
INTRODUCTION

A BASIC GUIDE HTML5

HTML5 is an emerging standard for distributing content
on the Web. While it is still under development, currently
a W3C Working Draft, many components of HTML5 are
now stable and can be implemented and understood by
modern browsers.

uses a meta element, in the head, to describe for the browser
what character encoding is to be used in the page. In
common web terminology it is said to be a child element of
the head. For HTML5 the meta element markup is:

<meta charset="utf-8">

Title Element

The <title> element provides a title value to the browser. This
title is displayed in the browser window's title bar and the tab
in browsers that use a tabbed interface. It is very important to
provide a value in the title element to assist and clarify the
topic of the page to the client (the person viewing your web
page). Common title markup looks something like this:

<title>Page Name | Site Name - short description</title>

Body Element

The <body> element encloses all the content that is to be
displayed in the browser for the client to use. It should open
immediately after the head has closed and should close
immediately before the html element's closing tag. The body
markup is:

<body> ... Content Goes Here ... </body>

DOCUMENT STRUCTURE

Every HTML5 document consists of five essential parts. In
order they are the doctype declararion, html, head, title and
body elements. In addition, a meta element is also used in
the head.

Document Type

The <doctype> declaration for an HTML document has
changed to a simplified format from what it was in previous
versions of html and xhtml. The new doctype is:

<!DOCTYPE html>

Besides being easy to remember and type, this change
allows HTML5 to be backward compatible with previous
versions of html.

Root Element

The <html> element is the parent or root element for the
entire document. It is the first element to open and the last
to close. It is declared or opened immediately after the
doctype declaration (be sure there is not an empty line
between them). Its closing tag is the last tag on the page. It
would look like this:

<html> ... all other page code ... </html>

Head Element

The root element (<html>) has two children: <head> and
<body>. The <head> element is opened immediately after
the root or <html> element. The content inside the head
element is intended to provide information about the page
to the browser. It can have many different types of
elements inside of it to accomplish this purpose. It appears
as:

<head> ... all head element code ... </head>

Meta Element

The <meta> element is a generic element used for
describing the document and its content. HTML5

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Page Name | Site Name - Description</title>
 … other meta data here …
 </head>
 <body>
 ... body content here ...
 </body>
</html>

BASIC HTML5 DOCUMENT

Page 1

If you have been around long you have heard html markup
referred to as "tags". While it is partially correct, it is also
partially wrong. In reality, the markup language of html (in
any of its versions) is comprised of elements. Elements
themselves are sometimes comprised of opening and
closing tags.

For example, if you look at the list of elements that are
required for an HTML5 page you will find that all of them,
except the meta element, have an opening and closing tag.
The opening tag indicates where the element begins. The
closing tag indicates where the element ends. It is easily
identified by its forward slash preceding the name (e.g.
</body>).

However, you will note that the <meta> element has no
such closing tag. In this case the meta element is self-
closing. All of its information exists within the opening
element tag and has no need of a closing tag.

HTML5
ELEMENTS

ELEMENT TYPES

1

HTML5 elements can be categorized in a variety of ways.
According to John Allsopp, there appears to be three
classifications of elements: structural, content and
rhetorical. The W3C breaks elements into nine categories -
root, metadata and scripting, embedding, text, grouping,
forms, sections, tabular and interactive. However, for
beginning coders, I prefer three general classifications:
page, structural and content.

All elements, regardless of classification in HTML5 are
meant to be semantic. This means that the name of the
element carries meaning and suggests its use. This
meaning is to enable human readability as well as software
functionality.

Page Elements

These elements make the page work in the browser. They
do not describe the content or the organization of the
content. The essential page elements are: <html>, <head>,
<title>, <base>, <link>, <style>, <meta>, <script>,
<noscript> and <body>. Note: Not all of these must be used
but are available if needed.

Structural Elements

The structural elements give structure to the content. When
taking notes in an outline format, you build a structure

2

consisting of indentations, numbers, letters, bullets or
other indicators. The outline is the structure used to
organize the content, not the content itself. Likewise, in
HTML5 there are many structural elements, some of the
more common ones are <address>, <article>, <aside>,
<div>, <footer>, <header>, <main>, <nav>, <section> and
a number of headings - <h1>, <h2>, <h3>, <h4>, <h5>,
<h6>.

Content Elements

These elements are, as the name implies, meant to
describe the content that they hold. The majority of
existing elements are content elements, but less than 30
make up the most frequently used, they are: <a>,
<blockquote>, <cite>, <figure>, <figcaption>, , <p>,
; Lists - , , <dl> and their children - ,
<dt> and <dd>; Forms - <form> and its children
<fieldset>, <legend>, <label>, <input> and <textarea>;
Tables - <table> and its children <caption>, <thead>,
<tfoot>, <tbody>, <tr>, <th>, <td>, <col> and <colgroup>;
and a few meant to change the way text is to be
understood: <abbr>, ,
, , <i>, <hr> and
. For media content HTML5 now offers two new
elements <video> and <audio> and their child <source>;
and for JavaScript graphics <canvas>.

Each of these elements plays a specific role in adding
meaning to the page and the content. For more
information on these and other elements you can refer to
the table that appears later in this document or to
http://html5doctor.com/element-index/ or
http://joshduck.com/periodic-table.html. The official list of
all HTML5 elements can be seen at:
http://dev.w3.org/html5/spec-author-
view/index.html#elements-1

EMPTY OR NON-EMPTY

Additionally, elements can be said to be empty (void) or
non-empty (non-void). Again, referring to the elements
used in our earlier page example, the <html>, <head>,
<title> and <body> elements all have an opening and
closing tag and some form of content is expected between
the opening and closing tags. Therefore, each of these is
considered non-empty. On the other hand, the <meta>
element, which does not have a closing tag, is said to be
empty. All elements fall into one of these two categories.

Elements

Page 2

HTML5

1

ELEMENT SYNTAX
Syntax describes the way we write things. In human
languages it describes the correct use and order of words to
create meaning. When writing HTML5 elements there are
also three major syntax rules and a big Best Practice that
should be followed:
1. The opening tag and closing tag must match exactly (e.g.
<A>... won't work, while <a>... will work).
2. The elements must be spelled correctly (e.g. <style> is
great, while <stile> is not).
3. Elements must open and close in proper order (e.g.
<p><i>Stop!</p> He commanded.</i> is wrong, while
<p><i>Stop!</i> He commanded.</p> is right) [The rule of
thumb is: first in, last out]
4. Best Practice - make elements lower case, it is easier to
remember and avoid mistakes that way.

ATTRIBUTES
An attribute adds descriptive detail to an element; similar to
the way we use attributes to describe other people (hair color,
height, weight). However, each element allows only certain
attributes to be used with it. That being said, there are a large
number of attributes that are allowed by many elements.
There are even a few attributes that are "global", meaning
they can be used with every element. Some of the more
common of these global attributes are: class, title, id and
style.

View the official list of global attributes:
http://dev.w3.org/html5/spec-author-view/global-
attributes.html#global-attributes

View the official list of all attributes:
http://dev.w3.org/html5/spec-author-
view/index.html#attributes-1

Attribute Syntax
Just as with elements there are syntax rules that should be
followed when writing HTML5 attributes. Within the element's
opening tag the name of the attribute should be written,
followed by an equal sign, followed by quotes and within the
quotes the value of the attribute. For example, if creating a
hyperlink to the NASA web site, the code would look like this:

Visit NASA

In this example, the href attribute tells the browser that when
the link is clicked this is the destination it should go to. The
address of NASA is placed inside the quotes as the address
of the destination. The text "Visit NASA" is what the client
sees on the screen and clicks on to be redirected to the
NASA web site.

2

However, in HTML5 there are a few (very few) attributes that are
called "boolean" attributes. This means that if the attribute exists
in the element it is "true" or "on". An example of this is in a form
input element, if the "required" attribute is present, it will not allow
the form to be submitted if the input doesn't have a value. What it
does NOT do is know if the value is correct, just that there is a
value present. For example:

<input type="email" name="emailaddress" required>

Important Attribute Changes
HTML5 no longer allows attributes to be used to style how the
element will appear. For example, if one wanted the text inside of
a paragraph to be aligned to the right, in previous versions of html
you could use the align attribute and give it a value of "right".
HTML5 does NOT allow this. Instead, you should use Cascading
Style Sheet (CSS) language to do all presentational markup. This
also includes the old font attribute that bloated many a web page.

Web Model
A model is an abstract way of looking at the world. Weather
forecasters build models of temperatures, wind patterns, high and
low pressures systems in order to tell us what our weather will be
tomorrow or next week. We too have a model of how the web
should be built so that what we build today will continue to work
well in our current browser and in future ones. The model
identifies three main components that browsers use to deliver our
content - structure, appearance and behavior. The structure is the
HTML5 markup code; appearance, as mentioned previously, is
the responsibility of CSS; while behavior is most often
accomplished using JavaScript.

Our web model says that all three should be built and stored
separately and then "linked" to allow the others to share
resources or interact to deliver the content in the desired way.
Following this model has other benefits: 1) provides organization
to your materials, 2) makes things easier to maintain, 3) saves
time for the software and the humans responsible for the web
site, 4) reduces the amount of code needed and 4) saves money.
Any one of these would be reason enough to follow the model,
but when all four are understood, it leaves us with no reason not
to.

CSS HTML

JavaScript

Attributes

Page 3

HTML5 Lists and Tables

Page 4

1

ORDERED LIST
Ordered lists are used when items in the list are prioritized or
sequential. The basic building blocks are the
element and the element(s) which represent the
individual items in the list. For example, a list of the first five
U.S. presidents would look like this:

 George Washington
 John Adams
 Thomas Jefferson
 James Madison
 James Monroe

UNORDERED LIST
Unordered lists are used when the items in the list have no
particular order, they are just a list of items that are of equal
rank or importance. The basic building blocks are the
 element and the element(s) which
represent the individual items in the list. For example, a list of
items to get at the store would look like this:

 Milk
 Bread
 Eggs
 Bananas
 Shampoo

DESCRIPTION LIST
Description lists are used to provide a name – value
pairing(s). Similar to what you would see in a dictionary, there
is a name followed by one or more values or descriptions. The
building blocks are the <dl></dl>, <dt></dt> and <dd></dd>
elements. The <dl></dl> opens and closes the list, the
<dt></dt> identified the name and the <dd></dd> begins and
ends the value. A description list that identifies the primary
digital colors used in monitors:

<dl>
 <dt>R</dt>
 <dd>Red – One of the three primary digital hues.
 Normally seen in the abbreviation RGB.</dd>
 <dt>G</dt>
 <dd>Green – One of the three primary digital hues.
 Normally seen in the abbreviation RGB.</dd>
 <dt>B</dt>
 <dd>Blue – One of the three primary digital hues.
 Normally seen in the abbreviation RGB.</dd>
</dl>

2

NESTING LISTS
Occasionally it is necessary to nest or place one list inside
another. It is easy to do, just remember that when building
an ordered or unordered list the only element that can be a
child of the or is . So, to nest a list, the nested
list must be inside the element. For example, a list of
web pages that would be found inside of folders in a web
site:

 css

 print.css
 screen.css

 about

 about.php
 contact.php

TABLE
Tables are handy when organizing data in tabular format
(columns). The basic building blocks are <table></table>,
<tr></tr>, <th></th> and <td></td>. Refer to the element list
at the end of this document for an explanation of each
element. Tables can be very complicated, but a simple table
of the calendar quarters might look like this:
<table>
 <tr>
 <th>Quarter</th>
 <th>Months</th>
 </tr>
 <tr>
 <td>First</td>
 <td>January, February, March</td>
 </tr>
 <tr>
 <td>Second</td>
 <td>April, May, June</td>
 </tr>
 <tr>
 <td>Third</td>
 <td>July, August, September</td>
 </tr>
 <tr>
 <td>Fourth</td>
 <td>October, November, December</td>
 </tr>
</table>

HTML5 Naming Rules, Images and Paths

Page 5

1

NAMING RULES
While these naming rules are not formal rules in the typical
sense, they are important to follow in order to save time,
money and frustration. They represent conventions or “best
practices” that designers and developers have developed
over time.

When it comes to naming web assets (pages, images,
movies, audio files, script files and more) there are four simple
rules to follow:
1. Lower case – use no capital letters – ever!
2. No spaces – spaces should be left out completely or

replaced with hyphens or underscores. (e.g. instead of
about me.php, use about_me.php, about-me.php or even
better – about.php).

3. No special characters – Slashes, apostrophes,
exclamation points, question marks and the like all have
other meanings to the operating system of the computer
or the protocols used by computers. If they are included in
the name of a file or asset, chances are problems will
occur and things end up broke. Leave them out.

4. Short, meaningful names – Provide names that convey
real meanings about the file they identify. But, at the same
time, keep them short. Remember that someone will have
to type them at some point. For example, if you are
building a web page of pictures you took, the name
“gallery” works great. If you are building a web page that
contains your resume, then “resume” is perfect.

IMAGES
The old adage “A picture is worth a thousand words” is true.
Images in a web site can add interest, illustrate your content,
draw the client into the web page and add beauty and variety
to the site. However, there are few best practices to follow
when using images:
• Images should supplement or enhance the content. Don’t

use a picture of a blender when talking about exotic fish –
the two just don’t blend well (pun definitely intended).

• The image should be optimized. As small as possible to
load quickly so the client doesn’t have to wait and pay for
unnecessary bandwidth consumption.

• Add “alt” attributes and meaningful values to images.
Some clients can’t see well or browse with images
disabled. Alt values give a text description of the image.
These should be short but descriptive. They are also a
great place to add content keywords to help with search
engine rankings for your site.

 ELEMENT
Many new web developers fail to understand that the images
that appear in a web page don’t reside in the web page. They
are stored elsewhere and the browser downloads and inserts

2

them into the web page on the fly. As such the code placed
in the web page to display the image must have an accurate
path to where the image is stored so that it can be found and
retrieved correctly.

The element indicates to the browser that an image is
to be inserted at this location. At the very least it should have
the element and two attributes – src and alt. The src attribute
must contain the path to where the image is stored and the
alt attribute contains the text description of the image. Say
you are building a fan tribute site for the movie Napolean
Dynamite. One of your pages is for Pedro, Napolean’s friend,
who is running for student body president. You decide a
picture of Pedro wearing his “Pedro for President” shirt is a
must. The code might look similar to:

<img src=”/images/pedro.jpg” alt=”Pedro wearing his
Pedro for President shirt from Napolean Dynamite
movie”>

In addition, the height and width attributes can be added to
the element, to tell the browser the dimensions to set
aside for the image. While this is allowed, in many cases this
is a better done in CSS. If added using HTML5 the values for
width and height are integers and the browser interprets the
values as being pixels.

PATHS
As mentioned earlier, paths are used to describe where
assets are stored within the structure of a web site. There
are only two types of paths: absolute and relative.

Absolute Path
An absolute path describes the entire path to follow to find
an asset. When describing a path within your web site, the
beginning point in typically the root folder or where the entire
web site is stored.

A forward slash “/” is the indicator that tells the browser that
an absolute path from the root folder is being used. In the
image path (above) you will note the forward slash inside the
src attribute. This tells the browser that within the root folder
is an images folder and within it is the actual image. Using
this type of path also means the browser doesn’t care or
even need to know where the file is that the image is being
placed into. This is the path to be used most often.

Relative Path
A relative page describes where an asset is in relation to the
file that it will be used with. In short, you must know where
both are located and be able to describe the path relative to
both. Use this only when assets are in the same folder.

HTML5

ELEMENT DESCRIPTION EXAMPLE ATTRIBUTES
a Hyperlink Globals; href; target; rel;

media; hreflang; type
abbr Abbreviation <abbr title=” “></abbr> Globals
address Contact information <address></address> Globals
article Self-contained composition <article></article> Globals
aside Sidebar for related content <aside></aside> Globals
audio Audio player <audio controls></audio> Globals; src; crossorigin;

preload; autoplay;
mediagroup; loop; muted;
controls

b Keyword Globals
base Base URL or default for hyperlinks <base href=””></base> Globals; href; target
blockquote Section quoted from other content <blockquote></blockquote> Globals; cite
body Document body <body></body> Globals; onafterprint;

onbeforeprint;
onbeforeunload; onblur;
onerror; onfucus;
onhashchange; onload;
onmessage; onoffline;
ononline; onpagehide;
onpageshow; onpopstate;
onredo; onresize; onscroll;
onstorage; onundo; onunload

br Line break
 Globals
canvas Scriptable bitmap drawing area <canvas width=””

height=””></canvas>
Globals; width; height

caption Table caption <caption></caption> Globals
cite Title of a work <cite></cite> Globals
col Table column designator <col span=””> Globals; span
colgroup Group of table columns <colgroup></colgroup> Globals; span
dd Content for corresponding dt element <dd></dd> Globals
details An interactive widget for content that

need not be visible always.
<details></details> Globals; open

div Generic container <div></div> Globals
dl Definition list <dl></dl> Globals
dt Legend for associated dd elements <dt></dt> Globals
em Stress emphasis Globals
fieldset Group of form controls <fieldset></fieldset> Globals; disabled; form;

name
figcaption Caption for a figure element <figcaption></figcaption> Globals
figure Illustrative content <figure></figure> Globals

Common Elements

Page 6

ELEMENT DESCRIPTION EXAMPLE ATTRIBUTES
footer Conclusion area for a page or section <footer></footer> Globals
form User submittable form <form></form> Globals; accept-charset;

action; autocomplete;
enctype; method; novalidate;
target

h1, h2, h3,
h4, h5, h6

Section headings (levels of importance) <h1></h1> Globals

head Container for document metadata <head></head> Globals
header Introductory area for a page or section <header></header> Globals
hr Thematic break <hr> Globals
html Root element <html></html> Globals; manifest
i Alternate voice <i></i> Globals
img Image Globals; alt; src; crossorigin;

usemap; ismap; width; height
input Form control <input type=”” name=””> Globals; accept; alt;

autocomplete; autofocus;
checked; dirname; disabled;
form; formaction;
formenctype; formmethod;
formnovalidate; formtarget;
height; list; max; maxlength;
min; multiple; name; pattern;
placeholder; readonly;
required; size; src; step; type;
value; width

label Caption for a form control <label></label> Globals; form; for
legend Caption for a fieldset <legend></legend> Globals
li List item for ol and ul lists Globals; value
link Link metadata <link href=”” rel=”” type=””> Globals; href; rel; media;

hreflang; type; sizes
main Main content container in a page <main></main> Globals
meta Text metadata <meta name=”” content=””> Globals; name; http-equiv;

content; charset
nav Navigational section container <nav></nav> Globals
noscript Fallback content for script <noscript></noscript> Globals
ol Ordered list Globals; reversed; start
p Paragraph <p></p> Globals

HTML5 Common Elements

Page 7

ELEMENT DESCRIPTION EXAMPLE ATTRIBUTES
script Embedded script <script src=””></script> Globals; src; async; defer;

type; charset
section Generic document section <section></section> Globals
span Generic phrasing container Globals
strong Importance Globals
style Embedded styling information <style></style> Globals; media; type; scoped
table Tabular data container <table></table> Globals; border
tbody Group of data rows in a table <tbody></tbody> Globals
td Table cell <td></td> Globals; colspan; rowspan;

headers
textarea Multiline form text field <textarea></textarea> Globals; autofocus; cols;

disabled; form; maxlength;
name; placehoder; readonly;
required; rows; wrap

tfoot Group of table footer rows <tfoot></tfoot> Globals
th Table header cell <th></th> Globals; colspan; rowspan;

headers; scope
thead Group of table header rows <thead></thead> globals
title Document title <title></title> Globals

tr Table row <tr></tr> globals

ul Unordered list globals

video Video player <video controls></video> globals; src; crossorigin;
poster; preload; autoplay;
mediagroup; loop; muted;
controls; width; height

HTML5 Common Elements

Page 8

