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Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are 
cryptographic protocols which are designed to provide communication security over the Internet.
[1] They use X.509 certificates and hence asymmetric cryptography to assure the counterparty 
with whom they are communicating, and to exchange a symmetric key. This session key is then 
used to encrypt data flowing between the parties. This allows for data/message confidentiality, 
and message authentication codes for message integrity and as a by-product, message 
authentication. Several versions of the protocols are in widespread use in applications such as 
web browsing, electronic mail, Internet faxing, instant messaging, and voice-over-IP (VoIP). An 
important property in this context is forward secrecy, so the short term session key cannot be 
derived from the long term asymmetric secret key.[2]

As a consequence of choosing X.509 certificates, certificate authorities and a public key 
infrastructure are necessary to verify the relation between a certificate and its owner, as well as 
to generate, sign, and administer the validity of certificates. While this can be more beneficial 
than verifying the identities via a web of trust, the 2013 mass surveillance disclosures made it 
more widely known that certificate authorities are a weak point from a security standpoint, 
allowing man-in-the-middle attacks (MITM).[3][4]

In the TCP/IP model view, TLS and SSL encrypt the data of network connections at a lower 
sublayer of its application layer. In OSI model equivalences, TLS/SSL is initialized at layer 5 (the
session layer) then works at layer 6 (the presentation layer): first the session layer has a 
handshake using an asymmetric cipher in order to establish cipher settings and a shared key for
that session; then the presentation layer encrypts the rest of the communication using a 
symmetric cipher and that session key. In both models, TLS and SSL work on behalf of the 
underlying transport layer, whose segments carry encrypted data.

TLS is an IETF standards track protocol, first defined in 1999 and last updated in RFC 5246 
(August 2008) and RFC 6176 (March 2011). It is based on the earlier SSL specifications (1994, 
1995, 1996) developed by Netscape Communications[5] for adding the HTTPS protocol to their 
Navigator web browser.

Description
The TLS protocol allows client-server applications to communicate across a network in a way 
designed to prevent eavesdropping and tampering.

Since protocols can operate either with or without TLS (or SSL), it is necessary for the client to 
indicate to the server whether it wants to set up a TLS connection or not. There are two main 
ways of achieving this. One option is to use a different port number for TLS connections (for 
example port 443 for HTTPS). The other is to use the regular port number and have the client 
request that the server switch the connection to TLS using a protocol-specific mechanism (for 
example STARTTLS for mail and news protocols).

Once the client and server have decided to use TLS, they negotiate a stateful connection by 
using a handshaking procedure.[6] During this handshake, the client and server agree on 
various parameters used to establish the connection's security:

1. The client sends the server the client's SSL version number, cipher settings, session-

1



Secure Sockets Layer (SSL) / Transport Layer Security (TLS)
_____________________________________________________________________________________________________

specific data, and other information that the server needs to communicate with the client 
using SSL. 

2. The server sends the client the server's SSL version number, cipher settings, session-
specific data, and other information that the client needs to communicate with the server 
over SSL. The server also sends its own certificate, and if the client is requesting a server
resource that requires client authentication, the server requests the client's certificate. 

3. The client uses the information sent by the server to authenticate the server—e.g., in the 
case of a web browser connecting to a web server, the browser checks whether the 
received certificate's subject name actually matches the name of the server being 
contacted, whether the issuer of the certificate is a trusted certificate authority, whether 
the certificate has expired, and, ideally, whether the certificate has been revoked.[7] If the
server cannot be authenticated, the user is warned of the problem and informed that an 
encrypted and authenticated connection cannot be established. If the server can be 
successfully authenticated, the client proceeds to the next step. 

4. Using all data generated in the handshake thus far, the client (with the cooperation of the 
server, depending on the cipher in use) creates the pre-master secret for the session, 
encrypts it with the server's public key (obtained from the server's certificate, sent in step 
2), and then sends the encrypted pre-master secret to the server. 

5. If the server has requested client authentication (an optional step in the handshake), the 
client also signs another piece of data that is unique to this handshake and known by 
both the client and server. In this case, the client sends both the signed data and the 
client's own certificate to the server along with the encrypted pre-master secret. 

6. If the server has requested client authentication, the server attempts to authenticate the 
client. If the client cannot be authenticated, the session ends. If the client can be 
successfully authenticated, the server uses its private key to decrypt the pre-master 
secret, and then performs a series of steps (which the client also performs, starting from 
the same pre-master secret) to generate the master secret. 

7. Both the client and the server use the master secret to generate the session keys, which 
are symmetric keys used to encrypt and decrypt information exchanged during the SSL 
session and to verify its integrity (that is, to detect any changes in the data between the 
time it was sent and the time it is received over the SSL connection). 

8. The client sends a message to the server informing it that future messages from the client
will be encrypted with the session key. It then sends a separate (encrypted) message 
indicating that the client portion of the handshake is finished. 

9. The server sends a message to the client informing it that future messages from the 
server will be encrypted with the session key. It then sends a separate (encrypted) 
message indicating that the server portion of the handshake is finished. 

The SSL handshake is now complete and the session begins. The client and the server use the 
session keys to encrypt and decrypt the data they send to each other and to validate its integrity.

This is the normal operation condition of the secure channel. At any time, due to internal or 
external stimulus (either automation or user intervention), either side may renegotiate the 
connection, in which case, the process repeats itself.[8]

This concludes the handshake and begins the secured connection, which is encrypted and 
decrypted with the key material until the connection closes.

If any one of the above steps fails, the TLS handshake fails and the connection is not created.
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In step 3, the client must check a chain of "signatures" from a "root of trust" built into, or added 
to, the client. The client must also check that none of these have been revoked; this is not often 
implemented correctly, but is a requirement of any public-key authentication system. If the 
particular signer beginning this server's chain is trusted, and all signatures in the chain remain 
trusted, then the Certificate (thus the server) is trusted.

History and development

Secure Network Programming API
Early research efforts towards transport layer security included the Secure Network 
Programming (SNP) application programming interface (API), which in 1993 explored the 
approach of having a secure transport layer API closely resembling Berkeley sockets, to 
facilitate retrofitting preexisting network applications with security measures.[9]

SSL 1.0, 2.0 and 3.0
The SSL protocol was originally developed by Netscape.[10] Version 1.0 was never publicly 
released; version 2.0 was released in February 1995 but "contained a number of security flaws 
which ultimately led to the design of SSL version 3.0."[11] SSL version 3.0, released in 1996, 
was a complete redesign of the protocol produced by Paul Kocher working with Netscape 
engineers Phil Karlton and Alan Freier. Newer versions of SSL/TLS are based on SSL 3.0. The 
1996 draft of SSL 3.0 was published by IETF as a historical document in RFC 6101. The basic 
algorithm was written by Dr. Taher Elgamal. As the Chief Scientist of Netscape, Taher was 
recognized as the "inventor of SSL".

TLS 1.0
TLS 1.0 was first defined in RFC 2246 in January 1999 as an upgrade of SSL Version 3.0. As 
stated in the RFC, "the differences between this protocol and SSL 3.0 are not dramatic, but they
are significant to preclude interoperability between TLS 1.0 and SSL 3.0." TLS 1.0 does include 
a means by which a TLS implementation can downgrade the connection to SSL 3.0, thus 
weakening security.

TLS 1.1
TLS 1.1 was defined in RFC 4346 in April 2006.[12] It is an update from TLS version 1.0. 
Significant differences in this version include:

• Added protection against Cipher block chaining (CBC) attacks. 
• The implicit Initialization Vector (IV) was replaced with an explicit IV. 
• Change in handling of padding errors. 

• Support for IANA registration of parameters. 
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TLS 1.2
TLS 1.2 was defined in RFC 5246 in August 2008. It is based on the earlier TLS 1.1 
specification. Major differences include:

• The MD5-SHA-1 combination in the pseudorandom function (PRF) was replaced with 
SHA-256, with an option to use cipher suite specified PRFs. 

• The MD5-SHA-1 combination in the Finished message hash was replaced with SHA-256,
with an option to use cipher suite specific hash algorithms. However the size of the hash 
in the finished message is still truncated to 96-bits. 

• The MD5-SHA-1 combination in the digitally signed element was replaced with a single 
hash negotiated during handshake, defaults to SHA-1. 

• Enhancement in the client's and server's ability to specify which hash and signature 
algorithms they will accept. 

• Expansion of support for authenticated encryption ciphers, used mainly for 
Galois/Counter Mode (GCM) and CCM mode of Advanced Encryption Standard 
encryption. 

• TLS Extensions definition and Advanced Encryption Standard cipher suites were added. 

All TLS versions were further refined in RFC 6176 in March 2011 removing their backward 
compatibility with SSL such that TLS sessions will never negotiate the use of Secure Sockets 
Layer (SSL) version 2.0.

Applications and adoption
In applications design, TLS is usually implemented on top of any of the Transport Layer 
protocols, encapsulating the application-specific protocols such as HTTP, FTP, SMTP, NNTP 
and XMPP. Historically it has been used primarily with reliable transport protocols such as the 
Transmission Control Protocol (TCP). However, it has also been implemented with datagram-
oriented transport protocols, such as the User Datagram Protocol (UDP) and the Datagram 
Congestion Control Protocol (DCCP), usage which has been standardized independently using 
the term Datagram Transport Layer Security (DTLS).

Websites
A prominent use of TLS is for securing World Wide Web traffic between the website and the 
browser carried by HTTP to form HTTPS. Notable applications are electronic commerce and 
asset management.

Website protocol support
Protocol
version

Website
support[13] Security[13][14]

SSL 2.0 23.0% (−0.7%) Insecure
SSL 3.0 99.3% (−0.1%) Depends on cipher[n 1] and client mitigations[n 2]
TLS 1.0 97.7% (±0.0%) Depends on cipher[n 1] and client mitigations[n 2]
TLS 1.1 29.6% (+2.0%) Depends on cipher[n 1] and client mitigations[n 2]
TLS 1.2 32.3% (+2.1%) Depends on cipher[n 1] and client mitigations[n 2]
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Notes 

1. see #Cipher table below 
2. see #Web browsers and #Attacks against TLS/SSL sections 

Key exchange or key agreement
See also: Cipher suite

Before a client and server can begin to exchange information protected by TLS, they must 
securely exchange or agree upon an encryption key and a cipher to use when encrypting data 
(see Cipher). Among the methods used for key exchange/agreement are: public and private 
keys generated with RSA (denoted TLS_RSA in the TLS handshake protocol), Diffie-Hellman 
(denoted TLS_DH in the TLS handshake protocol), ephemeral Diffie-Hellman (denoted 
TLS_DHE in the handshake protocol), Elliptic Curve Diffie-Hellman (denoted TLS_ECDH), 
ephemeral Elliptic Curve Diffie-Hellman (TLS_ECDHE), anonymous Diffie-Hellman 
(TLS_DH_anon),[15] and PSK (TLS_PSK).[16]

The TLS_DH_anon key agreement method does not authenticate the server or the user and 
hence is rarely used. Only TLS_DHE and TLS_ECDHE provide forward secrecy.

Public key certificates used during exchange/agreement also vary in the size of the 
public/private encryption keys used during the exchange and hence the robustness of the 
security provided. In July 2013, Google announced that it would no longer use 1024 bit public 
keys and would switch instead to 2048 bit keys to increase the security of the TLS encryption it 
provides to its users.[17]

Cipher
See also: Cipher suite, Block cipher, and Cipher security summary

Cipher security against publicly known feasible attacks

Cipher

Protocol version

SSL
2.0

SSL 3.0
[note 1][note 2][note

3]

TLS 1.0
[note 1][note

3]

TLS 1.1
[note 1]

TLS 1.2
[note 1]

AES CBC[note 4] N/A N/A Depends Secure Secure
AES GCM[18][note 5] N/A N/A N/A N/A Secure
AES CCM[19][note 5] N/A N/A N/A N/A Secure

Camellia CBC[20][note 4] N/A N/A Depends Secure Secure
Camellia GCM[21][note 5] N/A N/A N/A N/A Secure

SEED CBC[22][note 4] N/A N/A Depends Secure Secure
ChaCha20+Poly1305[23]

[note 5]
N/A N/A N/A N/A Secure

IDEA CBC[note 4][note 6] Insecur
e

Depends Depends Secure N/A

Triple DES CBC[note 4][note Insecur Depends Depends Depend Depend

5



Secure Sockets Layer (SSL) / Transport Layer Security (TLS)
_____________________________________________________________________________________________________

Cipher

Protocol version

SSL
2.0

SSL 3.0
[note 1][note 2][note

3]

TLS 1.0
[note 1][note

3]

TLS 1.1
[note 1]

TLS 1.2
[note 1]

7] e s s

DES CBC[note 4][note 6] Insecur
e Insecure Insecure

Insecur
e

N/A

RC2 CBC[note 4][note 6] Insecur
e

Insecure Insecure Insecur
e

N/A

RC4[note 8] Insecur
e Insecure Insecure

Insecur
e Insecure

Notes 

1. RFC 5746 must be implemented in order to fix a renegotiation flaw that would otherwise 
break this protocol. 

2. If libraries implement fixes listed in RFC 5746, this will violate the SSL 3.0 specification, 
which the IETF cannot change unlike TLS. Fortunately, most current libraries implement 
the fix and disregard the violation that this causes. 

3. the BEAST attack breaks all block ciphers (CBC ciphers) used in SSL 3.0 and TLS 1.0 
unless mitigated by the client. As of March 2014, Apple has turned on this mitigation by 
default only for Safari 7 for Mac OS X 10.9 and for iOS 7, resulting in for Windows, for 
Mac OS X 10.8 or earlier, and for iOS 6 or earlier still being theoretically vulnerable to the 
BEAST attack on those platforms – see #Web browsers 

4. CBC ciphers can be attacked with the Lucky 13 attack if the library is not written carefully 
to eliminate timing side channels. 

5. AEAD ciphers (such as GCM and CCM) can be used in only TLS 1.2. 
6. IDEA, DES, and RC2 CBC have been removed from TLS 1.2. 
7. Triple DES provides only 108 or 112 bits of security, which is below the recommended 

minimum of 128 bits.[24] 
8. the RC4 attacks weaken or break RC4 used in SSL/TLS 

Web browsers
Further information: Comparison of web browsers

As of February 2014, the latest version of all major web browsers support SSL 3.0, TLS 1.0, 1.1,
and 1.2 enabled by default. However, Mozilla Firefox ESR 24 supports TLS 1.1 and 1.2 but 
disabled by default, and Internet Explorer for Windows Vista or older and Safari for Mac OS X 
10.8 or earlier, for iOS 6 or earlier, and for Windows support only SSL 3.0 and TLS 1.0.

Browser support for TLS

Browser Version Platforms TLS 1.0 TLS 1.1 TLS 1.2
Vulnerabilities

Fixed
[notes 1]

Google
Chrome

0–21 Android,
iOS,

Yes No No Not latest
22–29 Yes[32] Yes No[32][33] Not latest
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Browser Version Platforms TLS 1.0 TLS 1.1 TLS 1.2
Vulnerabilities

Fixed
[notes 1]

[notes 2]
[notes 3]

Linux,
Mac OS X,

[34][35]

30– Yes[32] Yes[32] Yes[33][34]
[35]

Depends

Mozilla
Firefox

[notes 3]
[notes 4]

1–22
ESR 10,
17

Android,
Firefox OS,
Linux,
Mac OS X,
Windows (XP, 
Vista, 7, 8)

Yes[36] No[28] No[30] Not latest

23 Yes[36]

Yes,
disabled by
default[28]

[37]

No[30] Not latest

24–26
ESR 24

Yes[36]

Yes,
disabled by
default[28]

[37]

Yes,
disabled by
default[30]

[38]

Depends
(latest ESR)

27– Yes[36]
Yes[28][37]

[39]
Yes[30][38]

[39]
Depends

(latest non-ESR)

Internet
Explorer
[notes 5]

6 Windows (98, 
2000, ME, XP)

Yes,
disabled

by default
No No Not latest

7–8 Windows XP Yes No No
Depends
(latest for

Windows XP)

7–9 Windows Vista Yes No No
Depends
(latest for

Windows Vista)

8–10 Windows 7 Yes
Yes,

disabled by
default

Yes,
disabled by

default
Not latest

10 Windows 8 Yes
Yes,

disabled by
default

Yes,
disabled by

default

Depends
(latest for

Windows 8)

11 Windows 7, 8.1 Yes Yes[42] Yes[42]
Depends[43]

(latest for
Windows 7, 8.1)

Opera
[notes 6]
[notes 7]

5–7 Android,
iOS,
Linux,
Mac OS X,
Windows

Yes[46] No No Not latest

8–9 Yes
Yes,

disabled by
default[47]

No Not latest

10–12 Yes Yes, Yes, Depends
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Browser Version Platforms TLS 1.0 TLS 1.1 TLS 1.2
Vulnerabilities

Fixed
[notes 1]

disabled by
default

disabled by
default

(latest for Linux)

14–16 Yes Yes[48] No[48] Not latest

17– Yes Yes[49] Yes[49]
Depends
(latest for

Windows, OS X)

Safari
[notes 8]

1–6
Mac OS X 
−10.8[notes 9] Yes No No

No[notes 9]
(latest for OS X

−10.8)

7 Mac OS X 10.9 
[notes 10]

Yes Yes Yes
Depends[55]

(latest for OS X
10.9)

3–5
iPhone OS 1–3, 
iOS 4.0[notes 11]
[notes 9]

Yes[56] No No Not latest

5–6
iOS 5–6[notes 
11][notes 9] Yes Yes Yes

No[notes 9]
(latest for iOS 5–

6)

7
iOS 7[notes 11]
[notes 9] Yes Yes Yes

Depends[60]
(Latest for iOS 7)

3–5 Windows Yes No No
No[notes 12]

(latest for
Windows)

Notes 

1. Does the current browser have mitigations or is not vulnerable for all the known protocol 
and cipher attacks listed in this page (BEAST, CRIME, BREACH, Lucky Thirteen). Note 
actual security depends on other factors such as negotiated cipher (such as RC4), 
encryption strength etc. Non-current browsers will have unfixed security issues so are not
considered. 

2. Google Chrome (and Chromium) supports TLS 1.0, and TLS 1.1 from version 22 (it was 
added, then dropped from version 21). TLS 1.2 support has been added, then dropped 
from Chrome 29.[25][26][27] 

3. Uses the TLS implementation provided by NSS. NSS 3.14 supports TLS 1.0 and 1.1 but 
not 1.2.[28][29] As of 2 July 2013, TLS 1.2 has been implemented in NSS 3.15.1.[30][31] 

4. As of Firefox 19, Firefox supports only TLS 1.0 despite the bundled NSS supporting TLS 
1.1. Since Firefox 23, TLS 1.1 can be enabled, but was not enabled by default due to 
issues. Firefox 24 has TLS 1.2 support disabled by default. TLS 1.1 and TLS 1.2 have 
been enabled by default in Firefox 27 release. 

5. IE uses the TLS implementation of the Microsoft Windows operating system provided by 
the SChannel security support provider. TLS 1.1 and 1.2 are disabled by default until 
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IE11.[40][41] 
6. Opera 10 added support for TLS 1.2 as of Presto 2.2. Previous support was for TLS 1.0 

and 1.1.[44] TLS 1.1 and 1.2 are disabled by default (except for version 9[45] that 
enabled TLS 1.1 by default). 

7. TLS support of Opera 14 and above is same as that of Chrome, because Opera has 
migrated to Chromium backend. 

8. Safari uses the operating system implementation on Mac OS X, Windows (XP, Vista, 7)
[50] with unknown version,[51] Safari 5 is the last version available for Windows. OS X 
10.8 on have SecureTransport support for TLS 1.1 and 1.2[52] Qualys SSL report 
simulates Safari 5.1.9 connecting with TLS 1.0 not 1.1 or 1.2[53] 

9. As of September 2013, Apple has implemented BEAST mitigation in OS X 10.8 
(Mountain Lion), but it is not turned on by default resulting in Safari still being theoretically
vulnerable to the BEAST attack on that platform[56][55] 

10.Simulated connection by Qualys.[54] 
11.Mobile Safari and third-party software utilizing the system UIWebView library use the iOS 

operating system implementation, which supports TLS 1.2 as of iOS 5.0.[57][58][59] 
12.Development and support of Safari for Windows has been discontinued. 

Libraries
Main article: Comparison of TLS implementations

Most SSL and TLS programming libraries are free and open source software.

• Botan, a BSD-licensed cryptographic library written in C++. 
• Microsoft Windows includes an implementation of SSL and TLS as part of its Secure 

Channel package. 
• OS X includes an implementation of SSL and TLS as part of its Secure Transport 

package. 
• Delphi programmers may use a library called Indy which utilizes OpenSSL. 
• OpenSSL: a free implementation (BSD license with some extensions) 
• GnuTLS: a free implementation (LGPL licensed) 
• cryptlib: a portable open source cryptography library (includes TLS/SSL implementation) 
• JSSE: a Java implementation included in the Java Runtime Environment supports TLS 

1.1 and 1.2 from Java 7, although is disabled by default for client, and enabled by default 
for server.[61] Java 8 supports TLS 1.1 and 1.2 enabled on both the client and server by 
default.[62] 

• MatrixSSL: a dual licensed implementation 
• Network Security Services (NSS): FIPS 140 validated open source library 
• PolarSSL: A tiny SSL library implementation for embedded devices that is designed for 

ease of use 
• CyaSSL: Embedded SSL/TLS Library with a strong focus on speed and size. 

A paper presented at the 2012 ACM conference on computer and communications security[63] 
showed that few applications used some of these SSL libraries incorrectly, leading to 
vulnerabilities. According to the authors

"the root cause of most of these vulnerabilities is the terrible design of the APIs to the 
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underlying SSL libraries. Instead of expressing high-level security properties of 
network tunnels such as confidentiality and authentication, these APIs expose low-
level details of the SSL protocol to application developers. As a consequence, 
developers often use SSL APIs incorrectly, misinterpreting and misunderstanding 
their manifold parameters, options, side effects, and return values."

Other uses
The Simple Mail Transfer Protocol (SMTP) can also be protected by TLS. These applications 
use public key certificates to verify the identity of endpoints.

TLS can also be used to tunnel an entire network stack to create a VPN, as is the case with 
OpenVPN and OpenConnect. Many vendors now marry TLS's encryption and authentication 
capabilities with authorization. There has also been substantial development since the late 
1990s in creating client technology outside of the browser to enable support for client/server 
applications. When compared against traditional IPsec VPN technologies, TLS has some 
inherent advantages in firewall and NAT traversal that make it easier to administer for large 
remote-access populations.

TLS is also a standard method to protect Session Initiation Protocol (SIP) application signaling. 
TLS can be used to provide authentication and encryption of the SIP signaling associated with 
VoIP and other SIP-based applications.

Security

SSL 2.0
SSL 2.0 is flawed in a variety of ways:[64]

• Identical cryptographic keys are used for message authentication and encryption. 
• SSL 2.0 has a weak MAC construction that uses the MD5 hash function with a secret 

prefix, making it vulnerable to length extension attacks. 
• SSL 2.0 does not have any protection for the handshake, meaning a man-in-the-middle 

downgrade attack can go undetected. 
• SSL 2.0 uses the TCP connection close to indicate the end of data. This means that 

truncation attacks are possible: the attacker simply forges a TCP FIN, leaving the 
recipient unaware of an illegitimate end of data message (SSL 3.0 fixes this problem by 
having an explicit closure alert). 

• SSL 2.0 assumes a single service and a fixed domain certificate, which clashes with the 
standard feature of virtual hosting in Web servers. This means that most websites are 
practically impaired from using SSL. 

SSL 2.0 is disabled by default, beginning with Internet Explorer 7,[65] Mozilla Firefox 2,[66] 
Opera 9.5,[67] and Safari. After it sends a TLS "ClientHello", if Mozilla Firefox finds that the 
server is unable to complete the handshake, it will attempt to fall back to using SSL 3.0 with an 
SSL 3.0 "ClientHello" in SSL 2.0 format to maximize the likelihood of successfully handshaking 
with older servers.[68] Support for SSL 2.0 (and weak 40-bit and 56-bit ciphers) has been 
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removed completely from Opera as of version 10.[69][70]

SSL 3.0
SSL 3.0 improved upon SSL 2.0 by adding SHA-1–based ciphers and support for certificate 
authentication.

From a security standpoint, SSL 3.0 should be considered less desirable than TLS 1.0. The SSL
3.0 cipher suites have a weaker key derivation process; half of the master key that is 
established is fully dependent on the MD5 hash function, which is not resistant to collisions and 
is, therefore, not considered secure. Under TLS 1.0, the master key that is established depends 
on both MD5 and SHA-1 so its derivation process is not currently considered weak. It is for this 
reason that SSL 3.0 implementations cannot be validated under FIPS 140-2.[71]

TLS
TLS has a variety of security measures:

• Protection against a downgrade of the protocol to a previous (less secure) version or a 
weaker cipher suite. 

• Numbering subsequent Application records with a sequence number and using this 
sequence number in the message authentication codes (MACs). 

• Using a message digest enhanced with a key (so only a key-holder can check the MAC). 
The HMAC construction used by most TLS cipher suites is specified in RFC 2104 (SSL 
3.0 used a different hash-based MAC). 

• The message that ends the handshake ("Finished") sends a hash of all the exchanged 
handshake messages seen by both parties. 

• The pseudorandom function splits the input data in half and processes each one with a 
different hashing algorithm (MD5 and SHA-1), then XORs them together to create the 
MAC. This provides protection even if one of these algorithms is found to be vulnerable. 

Attacks against TLS/SSL
Significant attacks against TLS/SSL are listed below:

Renegotiation attack

A vulnerability of the renegotiation procedure was discovered in August 2009 that can lead to 
plaintext injection attacks against SSL 3.0 and all current versions of TLS. For example, it allows
an attacker who can hijack an https connection to splice their own requests into the beginning of
the conversation the client has with the web server. The attacker can't actually decrypt the 
client-server communication, so it is different from a typical man-in-the-middle attack. A short-
term fix is for web servers to stop allowing renegotiation, which typically will not require other 
changes unless client certificate authentication is used. To fix the vulnerability, a renegotiation 
indication extension was proposed for TLS. It will require the client and server to include and 
verify information about previous handshakes in any renegotiation handshakes.[72] This 
extension has become a proposed standard and has been assigned the number RFC 5746. The
RFC has been implemented by several libraries.[73][74][75]
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Version rollback attacks

Modifications to the original protocols, like False Start[76] (adopted and enabled by Google 
Chrome[77]) or Snap Start, have been reported to introduce limited TLS protocol version 
rollback attacks[78] or to allow modifications to the cipher suite list sent by the client to the 
server (an attacker may be able to influence the cipher suite selection in an attempt to 
downgrade the cipher suite strength, to use either a weaker symmetric encryption algorithm or a
weaker key exchange[79]). It has been shown in the Association for Computing Machinery 
(ACM) conference on computer and communications security that the False Start extension is at
risk as in certain circumstances it could allow an attacker to recover the encryption keys offline 
and access the encrypted data.[80]

BEAST attack

On September 23, 2011 researchers Thai Duong and Juliano Rizzo demonstrated a proof of 
concept called BEAST (Browser Exploit Against SSL/TLS)[81] using a Java applet to violate 
same origin policy constraints, for a long-known cipher block chaining (CBC) vulnerability in TLS
1.0.[82][83] Practical exploits had not been previously demonstrated for this vulnerability, which 
was originally discovered by Phillip Rogaway[84] in 2002. The vulnerability of the attack had 
been fixed with TLS 1.1 in 2006, but TLS 1.1 had not seen wide adoption prior to this attack 
demonstration.

Mozilla updated the development versions of their NSS libraries to mitigate BEAST-like attacks. 
NSS is used by Mozilla Firefox and Google Chrome to implement SSL. Some web servers that 
have a broken implementation of the SSL specification may stop working as a result.[85]

Microsoft released Security Bulletin MS12-006 on January 10, 2012, which fixed the BEAST 
vulnerability by changing the way that the Windows Secure Channel (SChannel) component 
transmits encrypted network packets.[86]

Users of Windows 7, Windows 8 and Windows Server 2008 R2 can enable use of TLS 1.1 and 
1.2, but this workaround will fail if it is not supported by the other end of the connection and will 
result in a fall-back to TLS 1.0.

CRIME and BREACH attacks

Main articles: CRIME (security exploit) and BREACH (security exploit)

The authors of the BEAST attack are also the creators of the later CRIME attack, which can 
allow an attacker to recover the content of web cookies when data compression is used along 
with TLS.[87][88] When used to recover the content of secret authentication cookies, it allows an
attacker to perform session hijacking on an authenticated web session.

While the CRIME attack was presented as a general attack that could work effectively against a 
large number of protocols, including but not limited to TLS, and application-layer protocols such 
as SPDY or HTTP, only exploits against TLS and SPDY were demonstrated and largely 
mitigated in browsers and servers. The CRIME exploit against HTTP compression has not been 
mitigated at all, even though the authors of CRIME have warned that this vulnerability might be 
even more widespread than SPDY and TLS compression combined. In 2013 a new instance of 
the CRIME attack against HTTP compression, dubbed BREACH, was announced. Built based 
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on the CRIME attack a BREACH attack can extract login tokens, email addresses or other 
sensitive information from TLS encrypted web traffic in as little as 30 seconds (depending on the
number of bytes to be extracted), provided the attacker tricks the victim into visiting a malicious 
web link or is able to inject content into valid pages the user is visiting (ex: a wireless network 
under the control of the attacker).[89] All versions of TLS and SSL are at risk from BREACH 
regardless of the encryption algorithm or cipher used.[90] Unlike previous instances of CRIME, 
which can be successfully defended against by turning off TLS compression or SPDY header 
compression, BREACH exploits HTTP compression which cannot realistically be turned off, as 
virtually all web servers rely upon it to improve data transmission speeds for users.[89] This is a 
known limitation of TLS as it is susceptible to chosen-plaintext attack against the application-
layer data it was meant to protect.

Padding attacks

Earlier TLS versions were vulnerable against the padding oracle attack discovered in 2002. A 
novel variant, called the Lucky Thirteen attack, was published in 2013. As of February 2013, 
TLS implementors were still working on developing fixes to protect against this form of attack.

RC4 attacks

In spite of existing attacks on RC4 that break it, the cipher suites based on RC4 in SSL and TLS
were considered secure because of how the cipher was used in these protocols. In 2011 the 
RC4 suite was actually recommended as a work around for the BEAST attack.[91] In 2013 a 
vulnerability was discovered in RC4 suggesting it was not a good workaround for BEAST.[14] An
attack scenario was proposed by AlFardan, Bernstein, Paterson, Poettering and Schuldt that 
used newly discovered statistical biases in the RC4 key table[92] to recover parts of the 
plaintext with a large number of TLS encryptions.[93][94] A double-byte bias attack on RC4 in 
TLS and SSL that requires 13 × 220 encryptions to break RC4 was unveiled on 8 July 2013, and
it was described as "feasible" in the accompanying presentation at the 22nd USENIX Security 
Symposium on August 15, 2013.[95][96]

However, many modern browsers have been designed to defeat BEAST attacks (except Safari 
for Mac OS X 10.8 or earlier, for iOS 6 or earlier, and for Windows; see #Web browsers). As a 
result, RC4 is not the best choice for TLS 1.0 anymore. The CBC ciphers which were affected 
by the BEAST attack in the past are becoming a more popular choice for protection.[24]

Microsoft recommends disabling RC4 where possible.[97][98]

Truncation attack

A TLS truncation attack blocks a victim's account logout requests so that the user unknowingly 
remains logged into a web service. When the request to sign out is sent, the attacker injects an 
unencrypted TCP FIN message (no more data from sender) to close the connection. The server 
therefore doesn't receive the logout request and is unaware of the abnormal termination.[99]

Published in July 2013,[100] the attack causes web services such as Gmail and Hotmail to 
display a page that informs the user that they have successfully signed-out, while ensuring that 
the user's browser maintains authorization with the service, allowing an attacker with 
subsequent access to the browser to access and take over control of the user's logged-in 
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account. The attack does not rely on installing malware on the victim's computer; attackers need
only place themselves between the victim and the web server (e.g., by setting up a rogue 
wireless hotspot).[99]

Survey of websites

As of April 2014, Trustworthy Internet Movement estimate the ratio of websites that are 
vulnerable to TLS attacks.[13]

Survey of the TLS vulnerabilities of the most popular websites

Attacks
Security

Insecure Depends Secure Other

Renegotiation 
attack

5.7% (−0.3%)
support insecure

renegotiation

2.3% (+0.9%)
support both

84.7% (−0.4%)
support secure
renegotiation

7.3% 
(−0.2%)
not 
support

RC4 attacks
33.4% (−2.3%)

support RC4 suites used with
modern browsers

58.0% (+2.0%)
support some

RC4 suites

8.7% (+0.3%)
not support

N/A

BEAST attack 71.8% (+2.2%)
vulnerable

N/A N/A N/A

CRIME attack
12.9% (−0.7%)

vulnerable
N/A N/A N/A

Forward secrecy
Main article: Forward secrecy

Forward secrecy is a property of cryptographic systems which ensures that a session key 
derived from a set of public and private keys will not be compromised if one of the private keys 
is compromised in the future.[101] An implementation of TLS can provide forward secrecy by 
requiring the use of ephemeral Diffie-Hellman key exchange to establish session keys, and 
some notable TLS implementations do so exclusively: e.g., Gmail and other Google HTTPS 
services that use OpenSSL.[102] However, many web servers providing TLS are not configured 
to implement such restrictions.[103][104] Without forward secrecy, if the server's private key is 
compromised, not only will all future TLS-encrypted sessions using that server certificate be 
compromised, but also any past sessions that used it as well (provided of course that these past
sessions were intercepted and stored at the time of transmission).[105] In practice, unless a 
web service uses Diffie-Hellman key exchange to implement forward secrecy, all of the 
encrypted web traffic to and from that service can be decrypted by a third party if it obtains the 
server's master (private) key; e.g., by means of a court order.[106]

Even where Diffie-Hellman key exchange is implemented, server-side session management 
mechanisms can impact forward secrecy. The use of TLS session tickets (a TLS extension) 
causes the session to be protected by AES128-CBC-SHA256 regardless of any other 
negotiated TLS parameters, including forward secrecy ciphersuites, and the long-lived TLS 
session ticket keys defeat the attempt to implement forward secrecy.[107][108][109]
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Since late 2011, Google has provided forward secrecy with TLS by default to users of its Gmail 
service, along with Google Docs and encrypted search among other services.[110] Since 
November 2013, Twitter has provided forward secrecy with TLS to users of its service.[111] As 
of April 2014, 6.3% of TLS-enabled websites are configured to use cipher suites that provide 
forward secrecy to web browsers.[13]

Avoiding Triple-DES CBC
Some experts recommend avoiding Triple-DES CBC. Since the last supported ciphers 
developed to support Internet Explorer on Windows XP are RC4 and Triple-DES, this makes it 
difficult to support SSL for IE on XP.[24]

Dealing with MITM attacks
Main article: Man-in-the-middle attack

Certificate pinning

One way to detect and block many kinds of MITM attacks is "certificate pinning", sometimes 
called "SSL pinning".[112] A client that does certificate pinning adds an extra step to the normal 
TLS protocol or SSL protocol: After obtaining the server's certificate in the standard way, the 
client checks the server's certificate against trusted validation data. Typically the trusted 
validation data is bundled with the app, in the form of a trusted copy of that certificate, or a 
trusted hash or fingerprint of that certificate or the certificate's public key. For example, 
Chromium and Google Chrome include validation data for the *.google.com certificate that 
detected fraudulent certificates in 2011. In other systems the client hopes that the first time it 
obtains a server's certificate it is trustworthy and stores it; during later sessions with that server, 
the client checks the server's certificate against the stored certificate to guard against later 
MITM attacks.

Perspectives Project

The Perspectives Project[113] operates network notaries that clients can use to detect if a site's 
certificate has changed. By their nature, man-in-the-middle attacks place the attacker between 
the destination and a single specific target. As such, Perspectives would warn the target that the
certificate delivered to the web browser does not match the certificate seen from other 
perspectives - the perspectives of other users in different times and places. Use of network 
notaries from a multitude of perspectives makes it possible for a target to detect an attack even 
if a certificate appears to be completely valid.

Protocol details
The TLS protocol exchanges records – which encapsulate the data to be exchanged in a 
specific format (see below). Each record can be compressed, padded, appended with a 
message authentication code (MAC), or encrypted, all depending on the state of the connection.
Each record has a content type field that designates the type of data encapsulated, a length 
field and a TLS version field. The data encapsulated may be control or procedural messages of 
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the TLS itself, or simply the application data needed to be transferred by TLS. The specifications
(cipher suite, keys etc.) required to exchange application data by TLS, are agreed upon in the 
"TLS handshake" between the client requesting the data and the server responding to requests. 
The protocol therefore defines both the structure of payloads transferred in TLS and the 
procedure to establish and monitor the transfer.

TLS handshake
When the connection starts, the record encapsulates a "control" protocol — the handshake 
messaging protocol  (content type 22). This protocol is used to exchange all the information 
required by both sides for the exchange of the actual application data by TLS. It defines the 
messages formatting or containing this information and the order of their exchange. These may 
vary according to the demands of the client and server i.e. there are several possible 
procedures to set up the connection. This initial exchange results in a successful TLS 
connection (both parties ready to transfer application data with TLS) or an alert message (as 
specified below).

Basic TLS handshake

A simple connection example follows, illustrating a handshake where the server (but not the 
client) is authenticated by its certificate:

1. Negotiation phase: 
• A client sends a ClientHello message specifying the highest TLS protocol version 

it supports, a random number, a list of suggested CipherSuites and suggested 
compression methods. If the client is attempting to perform a resumed handshake, 
it may send a session ID. 

• The server responds with a ServerHello message, containing the chosen protocol 
version, a random number, CipherSuite and compression method from the choices
offered by the client. To confirm or allow resumed handshakes the server may 
send a session ID. The chosen protocol version should be the highest that both the
client and server support. For example, if the client supports TLS1.1 and the server
supports TLS1.2, TLS1.1 should be selected; SSL 3.0 should not be selected. 

• The server sends its Certificate message (depending on the selected cipher suite,
this may be omitted by the server).[114] 

• The server sends a ServerHelloDone message, indicating it is done with 
handshake negotiation. 

• The client responds with a ClientKeyExchange message, which may contain a 
PreMasterSecret, public key, or nothing. (Again, this depends on the selected 
cipher.) This PreMasterSecret is encrypted using the public key of the server 
certificate. 

• The client and server then use the random numbers and PreMasterSecret to 
compute a common secret, called the "master secret". All other key data for this 
connection is derived from this master secret (and the client- and server-generated
random values), which is passed through a carefully designed pseudorandom 
function. 

2. The client now sends a ChangeCipherSpec record, essentially telling the server, 
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"Everything I tell you from now on will be authenticated (and encrypted if encryption 
parameters were present in the server certificate)." The ChangeCipherSpec is itself a 
record-level protocol with content type of 20. 

• Finally, the client sends an authenticated and encrypted Finished message, 
containing a hash and MAC over the previous handshake messages. 

• The server will attempt to decrypt the client's Finished message and verify the 
hash and MAC. If the decryption or verification fails, the handshake is considered 
to have failed and the connection should be torn down. 

3. Finally, the server sends a ChangeCipherSpec, telling the client, "Everything I tell you 
from now on will be authenticated (and encrypted, if encryption was negotiated)." 

• The server sends its authenticated and encrypted Finished message. 
• The client performs the same decryption and verification. 

4. Application phase: at this point, the "handshake" is complete and the application protocol 
is enabled, with content type of 23. Application messages exchanged between client and 
server will also be authenticated and optionally encrypted exactly like in their Finished 
message. Otherwise, the content type will return 25 and the client will not authenticate. 

Client-authenticated TLS handshake

The following full example shows a client being authenticated (in addition to the server like 
above) via TLS using certificates exchanged between both peers.

1. Negotiation Phase: 
• A client sends a ClientHello message specifying the highest TLS protocol version 

it supports, a random number, a list of suggested cipher suites and compression 
methods. 

• The server responds with a ServerHello message, containing the chosen protocol 
version, a random number, cipher suite and compression method from the choices 
offered by the client. The server may also send a session id as part of the 
message to perform a resumed handshake. 

• The server sends its Certificate message (depending on the selected cipher suite,
this may be omitted by the server).[114] 

• The server requests a certificate from the client, so that the connection can be 
mutually authenticated, using a CertificateRequest message. 

• The server sends a ServerHelloDone message, indicating it is done with 
handshake negotiation. 

• The client responds with a Certificate message, which contains the client's 
certificate. 

• The client sends a ClientKeyExchange message, which may contain a 
PreMasterSecret, public key, or nothing. (Again, this depends on the selected 
cipher.) This PreMasterSecret is encrypted using the public key of the server 
certificate. 

• The client sends a CertificateVerify message, which is a signature over the 
previous handshake messages using the client's certificate's private key. This 
signature can be verified by using the client's certificate's public key. This lets the 
server know that the client has access to the private key of the certificate and thus 
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owns the certificate. 
• The client and server then use the random numbers and PreMasterSecret to 

compute a common secret, called the "master secret". All other key data for this 
connection is derived from this master secret (and the client- and server-generated
random values), which is passed through a carefully designed pseudorandom 
function. 

2. The client now sends a ChangeCipherSpec record, essentially telling the server, 
"Everything I tell you from now on will be authenticated (and encrypted if encryption was 
negotiated). " The ChangeCipherSpec is itself a record-level protocol and has type 20 
and not 22. 

• Finally, the client sends an encrypted Finished message, containing a hash and 
MAC over the previous handshake messages. 

• The server will attempt to decrypt the client's Finished message and verify the 
hash and MAC. If the decryption or verification fails, the handshake is considered 
to have failed and the connection should be torn down. 

3. Finally, the server sends a ChangeCipherSpec, telling the client, "Everything I tell you 
from now on will be authenticated (and encrypted if encryption was negotiated). " 

• The server sends its own encrypted Finished message. 
• The client performs the same decryption and verification. 

4. Application phase: at this point, the "handshake" is complete and the application protocol 
is enabled, with content type of 23. Application messages exchanged between client and 
server will also be encrypted exactly like in their Finished message. 

Resumed TLS handshake

Public key operations (e.g., RSA) are relatively expensive in terms of computational power. TLS 
provides a secure shortcut in the handshake mechanism to avoid these operations: resumed 
sessions. Resumed sessions are implemented using session IDs or session tickets.

Apart from the performance benefit, resumed sessions can also be used for single sign-on as it 
is guaranteed that both the original session as well as any resumed session originate from the 
same client. This is of particular importance for the FTP over TLS/SSL protocol which would 
otherwise suffer from a man-in-the-middle attack in which an attacker could intercept the 
contents of the secondary data connections.[115]

Session IDs

In an ordinary full handshake, the server sends a session id as part of the ServerHello 
message. The client associates this session id with the server's IP address and TCP port, so 
that when the client connects again to that server, it can use the session id to shortcut the 
handshake. In the server, the session id maps to the cryptographic parameters previously 
negotiated, specifically the "master secret". Both sides must have the same "master secret" or 
the resumed handshake will fail (this prevents an eavesdropper from using a session id). The 
random data in the ClientHello and ServerHello messages virtually guarantee that the 
generated connection keys will be different from in the previous connection. In the RFCs, this 
type of handshake is called an abbreviated handshake. It is also described in the literature as a 
restart handshake.
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1. Negotiation phase: 
• A client sends a ClientHello message specifying the highest TLS protocol version 

it supports, a random number, a list of suggested cipher suites and compression 
methods. Included in the message is the session id from the previous TLS 
connection. 

• The server responds with a ServerHello message, containing the chosen protocol 
version, a random number, cipher suite and compression method from the choices 
offered by the client. If the server recognizes the session id sent by the client, it 
responds with the same session id. The client uses this to recognize that a 
resumed handshake is being performed. If the server does not recognize the 
session id sent by the client, it sends a different value for its session id. This tells 
the client that a resumed handshake will not be performed. At this point, both the 
client and server have the "master secret" and random data to generate the key 
data to be used for this connection. 

2. The server now sends a ChangeCipherSpec record, essentially telling the client, 
"Everything I tell you from now on will be encrypted." The ChangeCipherSpec is itself a 
record-level protocol and has type 20 and not 22. 

• Finally, the server sends an encrypted Finished message, containing a hash and 
MAC over the previous handshake messages. 

• The client will attempt to decrypt the server's Finished message and verify the 
hash and MAC. If the decryption or verification fails, the handshake is considered 
to have failed and the connection should be torn down. 

3. Finally, the client sends a ChangeCipherSpec, telling the server, "Everything I tell you 
from now on will be encrypted. " 

• The client sends its own encrypted Finished message. 
• The server performs the same decryption and verification. 

4. Application phase: at this point, the "handshake" is complete and the application protocol 
is enabled, with content type of 23. Application messages exchanged between client and 
server will also be encrypted exactly like in their Finished message. 

Session tickets

RFC 5077 extends TLS via use of session tickets, instead of session IDs. It defines a way to 
resume a TLS session without requiring that session-specific state is stored at the TLS server.

When using session tickets, the TLS server stores its session-specific state in a session ticket 
and sends the session ticket to the TLS client for storing. The client resumes a TLS session by 
sending the session ticket to the server, and the server resumes the TLS session according to 
the session-specific state in the ticket. The session ticket is encrypted and authenticated by the 
server, and the server verifies its validity before using its contents.

One particular weakness of this method is that it always limits encryption and authentication 
security of the transmitted TLS session ticket to AES128-CBC-SHA256, no matter what other 
TLS parameters were negotiated for the actual TLS session.[108] This means that the state 
information (the TLS session ticket) is not as well protected as the TLS session itself. Of 
particular concern is OpenSSL's storage of the keys in an application-wide context (SSL_CTX), 
i.e. for the life of the application, and not allowing for re-keying of the AES128-CBC-SHA256 
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TLS session tickets without resetting the application-wide OpenSSL context (which is 
uncommon, error-prone and often requires manual administrative intervention).[109][107]

TLS record
This is the general format of all TLS records.

+ Byte +0 Byte +1 Byte +2 Byte +3
Byte

0
Content 
type

 

Bytes
1..4

Version Length
(Major) (Minor) (bits 15..8) (bits 7..0)

Bytes
5..(m-1) Protocol message(s)

Bytes
m..(p-1) MAC (optional)

Bytes
p..(q-1) Padding (block ciphers only)

Content type 
This field identifies the Record Layer Protocol Type contained in this Record. 

Content types
Hex Dec Type
0x14 20 ChangeCipherSpec
0x15 21 Alert
0x16 22 Handshake
0x17 23 Application
0x18 24 Heartbeat
Version 

This field identifies the major and minor version of TLS for the contained message. For a 
ClientHello message, this need not be the highest version supported by the client. 

Versions
Major

Version
Minor

Version Version Type

3 0 SSL 3.0
3 1 TLS 1.0
3 2 TLS 1.1
3 3 TLS 1.2
Length 

The length of Protocol message(s), not to exceed 214 bytes (16 KiB). 
Protocol message(s) 
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One or more messages identified by the Protocol field. Note that this field may be 
encrypted depending on the state of the connection. 

MAC and Padding 
A message authentication code computed over the Protocol message, with additional key 
material included. Note that this field may be encrypted, or not included entirely, depending
on the state of the connection. 
No MAC or Padding can be present at end of TLS records before all cipher algorithms and 
parameters have been negotiated and handshaked and then confirmed by sending a 
CipherStateChange record (see below) for signalling that these parameters will take effect 
in all further records sent by the same peer. 

Handshake protocol

Most messages exchanged during the setup of the TLS session are based on this record, 
unless an error or warning occurs and needs to be signaled by an Alert protocol record (see 
below), or the encryption mode of the session is modified by another record (see 
ChangeCipherSpec protocol below).

+ Byte +0 Byte +1 Byte +2 Byte +3
Byte

0 22  

Bytes
1..4

Version Length
(Major) (Minor) (bits 15..8) (bits 7..0)

Bytes
5..8

Message 
type

Handshake message data length
(bits 23..16) (bits 15..8) (bits 7..0)

Bytes
9..(n-1) Handshake message data

Bytes
n..(n+3)

Message 
type

Handshake message data length
(bits 23..16) (bits 15..8) (bits 7..0)

Bytes
(n+4).. Handshake message data

Message type 
This field identifies the Handshake message type. 

Message Types
Code Description

0 HelloRequest
1 ClientHello
2 ServerHello
4 NewSessionTicket
11 Certificate
12 ServerKeyExchange
13 CertificateRequest
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14 ServerHelloDone
15 CertificateVerify
16 ClientKeyExchange
20 Finished
Handshake message data length 

This is a 3-byte field indicating the length of the handshake data, not including the header. 

Note that multiple Handshake messages may be combined within one record.

Alert protocol

This record should normally not be sent during normal handshaking or application exchanges. 
However, this message can be sent at any time during the handshake and up to the closure of 
the session. If this is used to signal a fatal error, the session will be closed immediately after 
sending this record, so this record is used to give a reason for this closure. If the alert level is 
flagged as a warning, the remote can decide to close the session if it decides that the session is 
not reliable enough for its needs (before doing so, the remote may also send its own signal).

+ Byte +0 Byte +1 Byte +2 Byte +3
Byte

0 21  

Bytes
1..4

Version Length
(Major) (Minor) 0 2

Bytes
5..6 Level Description  

Bytes
7..(p-1) MAC (optional)

Bytes
p..(q-1) Padding (block ciphers only)

Level 
This field identifies the level of alert. If the level is fatal, the sender should close the 
session immediately. Otherwise, the recipient may decide to terminate the session itself, by
sending its own fatal alert and closing the session itself immediately after sending it. The 
use of Alert records is optional, however if it is missing before the session closure, the 
session may be resumed automatically (with its handshakes). 
Normal closure of a session after termination of the transported application should 
preferably be alerted with at least the Close notify Alert type (with a simple warning level) 
to prevent such automatic resume of a new session. Signalling explicitly the normal 
closure of a secure session before effectively closing its transport layer is useful to prevent 
or detect attacks (like attempts to truncate the securely transported data, if it intrinsically 
does not have a predetermined length or duration that the recipient of the secured data 
may expect). 

Alert level types
Code Level Connection state
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type
1 warning connection or security may be unstable.

2 fatal connection or security may be compromised, or an unrecoverable error has 
occurred.

Description 
This field identifies which type of alert is being sent. 

Alert description types

Code Description Level
types Note

0 Close notify warning/f
atal

10 Unexpected message fatal

20 Bad record MAC fatal
Possibly a bad SSL implementation, or payload has 
been tampered with e.g. FTP firewall rule on FTPS 
server.

21 Decryption failed fatal TLS only, reserved
22 Record overflow fatal TLS only
30 Decompression failure fatal
40 Handshake failure fatal

41 No certificate
warning/f
atal SSL 3.0 only, reserved

42 Bad certificate
warning/f
atal

43 Unsupported certificate warning/f
atal

e.g. certificate has only Server authentication usage 
enabled and is presented as a client certificate

44 Certificate revoked
warning/f
atal

45 Certificate expired
warning/f
atal

Check server certificate expire also check no 
certificate in the chain presented has expired

46 Certificate unknown warning/f
atal

47 Illegal parameter fatal

48
Unknown CA (Certificate 
authority) fatal TLS only

49 Access denied fatal

TLS only – e.g. no client certificate has been 
presented (TLS: Blank certificate message or 
SSLv3: No Certificate alert), but server is configured 
to require one.

50 Decode error fatal TLS only

51 Decrypt error
warning/f
atal TLS only
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60 Export restriction fatal TLS only, reserved
70 Protocol version fatal TLS only
71 Insufficient security fatal TLS only
80 Internal error fatal TLS only
90 User canceled fatal TLS only
100 No renegotiation warning TLS only
110 Unsupported extension warning TLS only
111 Certificate unobtainable warning TLS only

112 Unrecognized name warning TLS only; client's Server Name Indicator specified a 
hostname not supported by the server

113
Bad certificate status 
response fatal TLS only

114 Bad certificate hash 
value

fatal TLS only

115
Unknown PSK identity 
(used in TLS-PSK and 
TLS-SRP)

fatal TLS only

ChangeCipherSpec protocol

+ Byte +0 Byte +1 Byte +2 Byte +3
Byte

0 20  

Bytes
1..4

Version Length
(Major) (Minor) 0 1

Byte
5

CCS protocol 
type

 

CCS protocol type 
Currently only 1. 

Application protocol

+ Byte +0 Byte +1 Byte +2 Byte +3
Byte

0 23  

Bytes
1..4

Version Length
(Major) (Minor) (bits 15..8) (bits 7..0)

Bytes
5..(m-1) Application data

Bytes
m..(p-1)

MAC (optional)

Bytes Padding (block ciphers only)
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p..(q-1)
Length 

Length of Application data (excluding the protocol header and including the MAC and 
padding trailers) 

MAC 
20 bytes for the SHA-1-based HMAC, 16 bytes for the MD5-based HMAC. 

Padding 
Variable length; last byte contains the padding length. 

Support for name-based virtual servers
From the application protocol point of view, TLS belongs to a lower layer, although the TCP/IP 
model is too coarse to show it. This means that the TLS handshake is usually (except in the 
STARTTLS case) performed before the application protocol can start. The name-based virtual 
server feature being provided by the application layer, all co-hosted virtual servers share the 
same certificate because the server has to select and send a certificate immediately after the 
ClientHello message. This is a big problem in hosting environments because it means either 
sharing the same certificate among all customers or using a different IP address for each of 
them.

There are two known workarounds provided by X.509:

• If all virtual servers belong to the same domain, a wildcard certificate can be used. 
Besides the loose host name selection that might be a problem or not, there is no 
common agreement about how to match wildcard certificates. Different rules are applied 
depending on the application protocol or software used.[116] 

• Add every virtual host name in the subjectAltName extension. The major problem being 
that the certificate needs to be reissued whenever a new virtual server is added. 

In order to provide the server name, RFC 4366 Transport Layer Security (TLS) Extensions allow
clients to include a Server Name Indication extension (SNI) in the extended ClientHello 
message. This extension hints the server immediately which name the client wishes to connect 
to, so the server can select the appropriate certificate to send to the client.

Standards
The current approved version of TLS is version 1.2, which is specified in:

• RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2". 

The current standard replaces these former versions, which are now considered obsolete:

• RFC 2246: "The TLS Protocol Version 1.0". 
• RFC 4346: "The Transport Layer Security (TLS) Protocol Version 1.1". 

as well as the never standardized SSL 2.0 and 3.0:

• Hickman, Kipp E.B. (April 1995). "The SSL Protocol". Retrieved July 31, 2013. This 
Internet Draft defines the now completely broken SSL 2.0. 
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• RFC 6101: "The Secure Sockets Layer (SSL) Protocol Version 3.0". 

Other RFCs subsequently extended TLS.

Extensions to TLS 1.0 include:

• RFC 2595: "Using TLS with IMAP, POP3 and ACAP". Specifies an extension to the IMAP,
POP3 and ACAP services that allow the server and client to use transport-layer security 
to provide private, authenticated communication over the Internet. 

• RFC 2712: "Addition of Kerberos Cipher Suites to Transport Layer Security (TLS)". The 
40-bit cipher suites defined in this memo appear only for the purpose of documenting the 
fact that those cipher suite codes have already been assigned. 

• RFC 2817: "Upgrading to TLS Within HTTP/1.1", explains how to use the Upgrade 
mechanism in HTTP/1.1 to initiate Transport Layer Security (TLS) over an existing TCP 
connection. This allows unsecured and secured HTTP traffic to share the same well 
known port (in this case, http: at 80 rather than https: at 443). 

• RFC 2818: "HTTP Over TLS", distinguishes secured traffic from insecure traffic by the 
use of a different 'server port'. 

• RFC 3207: "SMTP Service Extension for Secure SMTP over Transport Layer Security". 
Specifies an extension to the SMTP service that allows an SMTP server and client to use 
transport-layer security to provide private, authenticated communication over the Internet.

• RFC 3268: "AES Ciphersuites for TLS". Adds Advanced Encryption Standard (AES) 
cipher suites to the previously existing symmetric ciphers. 

• RFC 3546: "Transport Layer Security (TLS) Extensions", adds a mechanism for 
negotiating protocol extensions during session initialisation and defines some extensions.
Made obsolete by RFC 4366. 

• RFC 3749: "Transport Layer Security Protocol Compression Methods", specifies the 
framework for compression methods and the DEFLATE compression method. 

• RFC 3943: "Transport Layer Security (TLS) Protocol Compression Using Lempel-Ziv-
Stac (LZS)". 

• RFC 4132: "Addition of Camellia Cipher Suites to Transport Layer Security (TLS)". 
• RFC 4162: "Addition of SEED Cipher Suites to Transport Layer Security (TLS)". 
• RFC 4217: "Securing FTP with TLS". 
• RFC 4279: "Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)", adds three

sets of new cipher suites for the TLS protocol to support authentication based on pre-
shared keys. 

Extensions to TLS 1.1 include:

• RFC 4347: "Datagram Transport Layer Security" specifies a TLS variant that works over 
datagram protocols (such as UDP). 

• RFC 4366: "Transport Layer Security (TLS) Extensions" describes both a set of specific 
extensions and a generic extension mechanism. 

• RFC 4492: "Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security
(TLS)". 

• RFC 4680: "TLS Handshake Message for Supplemental Data". 
• RFC 4681: "TLS User Mapping Extension". 
• RFC 4785: "Pre-Shared Key (PSK) Ciphersuites with NULL Encryption for Transport 
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Layer Security (TLS)". 
• RFC 5054: "Using the Secure Remote Password (SRP) Protocol for TLS Authentication". 

Defines the TLS-SRP ciphersuites. 
• RFC 5077: "Transport Layer Security (TLS) Session Resumption without Server-Side 

State". 
• RFC 5081: "Using OpenPGP Keys for Transport Layer Security (TLS) Authentication", 

obsoleted by RFC 6091. 

Extensions to TLS 1.2 include:

• RFC 5288: "AES Galois Counter Mode (GCM) Cipher Suites for TLS". 
• RFC 5289: "TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter 

Mode (GCM)". 
• RFC 5746: "Transport Layer Security (TLS) Renegotiation Indication Extension". 
• RFC 5878: "Transport Layer Security (TLS) Authorization Extensions". 
• RFC 6066: "Transport Layer Security (TLS) Extensions: Extension Definitions", includes 

Server Name Indication and OCSP stapling. 
• RFC 6091: "Using OpenPGP Keys for Transport Layer Security (TLS) Authentication". 
• RFC 6176: "Prohibiting Secure Sockets Layer (SSL) Version 2.0". 
• RFC 6209: "Addition of the ARIA Cipher Suites to Transport Layer Security (TLS)". 
• RFC 6460: "Suite B Profile for Transport Layer Security (TLS)". 

Encapsulations of TLS include:

• RFC 5216: "The EAP-TLS Authentication Protocol" 
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