloat
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/parseFloat
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/parseInt

! ! console.log(foo);
! }();
}

myApp();

</script></body></html>

Had I placed the foo property outside of the global scope, the console.log function would return
undefined. This is demonstrated in the next code example.

<!DOCTYPE html><html lang="en"><body><script>

var myFunction = function() {var foo = 'bar'}; // foo is now in the scope of myFunction()

var myApp = function() {
! var run = function() {
! ! console.log(foo); // foo is undefined, no longer in the global scope, error occurs
! }();
}

myApp();

</script></body></html>

In the browser environment, this is why global property methods (e.g. window.alert()) can be
invoked from any scope. What you need to take away from this is that anything in the global scope is
available to any scope, and thus gets the title of "global variable" or "global property".

- There is a slight difference between using var and not using var in the global scope (global properties v.s. global variables). Have a look at
this Stack Overflow exchange for the details.

Referring to the head object

There are typically two ways to reference the head object. The first way is to simply reference the name
given to the head object (e.g. in a web browser this would be window). The second way is to use the
this keyword in the global scope. Each of these are detailed in the code below.

code: N/A code errors

Notes

80

http://stackoverflow.com/questions/1470488/difference-between-using-var-and-not-using-var-in-javascript/1471738%231471738
http://stackoverflow.com/questions/1470488/difference-between-using-var-and-not-using-var-in-javascript/1471738%231471738

<!DOCTYPE html><html lang="en"><body><script>

var foo = 'bar';

windowRef1 = window;
windowRef2 = this;

console.log(windowRef1, windowRef2); // logs reference to window object

console.log(windowRef1.foo, windowRef2.foo); // logs 'bar', 'bar'

</script></body></html>

In the code above, we explicitly store a reference to the head object in two variables that are then used
to gain access to the global foo variable.

The head object is implied and typically not referenced explicitly

Typically a reference to the head object is not used because it is implied. For example, in the browser
environment window.alert and alert() are essentially the same statement. JavaScript fills in the
blanks here. Because the window object (i.e. the head object) is the last object checked in the scope
chain for a value, the window object is essentially always implied. Below, we leverage the alert()
function which is contained in the global scope.

<!DOCTYPE html><html lang="en"><body><script>

var foo = { // window is implied here, window.foo
! fooMethod: function() {
! ! alert('foo' + 'bar'); // window is implied here, window.alert
! ! window.alert('foo' + 'bar'); // window is explicitly used, with the same effect
! }
}

foo.fooMethod(); // window is implied here, window.foo.fooMethod()

</script></body></html>

Make sure you understand that the head object is implied, even when you don't explicitly include it,
because the head object is the last stop in the scope chain.

live code: http://jsbin.com/ubilim/edit

live code: http://jsbin.com/ikepup/edit

81

http://jsbin.com/ubilim/edit
http://jsbin.com/ubilim/edit
http://jsbin.com/ikepup/edit
http://jsbin.com/ikepup/edit

- Being explicit (e.g window.alert() v.s. alert()) costs a little bit more with regards to performance (how fast the code runs). It's faster if you rely
on the scope chain alone and avoid explicitly referencing the head object even if you know the property you want is contained in the global
scope.

Notes

82

Chapter 6 - The this Keyword

Conceptual overview of this and how it refers to objects

When a function is created, a keyword called this is created (behind the scenes), which links to the
object in which the function operates. Said another way, this is available to the scope of its function,
yet is a reference to the object of which that function is a property/method.

Letʼs take a look at the cody object from Chapter 1 again:

<!DOCTYPE html><html lang="en"><body><script>

var cody = {
! living : true,
! age : 23,
! gender : 'male',
! getGender : function() {return cody.gender;}
};

console.log(cody.getGender()); // logs 'male'

</script></body></html>

Notice how inside of the getGender function, we are accessing the gender property using dot notation
(e.g. cody.gender) on the cody object itself. This can be rewritten using this to access the cody object
because this points to the cody object.

<!DOCTYPE html><html lang="en"><body><script>

var cody = {
! living: true,
! age: 23,
! gender: 'male',
! getGender: function() {return this.gender;}
};

console.log(cody.getGender()); // logs 'male'

live code: http://jsfiddle.net/javascriptenlightenment/yMXec/

live code: http://jsfiddle.net/javascriptenlightenment/dDvPa/

83

http://jsfiddle.net/javascriptenlightenment/yMXec/
http://jsfiddle.net/javascriptenlightenment/yMXec/
http://jsfiddle.net/javascriptenlightenment/dDvPa/
http://jsfiddle.net/javascriptenlightenment/dDvPa/

</script></body></html>

The this used in this.gender simply refers to the cody object on which the function is operating.

The topic of this can be confusing, but it does not have to be. Just remember that, in general, this is
used inside of functions to refer to the object the function is contained within, as opposed to the function
itself (exceptions include using the new keyword or call() and apply()).

- The keyword this looks and acts like any other variable, except you can't modify it.

- As opposed to arguments and any parameters sent to the function, this is a keyword (not a property) in the call/activation object.

How is the value of this determined?

The value of this, passed to all functions, is based on the context in which the function is called at
runtime. Pay attention here, because this is one of those quirks you just need to memorize.

The myObject object in the code below is given a property called sayFoo, which points to the sayFoo
function. When the sayFoo function is called from the global scope, this refers to the window object.
When it is called as a method of myObject, this refers to myObject.

Since myObject has a property named foo, that property is used.

<!DOCTYPE html><html lang="en"><body><script>

var foo = 'foo';
var myObject = {foo: 'I am myObject.foo'};

var sayFoo = function() {
! console.log(this['foo']);
};

// give myObject a sayFoo property and have it point to sayFoo function
myObject.sayFoo = sayFoo;

myObject.sayFoo(); // logs 'I am myObject.foo'

Notes

live code: http://jsbin.com/oxaliq/edit

84

http://jsbin.com/oxaliq/edit
http://jsbin.com/oxaliq/edit

sayFoo(); // logs 'foo'

</script></body></html>

Clearly, the value of this is based on the context in which the function is being called. Consider that
both myObject.sayFoo and sayFoo point to the same function. However, depending upon where (i.e.
the context) sayFoo() is called from, the value of this is different.

If it helps, here is the same code with the head object (i.e window) explicitly used.

<!DOCTYPE html><html lang="en"><body><script>

window.foo = 'foo';
window.myObject = {foo: 'I am myObject.foo'};

window.sayFoo = function() {
! console.log(this.foo);
};

window.myObject.sayFoo = window.sayFoo;

window.myObject.sayFoo();
window.sayFoo();

</script></body></html>

Make sure that as you pass around functions, or have multiple references to a function, you realize that
the value of this will change depending upon the context in which you call the function.

- All variables except this and arguments follow lexical scope.

The this keyword refers to the head object in nested functions

You might be wondering what happens to this when it is used inside of a function that is contained
inside of another function. The bad news is in ECMA 3, this loses its way and refers to the head object
(window object in browsers), instead of the object within which the function is defined.

live code: http://jsfiddle.net/javascriptenlightenment/VeKWq/

Notes

85

http://jsfiddle.net/javascriptenlightenment/VeKWq/
http://jsfiddle.net/javascriptenlightenment/VeKWq/
http://en.wikipedia.org/wiki/Lexical_scope%23Lexical_scoping
http://en.wikipedia.org/wiki/Lexical_scope%23Lexical_scoping

In the code below, this inside of func2 and func3 loses its way and refers not to myObject but instead
to the head object.

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {
! func1: function() {
! ! console.log(this); // logs myObject
! ! var func2 = function() {
! ! ! console.log(this) // logs window, and will do so from this point on
! ! ! var func3 = function() {
! ! ! ! console.log(this); // logs window, as it’s the head object
! ! ! }();
! ! }();
! }
}

myObject.func1();

</script></body></html>

The good news is that this will be fixed in ECMAScript 5. For now, you should be aware of this
predicament, especially when you start passing functions around as values to other functions.

Consider the code below and what happens when passing an anonymous function to foo.func1. When
the anonymous function is called inside of foo.func1 (a function inside of a function) the this value
inside of the anonymous function will be a reference to the head object.

<!DOCTYPE html><html lang="en"><body><script>

var foo = {
! func1:function(bar) {
! ! bar(); // logs window, not foo
! ! console.log(this); // the this keyword here will be a reference to foo object
! }
}

foo.func1(function(){console.log(this)});

</script></body></html>

Now you will never forget: the this value will always be a reference to the head object when its host
function is encapsulated inside of another function or invoked within the context of another function
(again, this is fixed in ECMAScript 5).

live code: http://jsfiddle.net/javascriptenlightenment/9GJhu/

live code: http://jsfiddle.net/javascriptenlightenment/DudU3/

86

http://jsfiddle.net/javascriptenlightenment/9GJhu/
http://jsfiddle.net/javascriptenlightenment/9GJhu/
http://jsfiddle.net/javascriptenlightenment/DudU3/
http://jsfiddle.net/javascriptenlightenment/DudU3/

Working around the nested function issue by leveraging the scope chain

So that the this value does not get lost, you can simply use the scope chain to keep a reference to
this in the parent function. The code below demonstrates how, using a variable called that, and
leveraging its scope, we can keep better track of function context.

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {
! myProperty: 'I can see the light',
! myMethod : function(){
! ! var that = this; // store a reference to this (i.e. myObject) in myMethod scope
! ! var helperFunction function() { // child function
! ! ! // logs 'I can see the light' via scope chain because that = this
! ! ! console.log(that.myProperty); // logs 'I can see the light'
! ! ! console.log(this); // logs window object, if we don't use "that"
! ! }();
! }
}

myObject.myMethod(); // invoke myMethod

</script></body></html>

Controlling the value of this using call() or apply()

The value of this is normally determined from the context in which a function is called (except when
the new keyword is used – more about that in a minute), but you can overwrite/control the value of this
using apply() or call()to define what object this points to when invoking a function. Using these
methods is like saying: "Hey, call X function but tell the function to use Z object as the value for this."
By doing so, the default way in which JavaScript determines the value of this is overridden.

Below, we create an object and a function. We then invoke the function via call() so that the value of
this inside the function uses myObject as its context. The statements inside the myFunction function
will then populate myObject with properties instead of populating the head object. We have altered the
object to which this (inside of myFunction) refers.

live code: http://jsfiddle.net/javascriptenlightenment/k8uCu/

87

http://jsfiddle.net/javascriptenlightenment/k8uCu/
http://jsfiddle.net/javascriptenlightenment/k8uCu/

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {};

var myFunction = function(param1, param2) {
! // set via call() 'this' points to myObject when function is invoked
! this.foo = param1;
! this.bar = param2;
! console.log(this) // logs Object {foo = 'foo', bar = 'bar'}
};

myFunction.call(myObject, 'foo', 'bar'); // invoke function, set this value to myObject

console.log(myObject) // logs Object {foo = 'foo', bar = 'bar'}

</script></body></html>

In the example above, we are using call(), but apply() could be used as well. The difference
between the two is how the parameters for the function are passed. Using call(), the parameters are
just comma separated values. Using apply(), the parameter values are passed inside of an array.
Below, is the same idea, but using apply().

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {};

var myFunction = function(param1, param2) {
! // set via apply(), this points to myObject when function is invoked
! this.foo = param1;
! this.bar = param2;
! console.log(this) // logs Object {foo = 'foo', bar = 'bar'}
};

myFunction.apply(myObject, ['foo', 'bar']); // invoke function, set this value

console.log(myObject) // logs Object {foo = 'foo', bar = 'bar'}

</script></body></html>

What you need to take away here is that you can override the default way in which JavaScript
determines the value of this in a function's scope.

Using the this keyword inside a user-defined constructor function

live code: http://jsfiddle.net/javascriptenlightenment/7t6xD/

live code: http://jsfiddle.net/javascriptenlightenment/X9vDB/

88

http://jsfiddle.net/javascriptenlightenment/7t6xD/
http://jsfiddle.net/javascriptenlightenment/7t6xD/
http://jsfiddle.net/javascriptenlightenment/X9vDB/
http://jsfiddle.net/javascriptenlightenment/X9vDB/

When a function is invoked with the new keyword, the value of this — as itʼs stated in the constructor
— refers to the instance itself. Said another way: in the constructor function, we can leverage the object
via this before the object is actually created. In this case, the default value of this changes in a way
not unlike using call() or apply().

Below, we set up a Person constructor function that uses this to reference an object being created.
When an instance of Person is created, this.name will reference the newly created object and place a
property called name in the new object with a value from the parameter (name) passed to the
constructor function.

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(name) {
! this.name = name || 'john doe'; // this will refer to the instance created
}

var cody = new Person('Cody Lindley'); // create an instance, based on Person constructor

console.log(cody.name); // logs 'Cody Lindley'

</script></body></html>

Again, this refers to the "object that is to be" when the constructor function is invoked using the new
keyword. Had we not used the new keyword, the value of this would be the context in which Person is
invoked — in this case the head object. Let's examine this scenario.

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(name) {
! this.name = name || 'john doe';
}

var cody = Person('Cody Lindley'); // notice we did not use 'new'

console.log(cody.name); // undefined, the value is actually set at window.name

console.log(window.name); // logs 'Cody Lindley'

</script></body></html>

live code: http://jsfiddle.net/javascriptenlightenment/TWecy/

live code: http://jsfiddle.net/javascriptenlightenment/HHJ7y/

89

http://jsfiddle.net/javascriptenlightenment/TWecy/
http://jsfiddle.net/javascriptenlightenment/TWecy/
http://jsfiddle.net/javascriptenlightenment/HHJ7y/
http://jsfiddle.net/javascriptenlightenment/HHJ7y/

The keyword this inside a prototype method refers to a constructor instance

When used in functions added to a constructorʼs prototype property, this refers to the instance on
which the method is invoked. Say we have a custom Person() constructor function. As a parameter, it
requires the personʼs full name. In case we need to access the full name of the person, we add a
whatIsMyFullName method to the Person.prototype, so that all Person instances inherit the method.
When using this, the method can refer to the instance invoking it (and thus its properties).

Here I demonstrate the creation of two Person objects (cody and lisa) and the inherited
whatIsMyFullName method that contains the this keyword to access the instance.

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(x){
 if(x){this.fullName = x};
};

Person.prototype.whatIsMyFullName = function(){
 return this.fullName; // 'this' refers to the instance created from Person()
}

var cody = new Person('cody lindley');
var lisa = new Person('lisa lindley');

// call the inherited whatIsMyFullName method, which uses this to refer to the instance
console.log(cody.whatIsMyFullName(),lisa.whatIsMyFullName());

/* The prototype chain is still in effect, so if the instance does not have a fullName
property, it will look for it in the prototype chain. Below, we add a fullName property to
both the Person prototype and the Object prototype. See notes. */

Object.prototype.fullName = 'John Doe';
var john = new Person(); // no argument is passed so fullName is not added to instance
console.log(john.whatIsMyFullName()); // logs 'John Doe'

</script></body></html>

The take away here is that the keyword this is used to refer to instances when used inside of a
method contained in the prototype object. If the instance does not contain the property, the prototype
lookup begins.

- If the instance or the object pointed to by this does not contain the property being referenced, the same rules that apply to any property
lookup get applied and the property will be "looked up" on the prototype chain. So in our example, if the fullName property was not
contained within our instance then fullName would be looked for at Person.prototype.fullName then Object.prototype.fullName.

live code: http://jsfiddle.net/javascriptenlightenment/uV3sP/

Notes

90

http://jsfiddle.net/javascriptenlightenment/uV3sP/
http://jsfiddle.net/javascriptenlightenment/uV3sP/

91

Chapter 7 - Scope & Closures

Conceptual overview of JavaScript scope

In JavaScript, scope is the context in which code is executed, and there are three types of scope:
global scope, local scope (sometimes referred to as "function scope"), and eval scope.

Code defined using var inside of a function is locally scoped, and is only "visible" to other expressions
in that function, which includes code inside any nested/child functions. Variables defined in the global
scope can be accessed from anywhere because it is the highest level/last stop in the scope chain.

Examine the code below and make sure you understand that each declaration of foo is unique because
of scope.

<!DOCTYPE html><html lang="en"><body><script>

var foo = 0; // global scope
console.log(foo); // logs 0

var myFunction = function() {

! var foo = 1; // local scope

! console.log(foo); // logs 1

! var myNestedFunction = function() {

! ! var foo = 2; // local scope

! ! console.log(foo); // logs 2
! }();
}();

eval('var foo = 3; console.log(foo);'); // eval() scope

</script></body></html>

Make sure you understand that each foo variable contains a different value because each one is
defined in a specifically delineated scope.

live code: http://jsfiddle.net/javascriptenlightenment/RNLm3/

92

http://jsfiddle.net/javascriptenlightenment/RNLm3/
http://jsfiddle.net/javascriptenlightenment/RNLm3/

- An unlimited number of function and eval scopes can be created, while only one global scope is used by a JavaScript environment.

- The global scope is the last stop in the scope chain.

- Functions that contain functions create stacked execution scopes. These stacks which are chained together are often referred to as the
scope chain.

JavaScript does not have block scope

Since logic statements (e.g. if) and looping statements (e.g. for) do not create a scope, variables can
overwrite each other. Examine the code below and make sure you understand that the value of foo is
being redefined as the program executes the code.

<!DOCTYPE html><html lang="en"><body><script>

var foo = 1; // foo = 1

if (true) {
! foo = 2; // foo = 2
! for(var i = 3; i <= 5; i++) {
! ! foo = i; // foo = 3,4, then 5
! ! console.log(foo); // logs 3,4,5
! }
}

</script></body></html>

So foo is changing as the code executes because JavaScript has no block scope — only function,
global, or eval scope.

Use var inside of functions to declare variables and avoid scope gotchas

JavaScript will declare any variables lacking a var declaration (even those contained in a function or
encapsulated functions) to be in the global scope instead of the intended local scope. Have a look at

Notes

live code: http://jsfiddle.net/javascriptenlightenment/Wn9p6/

93

http://jsfiddle.net/javascriptenlightenment/Wn9p6/
http://jsfiddle.net/javascriptenlightenment/Wn9p6/

the code below and notice that without the use of var to declare bar, the variable is actually defined in
the global scope and not the local scope, where it should be.

<!DOCTYPE html><html lang="en"><body><script>

var foo = function() {
 var boo = function() {
 bar = 2; // no var used, so bar is placed in the global scope at window.bar
 }();
}();

console.log(bar); // logs 2, because bar is in the global scope

// As opposed to...

var foo = function() {
! var boo = function() {
! ! var doo = 2;
! }();
}();

// console.log(doo); logs undefined, doo is in the boo function scope, error occurs

</script></body></html>

The take away here is that you should always use var when defining variables inside of a function. This
will prevent you from dealing with potentially confusing scope problems. The exception to this
convention, of course, is when you want to create or change properties in the global scope from within
a function.

The scope chain (aka lexical scoping)

There is a lookup chain that is followed when JavaScript looks for the value associated with a variable.
This chain is based on the hierarchy of scope. In the code below, I am logging the value of sayHiText
from the func2 function scope.

<!DOCTYPE html><html lang="en"><body><script>

var sayHiText = 'howdy';

var func1 = function() {
! var func2 = function() {
! ! console.log(sayHiText); // func2 scope, but it finds sayHiText in global scope

live code: http://jsfiddle.net/javascriptenlightenment/WysKZ/

live code: http://jsfiddle.net/javascriptenlightenment/2CNwT/

94

http://jsfiddle.net/javascriptenlightenment/WysKZ/
http://jsfiddle.net/javascriptenlightenment/WysKZ/
http://jsfiddle.net/javascriptenlightenment/2CNwT/
http://jsfiddle.net/javascriptenlightenment/2CNwT/

! }();
}();

</script></body></html>

How is the value of sayHiText found when it is not contained inside of the scope of the func2 function?
JavaScript first looks in the func2 function for a variable named sayHiText. Not finding func2 there, it
looks up to func2ʼs parent function, func1. The sayHiText variable is not found in the func1 scope,
either, so JavaScript then continues up to the global scope where sayHiText is found, at which point the
value of sayHiText is delivered. If sayHiText had not been defined in the global scope, undefined
would have been returned by JavaScript.

This is such an important concept to grok. Let's examine another code example. Below, we grab three
values from three different scopes.

<!DOCTYPE html><html lang="en"><body><script>

var x = 10;
var foo = function() {
! var y = 20;
! var bar = function() {
! ! var z = 30;
! ! console.log(z + y + x); // z is local, y & z are found in the scope chain
! }();
}()

foo(); // logs 60

</script></body></html>

The value for z is local to the bar function and the context in which the console.log is invoked, the value
for y is in the foo function, which is the parent of bar(), and the value for x is in the global scope. All of
these are accessible to the bar function via the scope chain. Make sure you understand that
referencing variables in the bar function will check all the way up the scope chain for the variables
referenced.

- The scope chain, if you think about it, is not that different from the prototype chain. Both are simply a way for a value to be looked up by
checking a systematic and hierarchical set of locations.

live code: http://jsfiddle.net/javascriptenlightenment/Uv66Q/

Notes

95

http://jsfiddle.net/javascriptenlightenment/Uv66Q/
http://jsfiddle.net/javascriptenlightenment/Uv66Q/

The scope chain lookup returns the first found value

In the code below, a variable called x exists in the same scope in which it is examined with console.log.
This "local" value of x is used, and one might say that it shadows, or masks, the identically-named x
variables found further up in the scope chain.

<!DOCTYPE html><html lang="en"><body><script>

var x = false;
var foo = function() {
! var x = false;
! bar = function() {
! ! var x = true;
! ! console.log(x); // local x is first in the scope so it shadows the rest
! }();
}

foo(); // logs true

</script></body></html>

Remember that the scope lookup ends when the variable is found in the nearest available link of the
chain, even if the same variable name is used further up the chain.

Scope is determined during function definition, not invocation

Since functions determine scope and functions can be passed around just like any JavaScript value,
one might think that deciphering the scope chain is complicated. It is actually very simple. The scope
chain is decided based on the location of a function during definition, not during invocation. This is also
called lexical scoping. Think long and hard about this, as most people stumble over it a lot in JavaScript
code.

The scope chain is created before you invoke a function. Because of this, we can create closures. For
example, we can have a function return a nested function to the global scope, yet our function can still
access, via the scope chain, its parent function's scope. Below, we define a parentFunction that returns
an anonymous function, and we call the returned function from the global scope. Because our
anonymous function was defined as being contained inside of parentFunction, it still has access to
parentFunctionʼs scope when it is invoked. This is called a closure.

live code: http://jsfiddle.net/javascriptenlightenment/6BMPV/

live code: http://jsfiddle.net/javascriptenlightenment/TCdbJ/

96

http://jsfiddle.net/javascriptenlightenment/6BMPV/
http://jsfiddle.net/javascriptenlightenment/6BMPV/
http://jsfiddle.net/javascriptenlightenment/TCdbJ/
http://jsfiddle.net/javascriptenlightenment/TCdbJ/

<!DOCTYPE html><html lang="en"><body><script>

var parentFunction = function() {
! var foo = 'foo';
! return function() { // anonymous function being returned
! ! console.log(foo); // logs 'foo'
! }
}

// nestedFunction refers to the nested function returned from parentFunction
var nestedFunction = parentFunction();

nestedFunction(); // logs foo because the returned function accesses foo via the scope chain

</script></body></html>

What you should take away here is that the scope chain is determined during definition —literally in the
way the code is written. Passing around functions inside of your code will not change the scope chain.

Closures are caused by the scope chain

Take what you have learned about the scope chain and scope lookup in this chapter, and a closure
should not be overly complicated to understand. Below, we create a function called countUpFromZero.
This function actually returns a reference to the child function contained within it. When this child
function (nested function) is invoked, it still has access to the parent function's scope because of the
scope chain.

<!DOCTYPE html><html lang="en"><body><script>

var countUpFromZero = function() {
! var count = 0;
! return function() { // return nested child function when countUpFromZero is invoked
! ! return ++count; // count is defined up the scope chain, in parent function
! };
}(); // invoke immediately, return nested function

console.log(countUpFromZero()); // logs 1
console.log(countUpFromZero()); // logs 2
console.log(countUpFromZero()); // logs 3

</script></body></html>

live code: http://jsfiddle.net/javascriptenlightenment/8u3Km/

97

http://jsfiddle.net/javascriptenlightenment/8u3Km/
http://jsfiddle.net/javascriptenlightenment/8u3Km/

Each time the countUpFromZero function is invoked, the anonymous function contained in (and
returned from) the countUpFromZero function still has access to the parent function's scope. This
technique, facilitated via the scope chain, is an example of a closure.

- If you feel I have over-simplified closures you are likely correct in this thought. But I did so on purpose as I believe the important parts
come from a solid understanding of functions and scope not necessarily the complexities of execution context. If you are in need of an in-
depth dive into closures have a look at "JavaScript Closures".

Notes

98

http://jibbering.com/faq/notes/closures/
http://jibbering.com/faq/notes/closures/

Chapter 8 - Function Prototype Property

Conceptual overview of the prototype chain

The prototype property is an object created by JavaScript for every Function() instance. Specifically,
it links object instances created with the new keyword back to the constructor function that created
them. This is done so that instances can share, or inherit, common methods and properties.
Importantly, the sharing occurs during property lookup. Remember from Chapter 1 that every time you
look up or access a property on an object, the property will be searched for on the object as well as the
prototype chain.

- A prototype object is created for every function, regardless of whether you intend to use that function as a constructor.

Below, I construct an array from the Array() constructor, and then I invoke the join() method.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = new Array('foo', 'bar');

console.log(myArray.join()); // logs 'foo, bar'

</script></body></html>

The join() method is not defined as a property of the myArray object instance, but somehow we have
access to join() as if it were. This method is defined somewhere, but where? Well, it is defined as a
property of the Array() constructor's prototype property. Since join() is not found within the array
object instance, JavaScript looks up the prototype chain for a method called join().

Okay, so why are things done this way? Really, it is about efficiency and reuse. Why should every array
instance created from the array constructor function have a uniquely defined join() method when

Notes

live code: http://jsfiddle.net/javascriptenlightenment/4L7ae/

99

http://jsfiddle.net/javascriptenlightenment/4L7ae/
http://jsfiddle.net/javascriptenlightenment/4L7ae/

join() always functions the same way? It makes more sense for all arrays to leverage the same
join() function without having to create a new instance of the function for each array instance.

This efficiency we speak of is all possible because of the prototype property, prototype linkage, and
the prototype lookup chain. In this chapter, we break down these often confusing attributes of prototypal
inheritance. But truth be told, you would be better off by simply memorizing the mechanics of how the
chain hierarchy actually works. Refer back to Chapter 1 if you need a refresher on how property values
are resolved.

Why care about the prototype property?

You should care about the prototype property for three reasons.

Reason 1:

The first reason is that the prototype property is used by the native constructor functions (e.g. Object
(), Array(), Function(), etc.) to allow constructor instances to inherit properties and methods. It is
the mechanism that JavaScript itself uses to allow object instances to inherit properties and methods
from the constructor function's prototype property. If you want to understand JavaScript better, you
need to understand how JavaScript itself leverages the prototype object.

Reason 2:

When creating user-defined constructor functions, you can orchestrate inheritance the same way
JavaScript native objects do. But first you have to grok how it works.

Reason 3:

You might really dislike prototypal inheritance or prefer another pattern for object inheritance, but the
reality is that someday you might have to edit or manage someone else's code who thought prototypal
inheritance was the bee's knees. When this happens, you should be aware of how prototypal
inheritance works, as well as how it can be replicated by developers who make use of custom
constructor functions.

Reason 4:

By using prototypal inheritance, you can create efficient object instances that all leverage the same
methods. As already mentioned, not all array objects, which are instances of the Array() constructor,

100

need their own join() methods. All instances can leverage the same join() method because the
method is stored in the prototype chain.

Prototype is standard on all Function() instances

All functions are created from a Function() constructor, even if you do not directly invoke the
Function() constructor (e.g. var add = new Function('x', 'y', 'return x + z');) and instead
use the literal notation (e.g. var add = function(x,y){return x + z};).

When a function instance is created, it is always given a prototype property, which is an empty object.
Below, we define a function called myFunction, then we access the prototype property, which is
simply an empty object.

<!DOCTYPE html><html lang="en"><body><script>

var myFunction = function() {};
console.log(myFunction.prototype); // logs object{}
console.log(typeof myFunction.prototype); // logs 'object'

</script></body></html>

Make sure you completely understand that the prototype property is coming from the Function()
constructor. It is only once we intend to use our function as a user-defined constructor function that the
prototype property is leveraged, but this does not change the fact that the Function() constructor
gives each instance a prototype property.

The default prototype property is an Object() object

All this prototype talk can get a bit heavy. Truly, prototype is just an empty object property called
"prototype" created behind the scenes by JavaScript and made available by invoking the Function()
constructor. If you were to do it manually, it would look something like this:

<!DOCTYPE html><html lang="en"><body><script>

var myFunction = function() {};

live code: http://jsfiddle.net/javascriptenlightenment/E5LKA/

live code: http://jsfiddle.net/javascriptenlightenment/GxKLr/

101

http://jsfiddle.net/javascriptenlightenment/E5LKA/
http://jsfiddle.net/javascriptenlightenment/E5LKA/
http://jsfiddle.net/javascriptenlightenment/GxKLr/
http://jsfiddle.net/javascriptenlightenment/GxKLr/

myFunction.prototype = {}; // add the prototype property and set it to an empty object

console.log(myFunction.prototype); // logs an empty object

</script></body></html>

In fact, the above code actually works just fine, essentially just duplicating what JavaScript already
does.

- The value of a prototype property can be set to any of the complex values (i.e. objects) available in JavaScript. JavaScript will ignore any
prototype property set to a primitive value.

Instances created from a constructor function are linked to the constructor’s
prototype property

While itʼs only an object, prototype is special because the prototype chain links every instance to its
constructor function's prototype property. This means that any time an object is created from a
constructor function using the new keyword (or when an object wrapper is created for a primitive value),
it adds a hidden link between the object instance created and the prototype property of the constructor
function used to create it. This link is known inside the instance as __proto__ (though it is only
exposed/supported via code in Firefox 2+, Safari, Chrome, and Android). JavaScript wires this together
in the background when a constructor function is invoked and itʼs this link that allows the prototype
chain to be, well, a chain. Below, we add a property to the native Array() constructorʼs prototype,
which we can then access from an Array() instance using the __proto__ property set on that instance.

<!DOCTYPE html><html lang="en"><body><script>

// this code only works in browsers that supports __proto__ access

Array.prototype.foo = 'foo';
var myArray = new Array();

console.log(myArray.__proto__.foo); // logs foo, because myArray.__proto__ = Array.prototype

</script></body></html>

Notes

live code: http://jsfiddle.net/javascriptenlightenment/kcz6q/

102

http://jsfiddle.net/javascriptenlightenment/kcz6q/
http://jsfiddle.net/javascriptenlightenment/kcz6q/
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/Proto
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/Proto
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/Proto
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/Proto

Since accessing __proto__ is not part of the official ECMA standard, there is a more universal way to
trace the link from an object to the prototype object it inherits, and that is by using the constructor
property. This is demonstrated below.

<!DOCTYPE html><html lang="en"><body><script>

Array.prototype.foo = 'foo'; // all instances of Array() now inherit a foo property
var myArray = new Array();

// trace foo in a verbose way leveraging *.constructor.prototype
console.log(myArray.constructor.prototype.foo); // logs foo

// or, of course, leverage the chain
console.log(myArray.foo) // logs foo
// uses prototype chain to find property at Array.prototype.foo

</script></body></html>

In the code above, the foo property is found within the prototype object. You need to realize this is only
possible because of the association/link between the instance of Array() and the Array() constructor
prototype object (i.e. Array.prototype). Simply put, myArray.__proto__ (or
myArray.constructor.prototype) references Array.prototype.

Last stop in the prototype chain is Object.prototype

Since the prototype property is an object, the last stop in the prototype chain or lookup, is at
Object.prototype. In the code below, I create myArray, which is an empty array. I then attempt to
access a property of myArray which has not yet been defined, engaging the prototype lookup chain.
The myArray object is examined for the foo property. Being absent, it then looks for the property at
Array.prototype, but it is not there, either. So the final place it looks is Object.prototype. Because
it is not defined in any of those three objects, the property is undefined.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = [];

console.log(myArray.foo) // logs undefined

live code: http://jsfiddle.net/javascriptenlightenment/2QLvv/

live code: http://jsfiddle.net/javascriptenlightenment/L6ZaS/

103

http://jsfiddle.net/javascriptenlightenment/2QLvv/
http://jsfiddle.net/javascriptenlightenment/2QLvv/
http://jsfiddle.net/javascriptenlightenment/L6ZaS/
http://jsfiddle.net/javascriptenlightenment/L6ZaS/
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/Proto
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/Proto

/* foo was not found at myArray.foo or Array.prototype.foo or Object.prototype.foo, so it is
undefined. */

</script></body></html>

Take note that the chain stopped with Object.prototype. The last place we looked for foo was
Object.prototype.

- Careful! Anything added to Object.prototype will show up in a for in loop.

The prototype chain returns the first property match it finds in the chain

Like the scope chain, the prototype chain will use the first value it finds during the chain lookup.

Modifying the last code example, if we added the same value to the Object.prototype and
Array.prototype objects, and then attempted to access a value on an array instance, the value
returned would be from the Array.prototype object.

<!DOCTYPE html><html lang="en"><body><script>

Object.prototype.foo = 'object-foo';
Array.prototype.foo = 'array-foo';
var myArray = [];

console.log(myArray.foo); // logs 'array-foo', was found at Array.prototype.foo

myArray.foo = 'bar';

console.log(myArray.foo) // logs 'bar', was found at Array.foo

</script></body></html>

In the code above, the foo value at Array.prototype.foo is shadowing, or masking, the foo value found at
Object.prototype.foo. Just remember that the lookup ends when the property is found in the chain, even
if the same property name is also used farther up the chain.

Notes

live code: http://jsfiddle.net/javascriptenlightenment/3cYUz/

104

http://jsfiddle.net/javascriptenlightenment/3cYUz/
http://jsfiddle.net/javascriptenlightenment/3cYUz/

Replacing the prototype property with a new object removes the default
constructor property

Itʼs possible to replace the default value of a prototype property with a new value. Doing so however
will eliminate the default constructor property found in the "pre-made" prototype object — unless you
manually specify one.

In the code below, we create a Foo constructor function, replace the prototype property with a new
empty object, and verify that the constructor property is broken (it now references the less useful Object
prototype).

<!DOCTYPE html><html lang="en"><body><script>

var Foo = function Foo(){};

Foo.prototype = {}; // replace prototype property with an empty object

var FooInstance = new Foo();

console.log(FooInstance.constructor === Foo); // logs false, we broke the reference
console.log(FooInstance.constructor); // logs Object(), not Foo()

// compare to code where we do not replace the prototype value

var Bar = function Bar(){};

var BarInstance = new Bar();

console.log(BarInstance.constructor === Bar); // logs true
console.log(BarInstance.constructor); // logs Bar()

</script></body></html>

If you intend to replace the default prototype property (common with some JS OOP patterns) set up
by JavaScript, you should wire back together a constructor property that references the constructor
function. Below, we alter our previous code so that the constructor property will again provide a
reference to the proper constructor function.

<!DOCTYPE html><html lang="en"><body><script>

live code: http://jsfiddle.net/javascriptenlightenment/rWv8Z/

live code: http://jsfiddle.net/javascriptenlightenment/uc389/

105

http://jsfiddle.net/javascriptenlightenment/rWv8Z/
http://jsfiddle.net/javascriptenlightenment/rWv8Z/
http://jsfiddle.net/javascriptenlightenment/uc389/
http://jsfiddle.net/javascriptenlightenment/uc389/

var Foo = function Foo(){};

Foo.prototype = {constructor:Foo};

var FooInstance = new Foo();

console.log(FooInstance.constructor === Foo); // logs true
console.log(FooInstance.constructor); // logs Foo()

</script></body></html>

Instances that inherit properties from prototype will always get the latest
values

The prototype property is dynamic in the sense that instances will always get the latest value from the
prototype, regardless of when it was instantiated, changed, or appended. In the code below, we create
a Foo constructor, add the property x to the prototype, and then create an instance of Foo() named
FooInstance. Next, we log the value of x. Then we update the prototypeʼs value of x and log it again to
find that our instance has access to the latest value found in the prototype object.

<!DOCTYPE html><html lang="en"><body><script>

var Foo = function Foo(){};

Foo.prototype.x = 1;

var FooInstance = new Foo();

console.log(FooInstance.x); // logs 1

Foo.prototype.x = 2;

console.log(FooInstance.x); // logs 2, the FooInstance was updated

</script></body></html>

Given how the lookup chain works, this behavior should not be that surprising. If you are wondering,
this works the same, regardless of whether you use the default prototype object or override it with
your own. Here I replace the default prototype object to demonstrate this fact:

live code: http://jsfiddle.net/javascriptenlightenment/mLyJQ/

live code: http://jsfiddle.net/javascriptenlightenment/xnyHk/

106

http://jsfiddle.net/javascriptenlightenment/mLyJQ/
http://jsfiddle.net/javascriptenlightenment/mLyJQ/
http://jsfiddle.net/javascriptenlightenment/xnyHk/
http://jsfiddle.net/javascriptenlightenment/xnyHk/

<!DOCTYPE html><html lang="en"><body><script>

var Foo = function Foo(){};

Foo.prototype = {x:1}; // the logs below still work the same

var FooInstance = new Foo();

console.log(FooInstance.x); // logs 1

Foo.prototype.x = 2;

console.log(FooInstance.x); // logs 2, the FooInstance was updated

</script></body></html>

Replacing the prototype property with a new object does not update former
instances

You might think that you can replace the prototype property entirely anytime and that all instances will
be updated, but this is not correct. When you create an instance, that instance will be tied to the
prototype that was "minted" at the time of instantiation. Providing a new object as the prototype
property does not update the connection between instances already created and the new prototype.
But remember, as I stated above, you can update or add to the originally created prototype object and
those values remain connected to the first instance(s).

<!DOCTYPE html><html lang="en"><body><script>

var Foo = function Foo(){};

Foo.prototype.x = 1;

var FooInstance = new Foo();

console.log(FooInstance.x); // logs 1, as you think it would

// now let’s replace/override the prototype object with a new Object() object
Foo.prototype = {x:2};

console.log(FooInstance.x); // logs 1, WHAT? Shouldn't it log 2, we just updated prototype
/* FooInstance still references the same state of the prototype object that
was there when it was instantiated. */

// create a new instance of Foo()
var NewFooInstance = new Foo();

live code: http://jsfiddle.net/javascriptenlightenment/fQHJB/

107

http://jsfiddle.net/javascriptenlightenment/fQHJB/
http://jsfiddle.net/javascriptenlightenment/fQHJB/

// the new instance is now tied to the new prototype object value (i.e. {x:2};)
console.log(NewFooInstance.x); // logs 2

</script></body></html>

The key take away here is that an objectʼs prototype should not be replaced with a new object once you
start creating instances. Doing so will result in instances that have a link to different prototypes.

User-defined constructors can leverage the same prototype inheritance as
native constructors

Hopefully at this point in the chapter it is sinking in how JavaScript itself leverages the prototype
property for inheritance (e.g. Array.prototype). This same pattern can be leveraged when creating
non-native, user-defined constructor functions. Below, we take the classic Person object and mimic the
pattern that JavaScript uses for inheritance.

<!DOCTYPE html><html lang="en"><body><script>

var Person = function() {};

// all Person instances inherit a legs, arms, and countLimbs properties
Person.prototype.legs = 2;
Person.prototype.arms = 2;
Person.prototype.countLimbs = function() {return this.legs + this.arms;};

var chuck = new Person();

console.log(chuck.countLimbs()); // logs 4

</script></body></html>

In the code above, a Person() constructor function is created. We then add properties to the prototype
property of Person(), which can be inherited by all instances. So clearly, in your code you can leverage
the prototype chain the same way that JavaScript leverages it for native object inheritance.

As a good example of how you might leverage this, you can create a constructor function whose
instances inherit legs and arms properties if they are not provided as parameters. Below, if the Person()
constructor is sent parameters, they are used as instance properties, but if one or more parameters is

live code: http://jsfiddle.net/javascriptenlightenment/7SBmx/

108

http://jsfiddle.net/javascriptenlightenment/7SBmx/
http://jsfiddle.net/javascriptenlightenment/7SBmx/

not provided, there is a fallback. These instance properties then shadow or mask the inherited
properties. So you have the best of both worlds.

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(legs, arms) {
! // shadow prototype value
! if (legs !== undefined) {this.legs = legs;}
! if (arms !== undefined) {this.arms = arms;}
};

Person.prototype.legs = 2;
Person.prototype.arms = 2;
Person.prototype.countLimbs = function() {return this.legs + this.arms;};

var chuck = new Person(0, 0);

console.log(chuck.countLimbs()); // logs 0

</script></body></html>

Creating inheritance chains (the original intention)

Prototypal inheritance was conceived to allow inheritance chains that mimic the inheritance patterns
found in traditional object oriented programming languages. In order for one object to inherit from
another object in JavaScript all you have to do is instantiate an instance of the object you want to inherit
from as the value for the prototype property of the function that creates the objects that is doing the
inheriting.

In the code below, Chef objects (i.e. cody) inherit from Person().This means that if a property is not
found in a Chef object then it will next be looked for on the prototype of the function that created Person
() objects. To wireup the inheritance, all you have to do is instantiate an instance of Person() as the
value for Chef.prototype (i.e. Chef.prototype = new Person();).

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(){this.bar = 'bar'};
Person.prototype.foo = 'foo';

var Chef = function(){this.goo = 'goo'};
Chef.prototype = new Person();

live code: http://jsfiddle.net/javascriptenlightenment/BmeEA/

live code: http://jsfiddle.net/javascriptenlightenment/rRbsL/

109

http://jsfiddle.net/javascriptenlightenment/BmeEA/
http://jsfiddle.net/javascriptenlightenment/BmeEA/
http://jsfiddle.net/javascriptenlightenment/rRbsL/
http://jsfiddle.net/javascriptenlightenment/rRbsL/

var cody = new Chef();

console.log(cody.foo); // logs 'foo'
console.log(cody.goo); // logs 'goo'
console.log(cody.bar); // logs 'bar'

</script></body></html>

All we have done in the above code is to leverage a system that is already in place with the native
objects. Consider that Person() is not unlike the default Object() value for prototype properties. In
other words, this is exactly what happens when a prototype property, containing its default empty
Object() value, looks to the prototype of the constructor function that created (i.e. Object.prototype)
for inherited properties.

110

Chapter 9 - Array()

Conceptual overview of using Array() objects

An array is an ordered list of values, typically created with the intention of looping through numerically
indexed values, beginning with the index zero. What you need to know is that arrays are numerically
ordered sets, versus objects, which have property names associated with values in non-numeric order.
Essentially, arrays use numbers as a lookup key, while objects have user-defined property names.
JavaScript does not have true associative arrays, but objects can be used to achieve the functionality of
associate arrays.

Below, I store four strings in myArray that I can access using a numeric index. I compare and contrast it
to an object-literal mimicking an associative array.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = ['blue', 'green', 'orange', 'red'];

console.log(myArray[0]); // logs blue using 0 index to access string in myArray

// versus

var myObject = { // aka associative array/hash, known as an object in JavaScript
! 'blue': 'blue',
! 'green': 'green',
! 'orange': 'orange',
! 'red': 'red'
};

console.log(myObject['blue']); // logs blue

</script></body></html>

- Arrays can hold any type of values, and these values can be updated or deleted at any time.

- If you need an "hash" (a.k.a associative array), an object is the closest solution.

live code: http://jsfiddle.net/javascriptenlightenment/TTL5E/

Notes

111

http://jsfiddle.net/javascriptenlightenment/TTL5E/
http://jsfiddle.net/javascriptenlightenment/TTL5E/

- An Array() is just a special type of Object(). That is, Array() instances are basically Object() instances with a couple of extra functions
(e.g .length and a built-in numeric index).

- Values contained in an array are commonly referred to as elements.

Array() parameters

You can pass the values of an array instance to the constructor as comma separated parameters (e.g.
new Array('foo', 'bar');). The Array() constructor can take up to 4,294,967,295 parameters.

However, if only one parameter is sent to the Array() constructor, and that value is a integer (e.g. '1',
'123', or '1.0'), then it will be used to setup the length of the array, and will not be used as a value
contained within the array.

<!DOCTYPE html><html lang="en"><body><script>

var foo = new Array(1, 2, 3);
var bar = new Array(100);

console.log(foo[0], foo[2]); // logs '1 3'
console.log(bar[0], bar.length); // logs 'undefined 100'

</script></body></html>

Array() properties & methods

The Array() object has the following properties (not including inherited properties and methods):

Properties (e.g. Array.prototype):
✴ prototype

Array object instance properties & methods

live code: http://jsfiddle.net/javascriptenlightenment/TjABp/

112

http://jsfiddle.net/javascriptenlightenment/TjABp/
http://jsfiddle.net/javascriptenlightenment/TjABp/
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/prototype

Array object instances have the following properties and methods (not including inherited properties
and methods):

Instance Properties (e.g. var myArray = ['foo', 'bar']; myArray.length;):
✴ constructor
✴ index
✴ input
✴ length

Instance Methods (e.g. var myArray = ['foo']; myArray.pop();):
✴ pop()
✴ push()
✴ reverse()
✴ shift()
✴ sort()
✴ splice()
✴ unshift()
✴ concat()
✴ join()
✴ slice()

Creating arrays

Like most of the objects in JavaScript, an array object can be created using the new operator in
conjunction with the Array() constructor, or by using the literal syntax.

Below, I create the myArray1 array with predefined values using the Array() constructor, and then
myArray2 using literal notation.

<!DOCTYPE html><html lang="en"><body><script>

// Array() constructor
var myArray1 = new Array('blue', 'green', 'orange', 'red');

console.log(myArray1); // logs ["blue", "green", "orange", "red"]

// array literal notation
var myArray2 = ['blue', 'green', 'orange', 'red'];

console.log(myArray2); // logs ["blue", "green", "orange", "red"]

live code: http://jsfiddle.net/javascriptenlightenment/Gs8rR/

113

http://jsfiddle.net/javascriptenlightenment/Gs8rR/
http://jsfiddle.net/javascriptenlightenment/Gs8rR/
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/index
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/index
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/input
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/input
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/length
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/length
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/reverse
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/shift
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/shift
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/splice
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/splice
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/unshift
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/unshift
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/concat
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/concat
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/slice
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/slice

</script></body></html>

It is more common to see an array defined using the literal syntax, but one should be aware that this
shortcut is merely concealing the use of the Array() constructor.

- In practice, the array literal is typically all you will ever need.

- Regardless of how an array is defined, if you do not provide any predefined values to the array, it will still be created but will simply contain
no values.

Adding & updating values in arrays

A value can be added to an array at any index, at any time. Below, we are adding a value to the
numeric index 50 of an empty array. What about all the indexes before 50? Well, like I said, you can
add a value to an array at any index, at any time. But, if you add a value to the numeric index 50 of an
empty array, JavaScript will fill in all of the necessary indexes before it with undefined values.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = [];
myArray[50] = 'blue';
console.log(myArray.length); /* logs 51 (0 is counted) because JS created values 0 to 50
before "blue"*/

</script></body></html>

Additionally, considering the dynamic nature of JavaScript and the fact that JavaScript is not strongly
typed, an array value can be updated at any time and the value contained in the index can be any legal
value. Below, I change the value at the numeric index 50 to an object.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = [];

Notes

live code: http://jsfiddle.net/javascriptenlightenment/2VPSS/

live code: http://jsfiddle.net/javascriptenlightenment/ZkqxK/

114

http://jsfiddle.net/javascriptenlightenment/2VPSS/
http://jsfiddle.net/javascriptenlightenment/2VPSS/
http://jsfiddle.net/javascriptenlightenment/ZkqxK/
http://jsfiddle.net/javascriptenlightenment/ZkqxK/

myArray[50] = 'blue';
myArray[50] = {'color': 'blue'}; // change object type from string to Object() object
console.log(myArray[50]); //logs 'Object {color="blue"}'

// using brackets to access the index in the array, then the property blue
console.log(myArray[50]['color']); //logs 'blue'

// using dot notation
console.log(myArray[50].color); //logs 'blue'

</script></body></html>

Length vs. index

An array starts indexing values at 0. This means that the first numeric slot to hold a value in an array
looks like myArray[0]. This can be a bit confusing – if I create an array with a single value, the index of
the value is 0 while the length of the array is 1. Make sure you understand that the length of an array
represents the number of values contained within the array, while the numeric index of the array starts
at zero.

Below, the string value blue is contained in the myArray array at the numeric index 0, but since the
array contains one value, the length of the array is 1.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = ['blue'] // the index 0 contains the string value 'blue'
console.log(myArray[0]); // logs 'blue'
console.log(myArray.length); // logs 1

</script></body></html>

Defining arrays with a predefined length

As I mentioned earlier, by passing a single integer parameter to the Array() constructor, itʼs possible to
predefine the arrayʼs length, or the number of values it will contain. In this case, the constructor makes

live code: http://jsfiddle.net/javascriptenlightenment/8amEG/

115

http://jsfiddle.net/javascriptenlightenment/8amEG/
http://jsfiddle.net/javascriptenlightenment/8amEG/

an exception and assumes you want to set the length of the array and not pre-populate the array with
values.

Below, we setup the myArray array with a predefined length of 3. Again, we are configuring the length
of the array, not passing it a value to be stored at the 0 index.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = new Array(3);
console.log(myArray.length); // logs 3, because we are passing one numeric parameter
console.log(myArray[0]); // logs undefined

</script></body></html>

- Providing a predefined length will give each numeric index, up to the length specified, an associated value of undefined.

- You might be wondering if it is possible to create a predefined array containing only one numeric value: Yes it is – by using the literal form –
var myArray = [4].

Setting array length can add or remove values

The length property of an array object can be used to get or set the length of an array. As shown
above, setting the length higher than the actual number of values contained in the array will add
undefined values to the array. What you might not expect is that you can actually remove values from
an array by setting the length value to a number less than the number of values contained in the array.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = ['blue', 'green', 'orange', 'red'];
console.log(myArray.length); // logs 4
myArray.length = 99;
console.log(myArray.length); // logs 99, remember we set the length, not an index
myArray.length = 1; // removed all but one value, so index [1] is gone!
console.log(myArray[1]); // logs undefined

console.log(myArray); // logs '["blue"]'

live code: http://jsfiddle.net/javascriptenlightenment/SmgaZ/

Notes

live code: http://jsfiddle.net/javascriptenlightenment/ScQ5u/

116

http://jsfiddle.net/javascriptenlightenment/SmgaZ/
http://jsfiddle.net/javascriptenlightenment/SmgaZ/
http://jsfiddle.net/javascriptenlightenment/ScQ5u/
http://jsfiddle.net/javascriptenlightenment/ScQ5u/

</script></body></html>

Arrays containing other arrays (aka multidimensional arrays)

Since an array can hold any valid JavaScript value, an array can contain other arrays. When this is
done, the array containing encapsulated arrays is considered a multidimensional array. Accessing
encapsulated arrays is done by bracket chaining. Below, we create an array literal that contains an
array, inside of which we create another array literal, inside of which we create another array literal,
containing a string value at the 0 index.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = [[[['4th dimension']]]];
console.log(myArray[0][0][0][0]); // logs '4th dimension'

</script></body></html>

The code above is rather silly, but you can take away the fact that arrays can contain other arrays and
you can access encapsulated arrays indefinitely.

Looping over an array, backwards and forwards

The simplest and arguably the fastest way to loop over an array is to use the while loop.

Below, we loop from the beginning of the index to the end.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = ['blue', 'green', 'orange', 'red'];

var myArrayLength = myArray.length; // cache array length, to avoid unnecessary lookup
var counter = 0; // setup counter

while (counter < myArrayLength) { // run if counter is less than array length
! console.log(myArray[counter]); // logs 'blue', 'green', 'orange', 'red'

live code: http://jsfiddle.net/javascriptenlightenment/eGPLR/

live code: http://jsfiddle.net/javascriptenlightenment/Vhm2a/

117

http://jsfiddle.net/javascriptenlightenment/eGPLR/
http://jsfiddle.net/javascriptenlightenment/eGPLR/
http://jsfiddle.net/javascriptenlightenment/Vhm2a/
http://jsfiddle.net/javascriptenlightenment/Vhm2a/

! counter++; // add 1 to the counter
}

</script></body></html>

And now we loop from the end of the index to the beginning.

<!DOCTYPE html><html lang="en"><body><script>

var myArray = ['blue', 'green', 'orange', 'red'];

var myArrayLength = myArray.length;
while (myArrayLength--) { // if length is not zero, loop and subtract 1
! console.log(myArray[myArrayLength]); // logs 'red', 'orange', 'green', 'blue'
}

</script></body></html>

If you are wondering why I am not showing for loops here, it is because while loops have fewer
moving parts and I believe they are easier to read.

live code: http://jsfiddle.net/javascriptenlightenment/DYcpX/

118

http://jsfiddle.net/javascriptenlightenment/DYcpX/
http://jsfiddle.net/javascriptenlightenment/DYcpX/

Chapter 10 - String()

Conceptual overview of using the String() object

The String() constructor function is used to create string objects and string primitive values.

In the code below, I detail the creation of string values in JavaScript.

<!DOCTYPE html><html lang="en"><body><script>

// create string object using the new keyword and the String() constructor
var stringObject = new String('foo');
console.log(stringObject); // logs foo {0 = 'f', 1 = 'o', 2 = 'o'}
console.log(typeof stringObject); // logs 'object'

// create string literal/primitive by directly using the String constructor
var stringObjectWithOutNewKeyword = String('foo'); // without new keyword
console.log(stringObjectWithOutNewKeyword); // logs 'foo'
console.log(typeof stringObjectWithOutNewKeyword); // logs 'string'

// create string literal/primitive (constructor leveraged behind the scene)
var stringLiteral = 'foo';
console.log(stringLiteral); // logs foo
console.log(typeof stringLiteral); // logs 'string'

</script></body></html>

String() parameters

The String() constructor function takes one parameter: the string value being created. Below, we
create a variable, stringObject, to contain the string value "foo".

<!DOCTYPE html><html lang="en"><body><script>

live code: http://jsfiddle.net/javascriptenlightenment/deT8R/

live code: http://jsfiddle.net/javascriptenlightenment/tNBGr/

119

http://jsfiddle.net/javascriptenlightenment/deT8R/
http://jsfiddle.net/javascriptenlightenment/deT8R/
http://jsfiddle.net/javascriptenlightenment/tNBGr/
http://jsfiddle.net/javascriptenlightenment/tNBGr/

// create string object
var stringObject = new String('foo');

console.log(stringObject); //logs 'foo {0="f", 1="o", 2="o"}'

</script></body></html>

- Instances from the String() constructor, when used with the new keyword, produce an actual complex object. You should avoid doing this
(use literal/primitive numbers) due to the potential problems associated with the typeof operator. The typeof operator reports complex string
objects as 'object' instead of the primitive label ('string') you might expect. Additionally, the literal/primitive value is just faster to write and is
more concise.

String() properties and methods

The string object has the following properties and methods (not including inherited properties and
methods):

Properties (e.g. String.prototype;):
✴ prototype

Methods (e.g. String.fromCharChode();):
✴ fromCharCode()

String object instance properties and methods

String object instances have the following properties and methods (not including inherited properties
and methods):

Instance Properties (e.g. var myString = 'foo'; myString.length;):
✴ constructor
✴ length

Notes

120

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/fromCharCode
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/length
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/length

Instance Methods (e.g. var myString = 'foo'; myString.toLowerCase();):

✴ charAt()
✴ charCodeAt()
✴ concat()
✴ indexOf()
✴ lastIndexOf()
✴ localeCompare()
✴ match()
✴ quote()
✴ replace()
✴ search()
✴ slice()
✴ split()
✴ substr()
✴ substring()
✴ toLocaleLowerCase()
✴ toLocaleUpperCase()
✴ toLowerCase()
✴ toString()
✴ toUpperCase()
✴ valueOf()

121

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/charAt
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/charAt
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/charCodeAt
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/charCodeAt
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/concat
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/concat
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/indexOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/indexOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/lastIndexOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/lastIndexOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/localeCompare
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/match
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/match
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/quote
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/quote
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/replace
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/replace
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/search
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/search
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/slice
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/slice
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/substr
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/substr
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/substring
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/substring
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toLocaleLowerCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toLocaleLowerCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toLocaleUpperCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toLocaleUpperCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toLowerCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toLowerCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toUpperCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/toUpperCase
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/valueOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/valueOf

Chapter 11 - Number()

Conceptual overview of using the Number() object

The Number() constructor function is used to create numeric objects and numeric primitive values.

In the code below, I detail the creation of numeric values in JavaScript.

<!DOCTYPE html><html lang="en"><body><script>

// create number object using the new keyword and the Number() constructor
var numberObject = new Number(1);
console.log(numberObject); // logs 1
console.log(typeof numberObject) // logs 'object'

// create number literal/primitive using the number constructor without new
var numberObjectWithOutNew = Number(1); // without using new keyword
console.log(numberObjectWithOutNew); // logs 1
console.log(typeof numberObjectWithOutNew) // logs 'number'

// create number literal/primitive (constructor leveraged behind the scene)
var numberLiteral = 1;
console.log(numberLiteral); // logs 1
console.log(typeof numberLiteral); // logs 'number'

</script></body></html>

Integers and floating-point numbers

Numbers in JavaScript are typically written as either integer values or floating point values. In the code
below, I create a primitive integer number and a primitive floating point number. This is the most
common usage of number values in JavaScript.

live code: http://jsfiddle.net/javascriptenlightenment/QJNRA/

live code: http://jsfiddle.net/javascriptenlightenment/c4TVQ/

122

http://jsfiddle.net/javascriptenlightenment/QJNRA/
http://jsfiddle.net/javascriptenlightenment/QJNRA/
http://jsfiddle.net/javascriptenlightenment/c4TVQ/
http://jsfiddle.net/javascriptenlightenment/c4TVQ/

<!DOCTYPE html><html lang="en"><body><script>

var integer = 1232134;
console.log(integer); // logs '1232134'

var floatingPoint = 2.132;
console.log(floatingPoint); // logs '2.132'

</script></body></html>

- A numeric value can be a hexadecimal value or octal value in JavaScript, but this is typically not done.

Number() parameters

The Number() constructor function takes one parameter: the numeric value being created. Below, we
create a number object for the value 456 called numberOne.

<!DOCTYPE html><html lang="en"><body><script>

var numberOne = new Number(456);

console.log(numberOne); //logs '456{}'

</script></body></html>

- Instances from the Number() constructor, when used with the new keyword, produce a complex object. You should avoid creating number
values using the Number() constructor (use literal/primitive numbers) due to the potential problems associated with the typeof operator.
The typeof operator reports number objects as 'object' instead of the primitive label ('number') you might expect. The literal/primitive value
is just more concise.

Notes

live code: http://jsfiddle.net/javascriptenlightenment/aHbNY/

Notes

123

http://jsfiddle.net/javascriptenlightenment/aHbNY/
http://jsfiddle.net/javascriptenlightenment/aHbNY/
http://livepage.apple.com/
http://livepage.apple.com/
http://en.wikipedia.org/wiki/Octal
http://en.wikipedia.org/wiki/Octal

Number() properties

The Number() object has the following properties:

Properties (e.g. Number.prototype;):
✴MAX_VALUE
✴MIN_VALUE
✴NaN
✴NEGATIVE_INFINITY
✴POSITIVE_INFINITY
✴ prototype

Number object instance properties and methods

Number object instances have the following properties and methods (not including inherited properties
and methods):

Instance Properties (e.g. var myNumber = 5; myNumber.constructor;):
✴ constructor

Instance Methods (e.g. var myNumber = 1.00324; myNumber.toFixed();):
✴ toExponential()
✴ toFixed()
✴ toLocaleString()
✴ toPrecision()
✴ toString()
✴ valueOf()

124

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/MAX_VALUE
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/MAX_VALUE
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/MIN_VALUE
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/MIN_VALUE
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/NaN
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/NaN
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/NEGATIVE_INFINITY
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/NEGATIVE_INFINITY
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/POSITIVE_INFINITY
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/POSITIVE_INFINITY
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toExponential
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toExponential
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toFixed
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toFixed
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/ToLocaleString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/ToLocaleString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toPrecision
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toPrecision
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/valueOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Number/valueOf

Chapter 12 - Boolean()

Conceptual overview of using the Boolean() object

The Boolean() constructor function can be used to create boolean objects, as well as boolean
primitive values, that represent either a true or a false value.

In the code below, I detail the creation of boolean values in JavaScript.

<!DOCTYPE html><html lang="en"><body><script>

// create boolean object using the new keyword and the Boolean() constructor
var myBoolean1 = new Boolean(false); // using new keyword
console.log(typeof myBoolean1); // logs 'object'

// create boolean literal/primitive by directly using the number constructor without new
var myBoolean2 = Boolean(0); // without new keyword
console.log(typeof myBoolean2); // logs 'boolean'

// create boolean literal/primitive (constructor leveraged behind the scene)
var myBoolean3 = false;
console.log(typeof myBoolean3); // logs 'boolean'
console.log(myBoolean1, myBoolean2, myBoolean3); // logs false false false

</script></body></html>

Boolean() parameters

The Boolean() constructor function takes one parameter to be converted to a boolean value (i.e. true
or false). Any valid JavaScript value that is not 0, -0, null, false, NaN, undefined, or an empty string
(""), will be converted to true. Below, we create two boolean object values. One true one false.

live code: http://jsfiddle.net/javascriptenlightenment/wSqVc/

125

http://jsfiddle.net/javascriptenlightenment/wSqVc/
http://jsfiddle.net/javascriptenlightenment/wSqVc/

<!DOCTYPE html><html lang="en"><body><script>

// parameter passed to Boolean() = 0 = false, thus foo = false
var foo = new Boolean(0)
console.log(foo);

// parameter passed to Boolean() = Math = true, thus bar = true
var bar = new Boolean(Math)
console.log(bar);

</script></body></html>

- Instances from the Boolean() constructor, when used with the new keyword, produce an actual complex object. You should avoid creating
boolean values using the Boolean() constructor (instead, use literal/primitive numbers) due to the potential problems associated with the
typeof operator. The typeof operator reports boolean objects as 'object', instead of the primitive label ('boolean') you might expect.
Additionally, the literal/primitive value is just faster to write.

Boolean() properties and methods

The Boolean() object has the following properties:

Properties (e.g. Boolean.prototype;):
✴ prototype

Boolean object instance properties and methods

Boolean object instances have the following properties and methods (not including inherited properties
and methods):

Instance Properties (e.g. var myBoolean = false; myBoolean.constructor;):
✴ constructor

Instance Methods (e.g. var myNumber = false; myBoolean.toString();):
✴ toSource()

live code: http://jsfiddle.net/javascriptenlightenment/4TEtb/

Notes

126

http://jsfiddle.net/javascriptenlightenment/4TEtb/
http://jsfiddle.net/javascriptenlightenment/4TEtb/
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/prototype
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/constructor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/toSource
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/toSource

✴ toString()
✴ valueOf()

Non-primitive false boolean objects convert to true

A false boolean object (as opposed to a primitive value) created from the Boolean() constructor is an
object, and objects convert to true. Thus, when creating a false boolean object via the Boolean()
constructor, the value itself converts to true. Below, I demonstrate how a false boolean object is
always "truthy".

<!DOCTYPE html><html lang="en"><body><script>

var falseValue = new Boolean(false);

console.log(falseValue); // we have a false boolean object, but objects are truthy

if (falseValue) { // boolean objects, even false boolean objects, are truthy
! console.log('falseValue is truthy');
}

</script></body></html>

If you need to convert a non-boolean value into a boolean, just use the Boolean() constructor without
the new keyword and the value returned will be a primitive value instead of a boolean object.

Certain things are false, everything else is true

It has already been mentioned, but is worth mentioning again because it pertains to conversions. If a
value is 0, -0, null, false, NaN, undefined, or an empty string(""), it is false. Any value in JavaScript
except the aforementioned values will be converted to true if used in a boolean context (i.e. if
(true) {};).

<!DOCTYPE html><html lang="en"><body><script>

// all of these return a false boolean value
console.log(Boolean(0));
console.log(Boolean(-0));

live code: http://jsfiddle.net/javascriptenlightenment/K7qtj/

live code: http://jsfiddle.net/javascriptenlightenment/2aqGS/

127

http://jsfiddle.net/javascriptenlightenment/K7qtj/
http://jsfiddle.net/javascriptenlightenment/K7qtj/
http://jsfiddle.net/javascriptenlightenment/2aqGS/
http://jsfiddle.net/javascriptenlightenment/2aqGS/
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/toString
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/valueOf
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Boolean/valueOf

console.log(Boolean(null));
console.log(Boolean(false));
console.log(Boolean(''));
console.log(Boolean(undefined));
console.log(Boolean(null));

// all of these return a true boolean value
console.log(Boolean(1789));
console.log(Boolean('false')); // 'false' as a string is not false the boolean value
console.log(Boolean(Math));
console.log(Boolean(Array());

</script></body></html>

It's critical that you understand which JavaScript values are reduced to false so you are aware that all
other values are considered true.

128

Working with Primitive String, Number and
Boolean values

Primitive/literal values are converted to objects when properties are
accessed

Do not be mystified by the fact that string, number, and boolean literals can be treated like an object
with properties (e.g. true.toString()). When these primitive values are treated like an object by
attempting to access properties, JavaScript will create a wrapper object from the primitiveʼs associated
constructor, so that the properties and methods of the wrapper object can be accessed. Once the
properties have been accessed, the wrapper object is discarded. This conversion allows us to write
code that would make it appear as if a primitive value was, in fact, an object. Truth be told, when it is
treated like an object in code, JavaScript will convert it to an object so property access will work, and
then back to a primitive value once a value is returned. The key thing to grok here is what is occurring,
and that JavaScript is doing this for you behind the scenes.

String:

<!DOCTYPE html><html lang="en"><body><script>

// string object treated like an object
var stringObject = new String('foo');
console.log(stringObject.length); // logs 3
console.log(stringObject['length']); // logs 3

// string literal/primitive converted to an object when treated as an object
var stringLiteral = 'foo';
console.log(stringLiteral.length); // logs 3
console.log(stringLiteral['length']); // logs 3
console.log('bar'.length); // logs 3
console.log('bar'['length']); // logs 3

</script></body></html>

Number:

live code: http://jsfiddle.net/javascriptenlightenment/kpfNk/

129

http://jsfiddle.net/javascriptenlightenment/kpfNk/
http://jsfiddle.net/javascriptenlightenment/kpfNk/

<!DOCTYPE html><html lang="en"><body><script>

// number object treated like an object
var numberObject = new Number(1.10023);
console.log(numberObject.toFixed()); // logs 1
console.log(numberObject['toFixed']()); // logs 1

// number literal/primitive converted to an object when treated as an object
var numberLiteral = 1.10023;
console.log(numberLiteral.toFixed()); // logs 1
console.log(numberLiteral['toFixed']()); // logs 1
console.log((1234).toString()); // logs '1234'
console.log(1234['toString']()); // logs '1234'

</script></body></html>

Boolean:

<!DOCTYPE html><html lang="en"><body><script>

// boolean object treated like an object
var booleanObject = new Boolean(0);
console.log(booleanObject.toString()); // logs 'false'
console.log(booleanObject['toString']()); // logs 'false'

// boolean literal/primitive converted to an object when treated as an object
var booleanLiteral = false;
console.log(booleanLiteral.toString()); // logs 'false'
console.log(booleanLiteral['toString']()); // logs 'false'
console.log((true).toString()); // logs 'true'
console.log(true['toString']()); // logs 'true'

</script></body></html>

- When accessing a property on a primitive number directly (not stored in a variable), you have to first evaluate the number before the value
is treated as an object (e.g. (1).toString(); or 1..toString();). Why two dots? The first dot is considered a numeric decimal, not an operator
for accessing object properties.

You should typically use primitive string, number, and boolean values

live code: http://jsfiddle.net/javascriptenlightenment/sQXdE/

live code: http://jsfiddle.net/javascriptenlightenment/dQMHs/

Notes

130

http://jsfiddle.net/javascriptenlightenment/sQXdE/
http://jsfiddle.net/javascriptenlightenment/sQXdE/
http://jsfiddle.net/javascriptenlightenment/dQMHs/
http://jsfiddle.net/javascriptenlightenment/dQMHs/

The literal/primitive values that represent a string, number, or boolean are faster to write and are more
concise in the literal form.

You should use the literal value because of this. Additionally, the accuracy of the typeof operator
depends upon how you create the value (literal versus constructor invocation). If you create a string,
number, or boolean object, the typeof operator reports the type as an object. If you use literals, the
typeof operator returns a string name of the actual value type (e.g. typeof 'foo' // returns
'string').

In the code below, I demonstrate this fact.

<!DOCTYPE html><html lang="en"><body><script>

// string, number, and boolean objects
console.log(typeof new String('foo')); // logs 'object'
console.log(typeof new Number(1)); // logs 'object'
console.log(typeof new Boolean(true)); // logs 'object'

// string, number, and boolean literals/primitives
console.log(typeof 'foo'); // logs 'string'
console.log(typeof 1); // logs 'number'
console.log(typeof true); // logs 'boolean'

</script></body></html>

If your program depends upon the typeof operator to identify string, number, or boolean values in
terms of those primitive types, you should avoid the String, Number, and Boolean constructors.

live code: http://jsfiddle.net/javascriptenlightenment/NYcnn/

131

http://jsfiddle.net/javascriptenlightenment/NYcnn/
http://jsfiddle.net/javascriptenlightenment/NYcnn/

Chapter 13 - Null

Conceptual overview of using the null value

You can use null to explicitly indicate that an object property does not contain a value. Typically, if a
property is set up to contain a value, but the value is not available for some reason, the value null
should be used to indicate that the reference property has an empty value.

<!DOCTYPE html><html lang="en"><body><script>

// the property foo is waiting for a value, so we set its initial value to null
var myObjectObject = {foo: null};

console.log(myObjectObject.foo); //logs 'null'

</script></body></html>

- Don't confuse null with undefined. Undefined is used by JavaScript to tell you that something is missing. Null is provided so you can
determine when a value is expected but just not available yet.

typeof returns null values as "object"

For a variable that has a value of null, the typeof operator returns "object". If you need to verify a
null value, the ideal solution would be to see if the value you are after is equal to null. Below, we use
the === operator to specifically verify that we are dealing with a null value.

<!DOCTYPE html><html lang="en"><body><script>

live code: http://jsfiddle.net/javascriptenlightenment/PBq4y/

Notes

live code: http://jsfiddle.net/javascriptenlightenment/fG94Y/

132

http://jsfiddle.net/javascriptenlightenment/PBq4y/
http://jsfiddle.net/javascriptenlightenment/PBq4y/
http://jsfiddle.net/javascriptenlightenment/fG94Y/
http://jsfiddle.net/javascriptenlightenment/fG94Y/

var myObject = null;

console.log(typeof myObject); // logs 'object', not exactly helpful
console.log(myObject === null); // logs true, only for a real null value

</script></body></html>

- When verifying a null value, always use === because == does not distinguish between null and undefined.

Notes

133

Chapter 14 - Undefined

Conceptual overview of the undefined value

The undefined value is used by JavaScript in two slightly different ways.

The first way it's used is to indicate that a declared variable (e.g. var foo) has no assigned value. The
second way it's used is to indicate that an object property youʼre trying to access is not defined (i.e. it
has not even been named), and is not found in the prototype chain.

Below, I examine both usages of undefined by JavaScript.

<!DOCTYPE html><html lang="en"><body><script>

var initializedVariable; // declare variable

console.log(initializedVariable); // logs undefined
console.log(typeof initializedVariable); // confirm that JavaScript returns undefined

var foo = {};

console.log(foo.bar); // logs undefined, no bar property in foo object
console.log(typeof foo.bar); // confirm that JavaScript returns undefined

</script></body></html>

- It is considered a good practice to allow JavaScript alone to use undefined. You should never find yourself setting a value to undefined, as
in foo = undefined. Instead, null should be used if you are specifying that a property or variable value is not available.

live code: http://jsfiddle.net/javascriptenlightenment/kGhrK/

Notes

134

http://jsfiddle.net/javascriptenlightenment/kGhrK/
http://jsfiddle.net/javascriptenlightenment/kGhrK/

JavaScript ECMA-262 edition 3 (and later) declares the undefined variable in
the global scope

Unlike previous versions, JavaScript ECMA-262 edition 3 (and later) has a global variable called
undefined declared in the global scope. Because the variable is declared, and not assigned a value,
the undefined variable is set to undefined.

<!DOCTYPE html><html lang="en"><body><script>

// confirm that undefined is a property of the global scope
console.log(undefined in this); // logs true

</script></body></html>

live code: http://jsfiddle.net/javascriptenlightenment/MhRKB/

135

http://jsfiddle.net/javascriptenlightenment/MhRKB/
http://jsfiddle.net/javascriptenlightenment/MhRKB/

Chapter 15 - Math Function

Conceptual overview of the built in Math Object

The Math object contains static properties and methods for mathematically dealing with numbers or
providing mathematical constants (e.g. Math.PI;). This object is built into JavaScript, as opposed to
being based on a Math() constructor that creates math instances.

- It might seem odd that Math starts with a capitalized letter since you do not instantiate an instance of a Math object. Do not be thrown off
by this. Simply be aware that JavaScript sets this object up for you.

Math properties and methods

The Math object has the following properties and methods:

Properties (e.g. Math.PI;):
✴ E
✴ LN2
✴ LN10
✴ LOG2E
✴ LOG10E
✴ PI
✴ SQRT1_2
✴ SQRT2

Methods (e.g. Math.random();):
✴ abs()
✴ acos()

Notes

136

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/E
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/E
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LN2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LN2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LN10
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LN10
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LOG2E
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LOG2E
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LOG10E
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/LOG10E
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/PI
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/PI
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/SQRT1_2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/SQRT1_2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/SQRT2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/SQRT2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/abs
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/abs
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/acos
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/acos

✴ asin()
✴ atan()
✴ anat.()
✴ ceil()
✴ cos()
✴ exp()
✴ floor()
✴ log()
✴ max()
✴ min()
✴ pow()
✴ random()
✴ round()
✴ sin()
✴ sort()
✴ tan()

Math is not a constructor function

The Math object is unlike the other built-in objects that are instantiated. Math is a one-off object created
to house static properties and methods, ready to be used when dealing with numbers. Just remember,
there is no way to create an instance of Math, as there is no constructor.

Math has constants you cannot augment/mutate

Many of the Math properties are constants that cannot be mutated. Since this is a departure from the
mutable nature of JavaScript, these properties are in all-caps (e.g. Math.PI;). Do not confuse these
property constants for constructor functions due to the capitalization of their first letter. They are simply
object properties that cannot be changed.

- User-defined constants are not possible in JavaScript 1.5, ECMA-262, edition 3.

Notes

137

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/asin
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/asin
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/atan
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/atan
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/atan2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/atan2
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/ceil
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/ceil
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/cos
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/cos
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/exp
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/exp
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/floor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/floor
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/log
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/log
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/max
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/max
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/min
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/min
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/pow
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/pow
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/round
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/round
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/sin
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/sin
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/sqrt
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/sqrt
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/tan
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/tan
http://en.wikipedia.org/wiki/Constant_%2528programming%2529
http://en.wikipedia.org/wiki/Constant_%2528programming%2529

Review

The following points summarize what you should have learned during the reading of this book (and
investigation of code examples). Read each summary, and if you don't understand what is being said
return to the topic in the book.

✴ An object is made up of named properties that store values.

✴ Most everything in JavaScript can act like an object. Complex values are, well, objects and
primitive values can be treated like objects This is why you may hear people say that everything
in JavaScript is an object.

✴ Objects are created by invoking a constructor function with the new keyword, or by using a
shorthand literal expression.

✴ Constructor functions are objects (Function() objects), thus, in JavaScript, objects create
objects.

✴ JavaScript offers 9 native constructor functions: Object(), Array(), String(), Number(),
Boolean(), Function(), Date(), RegExp(), and Error(). The String(), Number(), and
Boolean() constructors are dual-purposed in providing a.) primitive values and b.) object
wrappers when needed, so that primitive values can act like objects when so treated.

✴ The values null, undefined, "string", 10, true, and false are all primitive values, without an
object nature unless treated like an object.

✴ When the Object(), Array(), String(), Number(), Boolean(), Function(), Date(),
RegExp(), and Error() constructor functions are invoked using the new keyword, an object is
created that is known as a "complex object" or "reference object".

✴ "string", 10, true, and false, in their primitive forms, have no object qualities until they are used
as objects; then JavaScript, behind the scenes, creates temporary wrapper objects so that such
values can act like objects.

138

✴ Primitive values are stored by value, and when copied, are literally copied. Complex object
values, on the other hand, are stored by reference, and when copied, are copied by reference.

✴ Primitive values are equal to other primitive values when their values are equal, whereas complex
objects are equal only when they reference the same value. That is: a complex value is equal to
another complex value when they both refer to the same object.

✴ Due to the nature of complex objects and references, JavaScript objects have dynamic
properties.

✴ JavaScript is mutable, which means that native objects and user-defined object properties can be
manipulated at any time.

✴ Getting/setting/updating an objectʼs properties is done by using dot notation or bracket notation.
Bracket notion is convenient when the name of the object property being manipulated is in the
form of an expression (e.g Array['prototype']['join'].apply()).

✴ When referencing object properties, a lookup chain is used to first look at the object that was
referenced for the property; if the property is not there, the property is looked for on the
constructor functionʼs prototype property. If itʼs not found there, because the prototype holds an
object value and the value is created from the Object() constructor, the property is looked for on
the Object() constructorʼs prototype property (Object.prototype). If the property is not found
there, then the property is determined to be undefined.

✴ The Prototype lookup chain is how inheritance (a.k.a prototypal inheritance) was design to be
accomplished in JavaScript.

✴ Because of the object property lookup chain (aka prototypal inheritance), all objects inherit from
Object() simply because the prototype property is, itself, an Object() object.

✴ JavaScript functions are first-class citizens: functions are objects with properties and values.

✴ The this keyword, when used inside a function, is a generic way to reference the object
containing the function.

✴ The value of this is determined during runtime based on the context in which the function is
called.

✴ Used in the global scope, the this keyword refers to the global object.

✴ JavaScript uses functions as a way to create a unique scope.

139

✴ JavaScript provides the global scope, and itʼs in this scope that all JavaScript code exists.

✴ Functions (specifically, encapsulated functions) create a scope chain for resolving variable
lookups.

✴ The scope chain is set up based on the way code is written, not necessarily by the context in
which a function is invoked. This permits a function to have access to the scope in which it was
originally written, even if the function is called from a different context. This result is known as a
closure.

✴ Function expressions and variables declared inside a function without using var become global
properties. However, function statements inside of a function scope remain defined in the scope
in which they are written.

✴ Functions and variables declared (without var) in the global scope become properties of the
global object.

✴ Functions and variables declared (with var) in the global scope become global variables.

140

Conclusion

It's my hope that after reading this book, you will be equipped to either better understand your
JavaScript library of choice, or better yet, be equipped to write your own JavaScript solutions. Either
way this book alone was not written to be a definitive guide to the language. From here, I would
recommend reading, or re-reading, the following books so that the topics here may be reinforced from a
different voice, and additional JavaScript topics may be examined and explored.

✴ JavaScript: The Good Parts, by Douglas Crockford

✴ JavaScript Patterns, by Stoyan Stefanov

✴ Object-Oriented JavaScript, by Stoyan Stefanov

✴ Professional JavaScript for Web Developers, by Nicholas C. Zakas

✴ High Performance JavaScript, by Nicholas C. Zakas

141

