
Version 4.0

User Manual
Published 2013-11-08 22:10 UTC

Contents

I Euphoria Programming Language v4.0 1

1 Quick Overview 2

2 Introduction 4
2.1 Yet Another Programming Language? . 4
2.2 Great Features . 4
2.3 Euphoria is unique . 4
2.4 Beyond Elegance Sequences . 5
2.5 As a first programming language . 5
2.6 But, my favorite language is... 5
2.7 Products . 5
2.8 Requirements . 6
2.9 Conventions used in the manual . 6
2.10 Discover Euphoria . 6
2.11 Disclaimer . 6

3 What’s new in 4.0? 7
3.1 General Changes . 7
3.2 Executable name changes . 7
3.3 Language Enhancements . 7
3.4 Tool Additions / Enhancements . 9

4 Licensing 10

5 Euphoria Credits 11
5.1 Current Authors . 11
5.2 Past Authors . 11
5.3 Contributors . 11

II Installing Euphoria 13

6 Installation 14
6.1 Windows . 14
6.2 Linux and FreeBSD . 16
6.3 OS X . 17
6.4 DOS . 17

7 Post Install 18

8 Set Up the Euphoria Configuration File (eu.cfg) 20
8.1 Configuration file format . 20
8.2 Config File Locations . 21
8.3 Config File Notes . 21

ii

III Using Euphoria 22

9 Example Programs 23
9.1 Hello, World . 23
9.2 Sorting . 23
9.3 What to Do? . 25

10 Creating Euphoria programs 27
10.1 Running a Program . 27
10.2 Running under Windows . 28

11 Editing a Program 29

12 Distributing a Program 30

13 Command Line Switches 31
13.1 Further Notes . 33

IV Language Reference 34

14 Definition 35
14.1 Objects . 35
14.2 Identifiers . 40
14.3 Comments . 40
14.4 Expressions . 41
14.5 Precedence Chart . 48

15 Declarations 50
15.1 Identifiers . 50
15.2 Specifying the type of a variable . 55
15.3 Scope . 58
15.4 Deprecation . 65

16 Assignment statement 66
16.1 Assignment with Operator . 66

17 Branching Statements 68
17.1 if statement . 68
17.2 switch statement . 69
17.3 ifdef statement . 71

18 Loop statements 77
18.1 while statement . 77
18.2 loop until statement . 78
18.3 for statement . 78

19 Flow control statements 80
19.1 exit statement . 80
19.2 break statement . 82
19.3 continue statement . 83
19.4 retry statement . 83
19.5 with entry statement . 84
19.6 goto statement . 84
19.7 Header Labels . 85

20 Short-Circuit Evaluation 86

21 Special Top-Level Statements 88
21.1 include statement . 88
21.2 with / without . 90

V Formal Syntax 94

22 Formal Syntax 95
22.1 Basics . 95
22.2 Statements . 96
22.3 Sequence Slice . 97
22.4 if . 97
22.5 ifdef . 97
22.6 break . 98
22.7 continue . 98
22.8 retry . 98
22.9 exit . 98
22.10 fallthru . 98
22.11 for . 99
22.12 while . 99
22.13 loop . 99
22.14 goto . 99
22.15 declare a variable . 99
22.16 declare a constant . 99
22.17 declare an enumerated value . 100
22.18 call a procedure or function . 100
22.19 declare a procedure . 100
22.20 declare a function . 100
22.21 declare a user defined type . 100
22.22 return the result of a function . 101
22.23 default namespace . 101
22.24 with options . 101

23 Euphoria Internals 102
23.1 The Euphoria Data Structures . 102
23.2 The C Representations of a Euphoria Sequence and a Euphoria Atom 103
23.3 The Euphoria Object Macros and Functions . 105
23.4 Type Value Functions and Macros . 105
23.5 Type Conversion Functions and Macros . 106
23.6 Creating Objects . 108
23.7 Object Constants . 108

VI Mini-Guides 111

24 Debugging and Profiling 112
24.1 Debugging . 112
24.2 The Trace Screen . 113
24.3 The Trace File . 115
24.4 Profiling . 115
24.5 Some Further Notes on Time Profiling . 116

25 Shrouding and Binding 117

25.1 The eushroud Command . 117
25.2 The Bind Command . 118

26 Euphoria To C Translator 120
26.1 Introduction . 120
26.2 C Compilers Supported . 120
26.3 How to Run the Translator . 120
26.4 Command-Line Options . 121
26.5 Dynamic Link Libraries . 124
26.6 Using Resource Files . 125
26.7 Executable Size and Compression . 127
26.8 Interpreter vs. Translator . 127
26.9 Legal Restrictions . 127
26.10 Disclaimer: . 128
26.11 Frequently Asked Questions . 128
26.12 Common Problems . 128

27 Indirect routine calling 130
27.1 Indirect calling a routine coded in Euphoria . 130
27.2 Calling Euphoria’s internals . 132

28 Multitasking in Euphoria 133
28.1 Introduction . 133
28.2 Why Multitask? . 133
28.3 Types of Tasks . 133
28.4 A Small Example . 134
28.5 Comparison with earlier multitasking schemes . 135
28.6 Comparison with multithreading . 135
28.7 Summary . 135

29 Euphoria Database System (EDS) 136
29.1 Introduction . 136
29.2 Structure of an EDS database . 136
29.3 How to access the data . 137
29.4 How does storage get recycled? . 137
29.5 Security / Multi-user Access . 137
29.6 Scalability . 137
29.7 EDS API . 138
29.8 Disclaimer . 138
29.9 Warning: Use the right file mode . 138

30 The User Defined Pre-Processor 139
30.1 A Quick Example . 139
30.2 Pre-process Details . 140
30.3 Command Line Options . 141
30.4 DLL/Shared Library Interface . 141
30.5 Advanced Examples . 143

31 Euphoria Trouble-Shooting Guide 145
31.1 Common Problems and Solutions . 145

32 Platform Specific Issues 149
32.1 Introduction . 149
32.2 The Discontinued DOS32 Platform . 151
32.3 The Windows Platform . 151

32.4 The Unix Platforms . 152
32.5 Interfacing with C Code . 153

33 Performance Tips 157
33.1 General Tips . 157
33.2 Measuring Performance . 158
33.3 How to Speed-Up Loops . 159
33.4 Converting Multiplies to Adds in a Loop . 159
33.5 Saving Results in Variables . 159
33.6 In-lining of Routine Calls . 159
33.7 Operations on Sequences . 160
33.8 Some Special Case Optimizations . 160
33.9 Assignment with Operators . 160
33.10 Library / Built-In Routines . 161
33.11 Searching . 162
33.12 Sorting . 162
33.13 Taking Advantage of Cache Memory . 162
33.14 Using Machine Code and C . 162
33.15 Using The Euphoria To C Translator . 163

VII Included Tools 164

34 EuTEST - Unit Testing 165
34.1 Introduction . 165
34.2 The eutest Program . 165
34.3 The Unit Test Files . 166
34.4 The Error Control Files . 166
34.5 Test Coverage . 167

35 EuDOC - Source Documentation Tool 169
35.1 Documentation tags . 169
35.2 Generic documentation . 169
35.3 Source documentation . 169
35.4 Assembly file . 170
35.5 Creole markup . 170
35.6 Documentation software . 171

36 Ed - Euphoria Editor 172
36.1 Introduction . 172
36.2 Summary . 172
36.3 Special Keys . 172
36.4 Escape Commands . 173
36.5 Recalling Previous Strings . 175
36.6 Cutting and Pasting . 175
36.7 Use of Tabs . 175
36.8 Long Lines . 175
36.9 Maximum File Size . 175
36.10 Non-text Files . 175
36.11 Line Terminator . 176
36.12 Source Code . 176

37 EuDis - Disassembling Euphoria code 177
37.1 Introduction . 177
37.2 HTML Output . 177

38 EuDist - Distributing Programs 179
38.1 Introduction . 179
38.2 Command Line Switches . 179

VIII API Reference 180

39 Built-in Routines 181

40 Command Line Handling 182
40.1 Constants . 182
40.2 Routines . 186

41 Console 196
41.1 Information . 196
41.2 Key Code Names . 197
41.3 Cursor Style Constants . 198
41.4 Keyboard Related Routines . 199
41.5 Cross Platform Text Graphics . 204

42 Date and Time 213
42.1 Localized Variables . 213
42.2 Date and Time Type Accessors . 214
42.3 Intervals . 215
42.4 Types . 216
42.5 Routines . 217

43 File System 230
43.1 Constants . 230
43.2 Directory Handling . 231
43.3 File Name Parsing . 240
43.4 File Types . 249
43.5 File Handling . 250

44 I/O 258
44.1 Constants . 258
44.2 Read and Write Routines . 259
44.3 Low Level File and Device Handling . 269
44.4 File Reading and Writing . 276

45 Operating System Helpers 284
45.1 Operating System Constants . 284
45.2 Environment . 284
45.3 Interacting with the OS . 288
45.4 Miscellaneous . 290

46 Pipe Input and Output 291
46.1 Notes . 291
46.2 Accessor Constants . 291
46.3 Opening and Closing . 292
46.4 Read and Write Process . 293

47 Pretty Printing 295
47.1 Routines . 295

48 Multi-Tasking 299

48.1 General Notes . 299
48.2 Warning . 299
48.3 Routines . 299

49 Types - Extended 306
49.1 Predefined Character Sets . 309
49.2 Support Functions . 309
49.3 Types . 311

50 Utilities 327
50.1 Routines . 327

51 Data Type Conversion 329
51.1 Routines . 329

52 Input Routines 339
52.1 Error Status Constants . 339
52.2 Answer Types . 339
52.3 Routines . 340

53 Searching 344
53.1 Equality . 344
53.2 Finding . 346
53.3 Matching . 355

54 Sequence Manipulation 362
54.1 Constants . 362
54.2 Basic Routines . 362
54.3 Building Sequences . 370
54.4 Adding to Sequences . 373
54.5 Extracting, Removing, Replacing . 379
54.6 Changing the Shape of a Sequence . 390

55 Serialization of Euphoria Objects 405
55.1 Routines . 405

56 Sorting 410
56.1 Constants . 410
56.2 Routines . 411

57 Locale Routines 417
57.1 Message Translation Functions . 417
57.2 Time and Number Translation . 421

58 Locale Names 425
58.1 Constants . 425
58.2 Locale Name Translation . 428

59 Regular Expressions 431
59.1 Introduction . 431
59.2 General Use . 431
59.3 Option Constants . 431
59.4 Error Constants . 436
59.5 Create and Destroy . 439
59.6 Utility Routines . 442
59.7 Match . 443

59.8 Splitting . 448
59.9 Replacement . 449

60 Text Manipulation 453
60.1 Routines . 453

61 Wildcard Matching 468
61.1 Routines . 468

62 Base 64 Encoding and Decoding 470
62.1 Routines . 470

63 Math 472
63.1 Sign and Comparisons . 472
63.2 Roundings and Remainders . 477
63.3 Trigonometry . 483
63.4 Logarithms and Powers . 488
63.5 Hyperbolic Trigonometry . 492
63.6 Accumulation . 495
63.7 Bitwise Operations . 497

64 Math Constants 507
64.1 Constants . 507

65 Random Numbers 511

66 Statistics 519
66.1 Routines . 519

67 Euphoria Database (EDS) 537
67.1 Error Status Constants . 537
67.2 Lock Type Constants . 538
67.3 Error Code Constants . 539
67.4 Indexes for Connection Option Structure. 540
67.5 Database Connection Options . 541
67.6 Variables . 541
67.7 Routines . 542
67.8 Managing Databases . 543
67.9 Managing Tables . 548
67.10 Managing Records . 552

68 Prime Numbers 563
68.1 Routines . 563

69 Flags 566
69.1 Routines . 566

70 Hashing Algorithms 569
70.1 Type Constants . 569
70.2 Routines . 569

71 Map (Hash Table) 571
71.1 Operation Codes for Put . 571
71.2 Types . 571
71.3 Routines . 572

72 Stack 592
72.1 Constants . 592
72.2 Stack types . 592
72.3 Types . 592
72.4 Routines . 592

73 Scientific Notation Parsing 605
73.1 Parsing routines . 605
73.2 Floating Point Types . 605

74 Core Sockets 608
74.1 Error Information . 608
74.2 Socket Backend Constants . 614
74.3 Socket Type Euphoria Constants . 615
74.4 Socket Type Constants . 617
74.5 Select Accessor Constants . 618
74.6 Shutdown Options . 619
74.7 Socket Options . 620
74.8 Send Flags . 627
74.9 Server and Client Sides . 630
74.10 Client Side Only . 635
74.11 Server Side Only . 636
74.12 UDP Only . 637
74.13 Information . 638

75 Common Internet Routines 640
75.1 IP Address Handling . 640
75.2 URL Parsing . 641

76 DNS 644
76.1 Constants . 644
76.2 General Routines . 648

77 HTTP Client 650
77.1 Error Codes . 650
77.2 Constants . 650
77.3 Configuration Routines . 651
77.4 Get/Post Routines . 651

78 URL handling 654
78.1 Parsing . 654
78.2 URL Parse Accessor Constants . 654
78.3 URL encoding and decoding . 657

79 Dynamic Linking to External Code 659
79.1 C Type Constants . 659
79.2 External Euphoria Type Constants . 663
79.3 Constants . 664
79.4 Routines . 664

80 Errors and Warnings 672
80.1 Routines . 672

81 Pseudo Memory 677

82 Machine Level Access 680

82.1 Safe Mode . 681
82.2 Data Execute Mode and Data Execute Protection . 683
82.3 Type Sorted Function List . 683
82.4 Memory Allocation . 685
82.5 Reading from Memory . 688
82.6 Writing to Memory . 697
82.7 Memory Manipulation . 704
82.8 Calling Into Memory . 705
82.9 Allocating and Writing to memory: . 705
82.10 Memory Disposal . 707
82.11 Automatic Resource Management . 708
82.12 Types and Constants . 709

83 Indirect Routine Calling 711
83.1 Accessing Euphoria coded routines . 711
83.2 Accessing Euphoria Internals . 714

84 Memory Constants 716
84.1 Microsoft Windows Memory Protection Constants . 716
84.2 Standard Library Memory Protection Constants . 717

85 Graphics Constants 719
85.1 Error Code Constants . 719
85.2 video config Sequence Accessors . 719
85.3 Routines . 722
85.4 Color Set Selection . 723

86 Graphics - Cross Platform 725
86.1 Routines . 725
86.2 Graphics Modes . 729

87 Graphics - Image Routines 730
87.1 Bitmap Handling . 730

88 Euphoria Information 732
88.1 Build Type Constants . 732
88.2 Numeric Version Information . 732
88.3 Compiled Platform Information . 732
88.4 String Version Information . 735
88.5 Copyright Information . 736
88.6 Timing Information . 737
88.7 Configure Information . 738

89 Keyword Data 739
89.1 Constants . 739

90 Syntax Coloring 740
90.1 Routines . 740

91 Euphoria Source Tokenizer 742
91.1 tokenize return sequence key . 742
91.2 Tokens . 742
91.3 T NUMBER formats and T types . 743
91.4 Token accessors . 743
91.5 ET error codes . 743

91.6 get/set options . 744
91.7 Routines . 746
91.8 Debugging . 746

92 Unit Testing Framework 748
92.1 Background . 748
92.2 Constants . 749
92.3 Setup Routines . 749
92.4 Reporting . 751
92.5 Tests . 751

93 Debugging tools 755
93.1 Call Stack Constants . 755
93.2 DEBUG ROUTINE Enum Type . 756
93.3 Debugging Routines . 757

94 Windows Message Box 761
94.1 Style Constants . 761
94.2 Return Value Constants . 765
94.3 Routines . 766

95 Windows Sound 767

96 Unsupported Features 769
96.1 UTF Encoded String Literals . 769

IX Release Notes 771

97 Version 4.1.0 Date TBD 772

98 Bug Fixes 773

99 Enhancements 774

100Version 4.0.6 Date TBD 776
100.1 Bug Fixes . 776
100.2 Enhancements . 776

101Version 4.0.5 October 19, 2012 777
101.1 Bug Fixes . 777
101.2 Enhancements . 777

102Version 4.0.4 April 4, 2012 778
102.1 Bug Fixes . 778
102.2 Enhancements . 779

103Version 4.0.3 June 23, 2011 780
103.1 Bug Fixes . 780
103.2 Enhancements . 780

104Version 4.0.2 April 5, 2011 781
104.1 Bug Fixes . 781
104.2 New Functionality . 781

105Version 4.0.1 March 29, 2011 782

105.1 Bug Fixes . 782
105.2 Enhancements . 783

106Version 4.0.0 December 22, 2010 784
106.1 Deprecation . 784
106.2 Possible Breaking Changes . 784
106.3 Removed . 784
106.4 Bug Fixes . 784
106.5 Enhancements/Changes . 785

107Version 4.0.0 Release Candidate 2 December 8, 2010 786
107.1 Deprecation . 786
107.2 Removed . 786
107.3 Bug Fixes . 786
107.4 Enhancements/Changes . 789

108Version 4.0.0 Release Candidate 1 November 8, 2010 791
108.1 Contributors . 791
108.2 Bug Fixes . 792
108.3 Changes . 792
108.4 New Programs . 792
108.5 New Features . 792

xiii

xiv

Part I

Euphoria Programming Language v4.0

1

Chapter 1
Quick Overview

Welcome to the Euphoria programming language!
Euphoria is a programming language with the following advantages over conventional languages:

Euphoric
A remarkably simple, flexible, powerful language definition that is easy to learn and use.

Dynamic
Variables grow or shrink without the programmer having to worry about allocating and freeing chunks of memory.
Objects of any size can be assigned to an element of a Euphoria sequence (array).

Fast
A high-performance, state-of-the-art interpreter that’s significantly faster than conventional interpreters such as Perl
and Python.

Compiles
An optimizing Euphoria To C Translator, that can boost your speed even further, often by a factor of 2x to 5x versus
the already-fast interpreter.

Safe
Extensive run-time checking for: out-of-bounds subscripts, uninitialized variables, bad parameter values for library
routines, illegal value assigned to a variable and many more. There are no mysterious machine exceptions–you
will always get a full English description of any problem that occurs with your program at run-time, along with a
call-stack trace-back and a dump of all of your variable values. Programs can be debugged quickly, easily and more
thoroughly.

High level
Features of the underlying hardware are completely hidden. Programs are not aware of word-lengths, underlying
bit-level representation of values, byte-order etc.

Debugger
A full-screen source debugger and an execution profiler are included.

Editor
A full-screen, multi-file editor is also included. On a color monitor, the editor displays Euphoria programs in multiple
colors, to highlight comments, reserved words, built-in functions, strings, and level of nesting of brackets. It optionally
performs auto-completion of statements, saving you typing effort and reducing syntax errors. This editor is written
in Euphoria, and the source code is provided to you without restrictions. You are free to modify it, add features,
and redistribute it as you wish.

Multi-platform
Euphoria programs run under Windows, Linux, OS/X, FreeBSD, NetBSD, OpenBSD and can be easily ported to
any platform supporting GCC.

2

CHAPTER 1. QUICK OVERVIEW

Stand-alone
You can make a single, stand-alone executable file from your program.

Generic
Euphoria routines are naturally generic. The example program below shows a single routine that will sort any type
of data–integers, floating-point numbers, strings etc. Euphoria is not an ”object-oriented” language, yet it achieves
many of the benefits of these languages in a much simpler way.

Free
Euphoria is completely free and open source.

1 include std/console.e

2 sequence original_list

3

4 function merge_sort(sequence x)

5 -- put x into ascending order using a recursive merge sort

6 integer n, mid

7 sequence merged , a, b

8

9 n = length(x)

10 if n = 0 or n = 1 then

11 return x -- trivial case

12 end if

13

14 mid = floor(n/2)

15 a = merge_sort(x[1.. mid]) -- sort first half of x

16 b = merge_sort(x[mid +1..n]) -- sort second half of x

17

18 -- merge the two sorted halves into one

19 merged = {}

20 while length(a) > 0 and length(b) > 0 do

21 if compare(a[1], b[1]) < 0 then

22 merged = append(merged , a[1])

23 a = a[2.. length(a)]

24 else

25 merged = append(merged , b[1])

26 b = b[2.. length(b)]

27 end if

28 end while

29 return merged & a & b -- merged data plus leftovers

30 end function

31

32 procedure print_sorted_list ()

33 -- generate sorted_list from original_list

34 sequence sorted_list

35

36 original_list = {19, 10, 23, 41, 84, 55, 98, 67, 76, 32}

37 sorted_list = merge_sort(original_list)

38 for i = 1 to length(sorted_list) do

39 display("Number [] was at position [:2], now at [:2]",

40 {sorted_list[i], find(sorted_list[i], original_list), i}

41)

42 end for

43 end procedure

44

45 print_sorted_list () -- this command starts the program

Euphoria has come a long way since v1.0 was released in July 1993 by Rapid Deployment Software (RDS). There are
now enthusiastic users around the world.

3

Chapter 2
Introduction

2.1 Yet Another Programming Language?

Euphoria is a very high-level programming language. It is unique among a crowd of conventional languages.

2.2 Great Features

• Open source

• Free for personal and commercial use

• Produces royalty-free, stand-alone, programs

• Multi-platform – Windows, OS X, Linux, FreeBSD, OpenBSD, NetBSD, ...

• Provides a choice of multi-platform GUI toolkits: IUP, GTK, wxWindows

• Syntax colored profiling, debugging and tracing of code

• Dynamic memory allocation and efficient garbage collection

• Interfacing to existing C libraries and databases

• Well-documented, lots of example source-code, and an enthusiastic forum

• Edit and run convenience

2.3 Euphoria is unique

What makes Euphoria unique is a design that uses just two basic data-types – atom and sequence, and two ’helper’
data-types – object and integer.

• An atom is single numeric value (either an integer or floating point)

• A sequence is a list of zero or more objects.

• An object is a variant type in that it can hold an atom or a sequence.

• An integer is just a special form of atom that can only hold integers. You can use the integer type for a performance
advantage in situations where floating point values are not required.

What follows from this design are some advantages over conventional languages:

4

CHAPTER 2. INTRODUCTION 2.4. BEYOND ELEGANCE SEQUENCES

• The language syntax is smaller – and thus easier to learn

• The language syntax is consistent – and thus easier to program

• Routines are more generic – a routine used for strings may also be applied to any data structure

• A higher level view of programming – because sequences encompass conventional lists, arrays, tables, tuples, ..., and
all other data-structures.

• Sequences are dynamic – you may create and destroy at will – and modify them to any size and complexity

• It supports both static data typing and dynamic data typing.

2.4 Beyond Elegance Sequences

• Euphoria programs are considerably faster than conventional interpreted languages – Euphoria makes a better website
server

• Euphoria programs can be translated then compiled as C programs – fast programs become even faster

• Euphoria lets you write multi-tasking programs – independent of the platform you are using

• Euphoria has a coherent design – Euphoria programmers enjoy programming in Euphoria

2.5 As a first programming language

• Easy to learn, easy to program

• No limits as to what you can program

• Euphoria programming skills will enhance learning other languages

2.6 But, my favorite language is...

You will find that Euphoria programmers are also knowledgeable in other languages. I find that the more tools you
have (saws and hammers, or programming languages) the richer you are. Picking the correct tool is part of the art of
programming. It will remain true that some people can program better in their favorite language rather than an arguably
superior language.

Give Euphoria a try, and discover why it has enthusiastic supporters.

2.7 Products

The Euphoria Interpreter is used to execute your code directly with no binding or compilation steps. Edit, run, edit, run.
The Euphoria Binder is used to create stand-alone programs by ”binding” the Euphoria interpreter onto your source

code.
The Euphoria Translator converts Euphoria-source into C-source. This allows Euphoria programs to be compiled by

a standard C compiler to make even faster stand-alone programs.
You can freely distribute the Euphoria interpreter, and any other files contained in this package, in whole or in part, so

anyone can run a Euphoria program that you have developed. You are completely free to distribute any Euphoria programs
that you write.

5

CHAPTER 2. INTRODUCTION 2.8. REQUIREMENTS

2.8 Requirements

To run the Windows version of Euphoria, you need any Windows 95 or any later 32-bit version of Windows. It runs fine
on XP, Vista, and Windows 7.

To run the Unix version of Euphoria you need a supported Unix platform (Linux, FreeBSD, NetBSD or OpenBSD)
and GCC v4.x. Binary packages are available for various platforms and distributions which remove the need for GCC to
be present.

To run the OS X version of Euphoria, you need an Intel based Mac.

2.9 Conventions used in the manual

Euphoria has multiple interpreters, the main one being eui.

• On Windows platforms you have two choices. If you run eui then a console window is created. If you run euiw

then no console is created, making it suitable for GUI applications.

The manual will only reference eui in examples and instructions; the reader is left to choose the correct interpreter.
Euphoria runs on many platforms. When operating system specific issues must be described you will see these

descriptions:

• ”Windows” is a general reference to operating systems from Microsoft.

! lines above run off right side of page You will see the constant WINDOWS used for Windows specific code.

• ”Unix” is a general reference to the family operating systems that includes Linux, FreeBSD, NetBSD, OpenBSD,
Mac OS X, ... You will see the constant UNIX used for Unix specific code.

Directory names in Windows use \ separators, while Unix systems use /. Unix users should substitute / when they
examine sample code. Hint: Windows users can now use / in directory names.

Operating system names are often trademarks. There is no intent to infringe on their owner’s rights. Within a
paragraph, Euphoria keywords (like atom or while) and program excerpts are written in a fixed font.

Samples of Euphoria programs will be syntax colored using a fixed font:

1 for i=1 to 10 do

2 ? i

3 end for

4 -- this is a comment line

5 -- above is a ’for loop ’ example

2.10 Discover Euphoria

For more information, visit OpenEuphoria.org, and be sure to join the active discussion forum.

2.11 Disclaimer

Euphoria is provided ”as is” without warranty of any kind. In no event shall any authors of Euphoria or contributors to
Euphoria be held liable for any damages arising from the use of, or inability to use, this product.

6

http://www.OpenEuphoria.org
http://openeuphoria.org/forum/index.wc

Chapter 3
What’s new in 4.0?

Euphoria v4.0 is a very large jump in functionality from the previous stable release, 3.1.1.
Euphoria has a brand new standard library consisting of over 800 public members. Too numerous to list here, please

see the reference section of this manual.

3.1 General Changes

• New manual and documentation system

• New logo

• Switched to using our own ticket system

• Switched to using our own self hosted Mercurial SCM system

3.2 Executable name changes

Old New Description
ex and exwc eui Euphoria Interpreter
ec and ecw euc Euphoria to C Translator
bind.bat and bind eubind Euphoria Binder
shroud.bat and shroud eushroud Euphoria Shrouder

3.3 Language Enhancements

• Conditional compilation using the ifdef statement.

• Raw strings, which can include multilined text.

• Multiline comments using the C-styled comments /* .. */, which can be nested.

• Binary, Octal and alternative Decimal and Hexadecimal number format - 0b10 (2), 0t10 (8), 0d10 (10), 0x10

(16)

• Hexadecimal string formats. Use \x to embed any byte value into a standard string, or create an entire hexadecimal
byte string using x" ... "

• Function results can now be ignored.

7

CHAPTER 3. WHAT’S NEW IN 4.0? 3.3. LANGUAGE ENHANCEMENTS

• Optional list terminator. The final item in a list can be the dollar symbol ($). This is just a place holder for the
end-of-list, making it easier to add and delete items from the source code without having to adjust the commas.

• Enumerated values/types (enum, enum type)

• Built-in eu: namespace

• Declare variable anywhere, not just at the top of a routine.

• Scoped variables (declared inside an if for example)

• Assign on declaration. You can now declare a variable and assign it an initial value on the same statement.

• The object() built-in function can now be used to safely test if a variable has been initialized or not.

• Forward referencing. You no longer need to lexically declare a routine before using it.

• Additional loop constructs ...

– loop/until

– You can label a loop

– while X with entry

– exit, continue, retry. All with an optional "label"

– goto

• Additional conditional constructs

– switch statement with or without fallthru

– You can label an if or switch

– break keyword allows exiting from if / switch blocks

• Default/optional parameters for routines

• Additional scope modifiers

– export

– public (public include)

– override

• Built in sockets

• Built in Regular Expressions

• Resource clean up that can be triggered manually, or when an object’s reference count goes to zero

• Automatic inlining of small routines, with / without inline

• Built in, optimized sequence operations (remove, insert, splice, replace, head, tail)

• Built in peek and poke 2 byte values, 1 byte signed values, peek null terminated strings, peek, peek2, peek string,
poke and poke2

• Fine grained control over which, if any, warnings will be generated by Euphoria, with / without warning.

8

CHAPTER 3. WHAT’S NEW IN 4.0? 3.4. TOOL ADDITIONS / ENHANCEMENTS

3.4 Tool Additions / Enhancements

• General

– User Defined Preprocessor

– Configuration system (eu.cfg)

– Version display for all tools

• Interpreter

– New test mode, Command line switches

– Batch mode for unattended execution such as a CGI application, Command line switches

• Translator

– Compiles directly

– Can compile in debug mode using the -debug argument

– Can write a makefile

– Can compile/bind a resource file on Windows

– Now includes eudbg.lib, eu.a and eudbg.a files in addition to the eu.lib file enabling one to link against
debug libraries and also use the MinGW compiler directly without having to recompile sources.

• New independent shrouder

• Coverage Analysis

• Disassembler

• EuDist - Distributing Programs

• EuDOC - Source Documentation Tool

• EuTEST - Unit Testing

9

Chapter 4
Licensing

This product is free and open source, and has benefited from the contributions of many people. You have complete
royalty-free rights to distribute any Euphoria programs that you develop. You are also free to distribute the interpreter,
backend and even translator. You can shroud or bind your program and distribute the resulting files royalty-free.

You may incorporate any Euphoria source files from this package into your program, either ”as is” or with your
modifications. (You will probably need at least a few of the standard euphoria\include files in any large program).

We would appreciate it if you told people that your program was developed using Euphoria, and gave them the address:
http://www.openeuphoria.org/ of our Web page, but we do not require any such acknowledgment.

Icon files, such as euphoria.ico in euphoria\bin, may be distributed with or without your changes.
The high-speed version of the Euphoria Interpreter back-end is written in ANSI C, and can be compiled with many

different C compilers. The complete source code is in euphoria\source, along with execute.e, the alternate, Euphoria-
coded back-end. The generous Open Source License allows both personal and commercial use, and unlike many other
open source licenses, your changes do not have to be made open source.

Some additional 3rd-party legal restrictions might apply when you use the Euphoria To C Translator.

Copyright (c) 2007 -2011 by OpenEuphoria Group

Copyright (c) 1993 -2006 Rapid Deployment Software (RDS)

Permission is hereby granted , free of charge , to any person obtaining a copy

of this software and associated documentation files (the "Software"),

to deal in the Software without restriction , including without limitation

the rights to use , copy , modify , merge , publish , distribute ,

sublicense , and/or sell copies of the Software , and to permit persons

to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND , EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO

THE WARRANTIES OF MERCHANTABILITY , FITNESS FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS

OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR

OTHER LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR

OTHERWISE , ARISING FROM , OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The copyright holders request , but do not require , that you:

1. Acknowledge RDS and others who contributed to this software.

2. Provide a link to www.RapidEuphoria.com , if possible , from your Web site.

10

http://www.openeuphoria.org/

Chapter 5
Euphoria Credits

Euphoria has been continuously developed since it was started in 1993 by Robert Craig. In 2006, version 3.0 was released
as open source. Various releases were made to the 3.x series and then in the 4th quarter of 2010 the largest update ever
was made to Euphoria, starting the Euphoria 4.x series.

It has taken quite a few people to get this far and we would like to recognize them here. Authors/Contributors are
listed in alphabetical order by their last name.

For an up-to-date listing, see the EuphoriaContributors page at the OpenEuphoria Wiki.

5.1 Current Authors

• Jim Brown

• Tom Ciplijauskas

• Jeremy Cowgar

• C. K. Lester

• Matthew Lewis

• Derek Parnell

• Shawn Pringle

5.2 Past Authors

• Robert Craig

• Chris Cuvier

• Junko Miura

5.3 Contributors

• Jiri Babor

• Chris Bensler

• CoJaBo

11

/wiki/view.wc?page=EuphoriaContributors
http://openeuphoria.org/wiki/view/home.wc

CHAPTER 5. EUPHORIA CREDITS 5.3. CONTRIBUTORS

• Jason Gade

• Ryan Johnson

• Lonny Nettnay

• Marco Antonio Achury Palma

• Michael Sabal

• Dave Smith - Graphics

• Kathy Smith

• Randy Sugianto

12

Part II

Installing Euphoria

13

Chapter 6
Installation

To install Euphoria, consult the instructions below for your particular operating system.

6.1 Windows

All versions other than Windows 95 work without problems. To use Windows 95, it must have Internet Explorer version
4 or higher installed (included in service pack 2.5). To use the new socket functions you will also Windows 2000 or later.
To use all of the new standard library functions you will need at least Windows XP or later.

EUPHORIA is frequently tested on versions Windows XP, Vista, 7.

To install Euphoria on Windows, visit the following URL:

http://openeuphoria.org/wiki/view/DownloadEuphoria.wc

The ”Standard” version is a complete Euphoria installation, with Interpreter, Binder, Translator. Included are demo
programs and documentation.

The ”Open Watcom” version has the contents of the ”Standard” version, plus a bundled compiler. This is a convenient
way of producing compiled executables from Euphoria programs.

Download the latest Windows installer found under the Binary Releases heading of the Current version of Euphoria.
Run the program and follow the prompts to get Euphoria installed.

The installer copies the required files; adds the binary subdirectory to your path, if you leave ’update environment’
checked; and if you leave ’Associate file extensions’ checked, it associates icons and various actions to EUPHORIA file
extensions. Please do not open ’Euphoria Console Files’ from Explorer; they are meant to be run from the command line.

The installer does not set the environment variable EUDIR to the Euphoria directory even though many third-party
programs expect that to be set. This is so an older version of EUPHORIA can also still work on the same system. To set
this variable please see the section ”How to manually edit your environment in Windows” below.

6.1.1 Possible Problems

• On Windows XP/2000, be careful that your PATH and EUDIR do not conflict with autoexec.nt, which can also be
used to set environment variables.

• On WinME/98/95 if the install program fails to edit your autoexec.bat file, you will have to do it yourself. Follow
the manual procedure described below.

• Euphoria cannot be run under Windows 3.1 and some unpatched versions of Windows 95 will not be able to run
EUPHORIA 4.0.

• You have two EUPHORIA installs and you want to change the environment to use another EUPHORIA.

14

http://openeuphoria.org/wiki/view/DownloadEuphoria.wc

CHAPTER 6. INSTALLATION 6.1. WINDOWS

6.1.2 How to manually modify the environment in Windows

Your EUPHORIA installation directory by default will be C:\Euphoria. It is possible to install to %PROGRAMFILES%\Euphoria,
or anywhere you wish. Careful when using the %ProgramFiles% special location (C:\Program Files on most systems in
English). The %ProgramFiles% directory invariably contains spaces by default. It is a good idea to use the short 8.3
version of the name, or surround with double quotes. Ofcourse, you’ll just have to substitute your real installation directory
for the C:\EUPHORIA examples below.

How to manually modify the environment in Windows (Windows NT/2000/XP)

On Windows XP select: Start Menu -> Control Panel -> Performance &Maintenance -> System -> Advanced then
click the ”Environment Variables” button. Click the top ”New...” button then enter EUDIR as the Variable Name and
c:\euphoria (or whatever is correct) for the value, then click OK. Find PATH in the list of your variables, select it, then
click ”Edit...”. Add ;c:\euphoria\bin at the end and click OK.

On Windows Vista, You’ll find the environment variables available at Start Menu -> Control Panel -> ”System and
Maintenance” -> ”System” -> ”Advanced system settings” -> ”Environment Variables” (button)

Other versions of Windows will have the environment variables somewhere in the control panel.

How to manually modify the environment in Windows (ME/98/95/3.1)

1. In the file c:\autoexec.bat add C:\EUPHORIA\BIN to the list of directories in your PATH command. You might
use the MS-DOS Edit command, Windows Notepad or any other text editor to do this.

You can also go to the Start Menu, select Run, type in sysedit and press Enter. autoexec.bat should appear
as one of the system files that you can edit and save.

2. In the same autoexec.bat file add a new line:
SET EUDIR=C:\EUPHORIA
The EUDIR environment variable indicates the full path to the main Euphoria directory.

3. Reboot (restart) your machine. This will define your new PATH and EUDIR environment variables.

Some systems, such as Windows ME, have an autoexec.bat file, but it’s a hidden file that might not show up
in a directory listing. Nevertheless it’s there, and you can view it and edit it if necessary by typing, for example:
notepad c:\autoexec.bat in a DOS window.

More on editing environment variables

• set EUDIR to the location of your Euphoria installation directory.

• In PATH you need to include %EUDIR%\BIN.

• There is another, optional, environment variable used by some experienced users of Euphoria. It is called EUINC
(see the include statement). It determines a search path for included files and this variable is used by new and older
versions of EUPHORIA. However, for 4.0 and above we now have a ”configuration file” for adding include paths
and other settings.

6.1.3 Modifying the Registry

Updating the environment is not enough, your old installation will still be called when you open a Euphoria program in
explorer or invoke the Euphoria program on the command line without typing in the interpreter (eui euiw). Do not type
in the single quotes.

You can set these in regedit (replace C:\EUPHORIA with your Euphoria installation directory):

15

CHAPTER 6. INSTALLATION 6.2. LINUX AND FREEBSD

HKEY_CLASSES_ROOT \.exw\(Default)

=> ’EUWinApp ’

HKEY_CLASSES_ROOT\EuWinApp \(Default)

=> ’Euphoria Windows App ’

HKEY_CLASSES_ROOT\EUWinApp\shell\open\command \(Default)

=> ’C:\ EUPHORIA\BIN\euiw.exe "%1"’

HKEY_CLASSES_ROOT\EUWinApp\shell\translate\command \(Default)

=> ’C:\ EUPHORIA\BIN\euc.exe "%1"’

HKEY_CLASSES_ROOT \.ex\(Default)

=> ’EUConsoleApp ’

HKEY_CLASSES_ROOT\EUConsoleApp \(Default)

=> ’Euphoria Console App ’

HKEY_CLASSES_ROOT\EUConsoleApp\shell\open\command \(Default)

=> ’C:\ EUPHORIA\BIN\eui.exe "%1"’

HKEY_CLASSES_ROOT\EUConsoleApp\shell\translate\command \(Default)

=> ’C:\ EUPHORIA\BIN\euc.exe -con "%1"’

HKEY_CLASSES_ROOT \.e\(Default) => ’EUInc ’

HKEY_CLASSES_ROOT\EUInc \(Default) => ’Euphoria Include File ’

HKEY_CLASSES_ROOT \.ew\(Default) => ’EUInc ’

You can also set an editor for your EUPHORIA programs this way:

HKEY_CLASSES_ROOT\EUWinApp\shell\edit\command "\(Default)

=> ’C:\ EUPHORIA\BIN\euiw.exe C:\ EUPHORIA\BIN\ed.ex "%1"’

HKEY_CLASSES_ROOT\EUConsoleApp\shell\edit\command "\(Default)

=> ’C:\ EUPHORIA\BIN\euiw.exe C:\ EUPHORIA\BIN\ed.ex "%1"’

HKEY_CLASSES_ROOT\EUInc\shell\edit\command "\(Default)

=> ’C:\ EUPHORIA\BIN\euiw.exe C:\ EUPHORIA\BIN\ed.ex "%1"’

You can setup to allow the supplied editor program open to the line where the last failure occured in ex.err files:

HKEY_CLASSES_ROOT \.err\(Default) => ’EUError ’

HKEY_CLASSES_ROOT\EUError \(Default) => ’Error File ’

HKEY_CLASSES_ROOT\EUError\shell\debug

=> ’Debug what created this error file ’

HKEY_CLASSES_ROOT\EUError\shell\debug\command \(Default)

=> ’C:\ EUPHORIA\BIN\eui.exe C:\ EUPHORIA\BIN\ed.ex ’

HKEY_CLASSES_ROOT\EUError\DefaultIcon \(Default)

=> ’C:\ Windows\system32\shell32.dll ,78’

6.2 Linux and FreeBSD

Euphoria may be installed using either a Unix archive (.tar.gz or .tar.bz2) or, a distribution specific package, if
available.

http://openeuphoria.org/wiki/view/DownloadEuphoria.wc
The Unix tarball ”Archive” is laid out similarly to the Windows directory structure. This may be convenient if working

cross-platform between Windows and Unix. The files at SourceForge are also in this form, making it convenient if you
wish to use updates directly from the SVN depository.

To install this version you must manually unarchive the tarball. Then copy the files to a suitable directory.
You’ll need to manually edit:

• /etc/profile so the PATH contains

– euphoria/bin, and either create

∗ an eu.cfg file or

16

http://openeuphoria.org/wiki/view/DownloadEuphoria.wc

CHAPTER 6. INSTALLATION 6.3. OS X

∗ set up EUDIR and EUINC. See the include statement.

The ”Packaged” version installs Euphoria in a more Unix-like way, putting the executables into

• /usr/bin,

• /usr/share/euphoria and

• /usr/share/doc/euphoria.

• Man pages for eui, euc, eub, shroud and bind are also installed.

• It will also create /etc/euphoria/eu.cfg, which will point to the standard euphoria include directory in /usr/

share/euphoria/include.

Other Unix based installations can be compiled from ”Source Releases”.

6.3 OS X

Look for an installation package for Apple installations.
http://openeuphoria.org/wiki/view/DownloadEuphoria.wc

6.4 DOS

There is DOS support only up to Euphoria 3.1. DOS developers are invited to contribute their skills.

17

http://openeuphoria.org/wiki/view/DownloadEuphoria.wc

Chapter 7
Post Install

The directory maps will help you locate the Euphoria executables, documentation, and sample programs.
The default for the Windows installation, and optional for a Unix installation:

|

|__ euphoria

| file_id.diz

| License.txt

|

|__ bin

| Interpreter (eui.exe and euiw.exe , if on Windows)

| (eui , if on Unix)

| Binder (eubind , with eub)

| Translator (euc.exe , if on Windows)

| (euc , if on Unix)

| Utilities (bugreport.ex , bench.ex , ed.ex , ...)

|

|__ include

| | (original include files)

| |

| |__ std (standard Euphoria library: io.e, sequence.e, ...)

| |

| |__ euphoria (Euphoria specific)

|

|

|__ docs (html and pdf documentation files)

|

|__ tutorial (small tutorial programs to help you learn Euphoria)

|

|__ demo (generic demo programs that run on all platforms)

| |

| |__ win32 (Windows specific demo programs (optional))

| |__ unix (Linux/FreeBSD/OS X specific demo programs (optional))

| |__ langwar (language war game for Linux/FreeBSD/OS X)

| |__ bench (benchmark program)

|

|__ source (the complete source code for: interpreter , translator)

|

|__ tests (unit tests for Euphoria)

|

|__ packaging (software for making installation packages)

The Linux subdirectory is not included in the Windows distribution, and the win32 subdirectories are not included in

18

CHAPTER 7. POST INSTALL

the Linux/FreeBSD distribution. In this manual, directory names are shown using backslash (\). Linux/FreeBSD users
should substitute forward slash (/).

The ”Debian Package” installs Euphoria into these directories:

|

|__ /usr/bin (executables: eui , euc , ...)

|

|__ /usr/share/euphoria

| |

| |__ bin (utility programs)

| |__ demo (general demonstration programs)

| |__ include (standard library)

| |__ source (source -code for Euphoria)

| |__ tutorial (tutorial programs for learning Euphoria)

|

|__ /usr/share/doc/euphoria (html and pdf documentation)

|

|__ /etc/euphoria (eu.cfg)

Additionally, installing from source on a Unix-like OS will install in the same pattern, by default using /usr/local/

instead of /usr/. You can change /usr/local to something else by running:

$./ configure --prefix /some/other/location

Before building.
The ”include”, ”demo” and ”tutorial” directories are the same in Windows and Unix.

19

Chapter 8
Set Up the Euphoria Configuration File (eu.cfg)

Euphoria supports reading command line switches from configuration files. The default name for the configuration file is
eu.cfg. However you can specify different ones by using the -C switch.

8.1 Configuration file format

The configuration file is a text file. Each line in the file is either a command line switch, a section header, an include path
or a comment.

• Comments are lines that begin with a double dash "--". Everything on the line is ignored.

• A section header is a name enclosed in square brackets. eg. [interpret].

– There are a number of predefined sections.

– The lines in a section are only added to the command line switches if they apply to the mode that Euphoria is
running in.

windows Applies to Windows platform only.

unix Applies to any Unix platform only.

interpret Applies to the interpreter running in any platform.

translate Applies to the translator running in any platform.

bind Applies to the binder running in any platform.

interpret:windows Applies to the interpreter when running under Windows only.

interpret:unix Applies to the interpreter when running under Unix only.

translate:windows Applies to the translator when running under Windows only.

translate:unix Applies to the translator when running under Unix only.

bind:windows Applies to the binder when running under Windows only.

bind:unix Applies to the binder when running under Unix only.

all Applies to all running modes.

– All configuration lines before the first section header are assumed to be the [all] section.

– You can have any number of section headers, but only the predefined ones are used. All lines in other sections
are treated as comments.

• A command line switch is a line that begins with a single dash. The entire line is added to the actual command line
as if it was originally there.

• An include path is any other line that is not one of the above. The string -I is prepended to the line and then it is
added to the command line.

20

CHAPTER 8. SET UP THE EUPHORIA CONFIGURATION FILE (EU.CFG) 8.2. CONFIG FILE LOCATIONS

8.2 Config File Locations

When Euphoria starts up, it looks for configuration files in the following order:

• For Windows systems

1. %ALLUSERSPROFILE%\euphoria\eu.cfg

2. %APPDATA%\euphoria\eu.cfg

3. %EUDIR%\eu.cfg

4. %HOMEDRIVE%\%HOMEPATH%\eu.cfg

5. From where ever the executable is run from ”<exepath>/eu.cfg”

6. Current working directory - ”./eu.cfg”

7. Command line -C switches

• For Unix systems

1. /etc/euphoria/eu.cfg

2. $EUDIR/eu.cfg

3. $HOME/.eu.cfg

4. From where ever the executable is run from ”<exepath>/eu.cfg”

5. Current working directory - ”./eu.cfg”

6. Command line -C switches

8.3 Config File Notes

• Euphoria processes every configuration file found, and in the order described above. This means that settings specified
in earlier configuration files may be overridden by subsequent configuration files. For example, a configuration file
in the current directory will override the same settings in a configuration file in the executable’s directory.

• If a configuration file contains a -C switch, the new configuration file specified on that switch is processed before
subsequent lines in the old file.

• A configuration file is only ever processed once. Additional references to the same file are ignored.

21

Part III

Using Euphoria

22

Chapter 9
Example Programs

9.1 Hello, World

The mandatory ’Hello World’ program is a one-liner in Euphoria.

puts(1, "Hello , World\n")

The built-in routine puts does the job of displaying text on a screen. It requires two arguments. The first argument,
1, directs the output to STDOUT or the console. The second argument, is a string of text that will be output.

The result is:

Hello , World

9.2 Sorting

The following is an example of a more useful Euphoria program.

1 include std/console.e

2 sequence original_list

3

4 function merge_sort(sequence x)

5 -- put x into ascending order using a recursive merge sort

6 integer n, mid

7 sequence merged , a, b

8

9 n = length(x)

10 if n = 0 or n = 1 then

11 return x -- trivial case

12 end if

13

14 mid = floor(n/2)

15 a = merge_sort(x[1.. mid]) -- sort first half of x

16 b = merge_sort(x[mid +1..n]) -- sort second half of x

17

18 -- merge the two sorted halves into one

19 merged = {}

20 while length(a) > 0 and length(b) > 0 do

21 if compare(a[1], b[1]) < 0 then

22 merged = append(merged , a[1])

23 a = a[2.. length(a)]

24 else

23

CHAPTER 9. EXAMPLE PROGRAMS 9.2. SORTING

25 merged = append(merged , b[1])

26 b = b[2.. length(b)]

27 end if

28 end while

29 return merged & a & b -- merged data plus leftovers

30 end function

31

32 procedure print_sorted_list ()

33 -- generate sorted_list from original_list

34 sequence sorted_list

35

36 original_list = {19, 10, 23, 41, 84, 55, 98, 67, 76, 32}

37 sorted_list = merge_sort(original_list)

38 for i = 1 to length(sorted_list) do

39 display("Number [] was at position [:2], now at [:2]",

40 {sorted_list[i], find(sorted_list[i], original_list), i}

41)

42 end for

43 end procedure

44

45 print_sorted_list () -- this command starts the program

The above example contains a number of statements that are processed in order.

include std/console.e

This tells Euphoria that this application needs access to the public symbols declared in the file ’std/console.e’. This
is referred to as a library file. In our case here, the application will be using the display routine from

sequence original list

This declares a variable that is not public but is accessible from anywhere in this file. The datatype for the variable
is a sequence, which is a variable-length ”array,” and whose symbol name is original list.

function merge sort(sequence x) ... end function

This declares and defines a function routine. Functions return values when called. This function must be passed a
single parameter when called – a sequence.

procedure print sorted list() ... end procedure

This declares and defines a procedure routine. Procedures never return values when called. This procedure must
not be passed any parameters when called.

print sorted list

This calls the routine called print sorted list.

The output from the program will be:

Number 10 was at position 2, now at 1

Number 19 was at position 1, now at 2

Number 23 was at position 3, now at 3

Number 32 was at position 10, now at 4

Number 41 was at position 4, now at 5

Number 55 was at position 6, now at 6

Number 67 was at position 8, now at 7

Number 76 was at position 9, now at 8

Number 84 was at position 5, now at 9

Number 98 was at position 7, now at 10

Note that merge sort will just as easily sort any list of data items:

{1.5, -9, 1e6, 100}

{"oranges", "apples", "bananas"}

24

CHAPTER 9. EXAMPLE PROGRAMS 9.3. WHAT TO DO?

This example is stored as euphoria\tutorial\example.ex. This is not the fastest way to sort in Euphoria. Go to
the euphoria\demo directory and type

eui allsorts

to compare timings on several different sorting algorithms for increasing numbers of objects.
For a quick tutorial example of Euphoria programming, see euphoria\demo\bench\filesort.ex.

9.3 What to Do?

Now that you have installed Euphoria, here are some things you can try:

9.3.1 Run the Demo Programs

Run each of the demo programs in the demo directory. You just type eui <program name>. An example of running the
demos in a console

eui buzz

You can also double-click on a .ex or .exw file from Windows as file associations have been setup during the installation
process.

9.3.2 Edit Sample Files

Use the Euphoria editor, ed, to edit a Euphoria file. Notice the use of colors. You can adjust these colors along with
the cursor size and many other ”user-modifiable” parameters by editing constant declarations in ed.ex. Use Esc q to
quit the editor or Esc h for help. There are several, even better, Euphoria-oriented editors in The Archive. If you use a
more sophisticated text editor, many have a highlighter file for Euphoria. You will find it either on the Archive or on the
community page for that editor. Check the wiki for more information about Euphoria editors.

9.3.3 Benchmark

Create some new benchmark tests. See demo\bench. Do you get the same speed ratios as we did in comparison with
other popular languages? Report your findings on the forum.

9.3.4 Read the Manual

Read the manual in html\index.html by double-clicking it. If you have a specific question, type at the console:

guru word

The guru program will search all the .doc files, example programs, and other files, and will present you with a sorted
list of the most relevant chunks of text that might answer your enquiry.

9.3.5 Visit the EuForum

Euphoria Discussion Forum

9.3.6 Trace a Demo

Try running a Euphoria program with tracing turned on. Add:

with trace

trace (1)

at the beginning of any Euphoria source file.

25

http://www.rapideuphoria.com/edi.htm
/wiki/view.wc?page=Editors
http://openeuphoria.org/forum/index.wc
http://openeuphoria.org/forum/index.wc

CHAPTER 9. EXAMPLE PROGRAMS 9.3. WHAT TO DO?

9.3.7 Run the Tutorial Programs

Run some of the tutorial programs in euphoria\tutorial.

9.3.8 Modify the Tutorial Programs

Try modifying some of the demo programs.
First some simple modifications (takes less than a minute):

Simple

What if there were 100 C++ ships in Language Wars? What if sb.ex had to move 1000 balls instead of 125? Change
some parameters in polygon.ex. Can you get prettier pictures to appear? Add some funny phrases to buzz.ex.

Harder

Then, some slightly harder ones (takes a few minutes):
Define a new function of x and y in plot3d.ex.

Challenging

Then a challenging one (takes an hour or more):
Set up your own customized database by defining the fields in mydata.ex.

Major

Then a major project (several days or weeks):
Write a smarter 3D TicTacToe algorithm.

9.3.9 Write Your Own

Try writing your own program in Euphoria. A program can be as simple as:

? 2+2

Remember that after any error you can simply type: ed to jump into the editor at the offending file and line.
Once you get used to it, you’ll be developing programs much faster in Euphoria than you could in Perl, Java, C/C++

or any other language that we are aware of.

26

Chapter 10
Creating Euphoria programs

Euphoria programs can be written with any plain text editor. As a convenience Euphoria comes with ed, an editor
written in Euphoria, that is handy for editing and executing Euphoria programs. Take a look at \euphoria\demo and
euphoria\tutorial to see many example programs.

10.1 Running a Program

To run a Euphoria program you type the name of the interpreter followed by the filename of the program you want to run.
Such as:

eui exampleex

What you just typed is known as the command-line.

Depending on the platform you are using the interpreter could be called:
Executable Purpose
eui General interpreter on Windows and Unix variants
euiw Console-less Windows interpreter

The command-line may contain extra information. Following your program filename you may add extra words (known
as arguments) that can used in your program to customize its behavior. These arguments are read within your program
by the built-in function command line.

Optionally, you may also use command line switches that are typed between the interpreter name and the program
name. Command line switches customize how the interpreter itself behaves.

Unlike many other compilers and interpreters, there is no obligation for any special command-line options for eui or
euiw. Only the name of you Euphoria file is expected, and if you do not supply it, Euphoria will display all the command
line options available.

Euphoria doesn’t care about your choice of file extensions. By convention, however, console-based applications have
an extension of .ex, GUI-based applications have an extension of .exw and include files have an extension of .e. Note
that a GUI application is not necessarily a Windows program. A GUI application can exist on Linux, OS X, FreeBSD, and
so on.

You can redirect standard input and standard output when you run a Euphoria program, for example:

eui filesortex < rawtxt > sortedtxt

or simply,

eui filesort < rawtxt > sortedtxt

For frequently-used programs under Windows you might want to make a small .bat (batch) file, perhaps called
myprog.bat, containing two statements like:

27

CHAPTER 10. CREATING EUPHORIA PROGRAMS 10.2. RUNNING UNDER WINDOWS

@echo off

eui myprogex %1 %2 %3 %4 %5 %6 %7 %8 %9

The first statement turns off echoing of commands to the screen. The second runs eui myprog.ex with up to 9
command-line arguments. See command line for an example of how to read these arguments. Having a .bat file will save
you the minor inconvenience of typing eui all the time; for example you can just type:

myprog

instead of:

eui myprog

Under modern Unix variants, you can use #!/usr/bin/env eui as the first line of your script file. On older Unix
variants, you may need to use the full path to eui, #!/usr/local/bin/eui.

If your program is called foo.ex:

1 #!/ usr/bin/env eui

2

3 procedure foo()

4 ? 2+2

5 end procedure

6

7 foo()

Then if you make your file executable:

chmod +x fooex

You can just type:

fooex

to run your program. You could even shorten the name to simply ”foo”. Euphoria ignores the first line when it starts
with #!. Be careful though that your first line ends with the Unix-style \n, and not the Windows-style \r\n, or the unix
shell might get confused. If your file is shrouded, you must give the path to eub, not eui.

You can also run bind to combine your Euphoria program with the eui interpreter, to make a stand-alone executable
file. With a stand-alone executable, you can redirect standard input and output. Binding is discussed further in Distributing
a Program.

Using the Euphoria To C Translator, you can also make a stand-alone executable file, and it will normally run much
faster than a bound program.

10.2 Running under Windows

You can run Euphoria programs directly from the Windows environment, or from a console shell that you have opened
from Windows. By ”associating” .ex files with eui.exe and .exw files with euiw.exe. You will then be able to double
click a Euphoria source file to run it. The installer will perform this operation for you, if you wish.

28

Chapter 11
Editing a Program

You can use any text editor to edit a Euphoria program. However, Euphoria comes with its own special editor that is
written entirely in Euphoria. Type: ed followed by the complete name of the file you wish to edit. You can use this editor
to edit any kind of text file. When you edit a Euphoria file some extra features such as color syntax highlighting and
auto-completion of certain statements are available to make your job easier.

Whenever you run a Euphoria program and get an error message, during compilation or execution, you can simply
type ed with no file name and you will be automatically positioned in the file containing the error, at the correct line and
column, and with the error message displayed at the top of the screen.

Under Windows you can associate ed.bat with various kinds of text files that you want to edit. Color syntax highlighting
is provided for .ex, .exw, .exd, .e and .pro (profile files).

Most keys that you type are inserted into the file at the cursor position. Hit the Esc key once to get a menu bar of
special commands. The arrow keys, and the Insert/Delete/Home/End/PageUp/PageDown keys are also active. Under
Linux/FreeBSD some keys may not be available, and alternate keys are provided. See Ed - Euphoria Editor for a complete
description of the editing commands.

If you need to understand or modify any detail of the editor’s operation, you can edit the file ed.ex in euphoria\bin
(be sure to make a backup copy so you don’t lose your ability to edit). If the name ed conflicts with some other command on
your system, simply rename the file euphoria\bin\ed.bat to something else. Because this editor is written in Euphoria,
it is remarkably concise and easy to understand. The same functionality implemented in a language like C, would take far
more lines of code.

ed is a simple text-mode editor that runs on all platforms and is distributed with Euphoria. There is a list of other
editors at the OpenEuphoria web site, many of which include extra features such as syntax highlighting.

29

/wiki/view.wc?page=Editors

Chapter 12
Distributing a Program

Euphoria provides you with 4 distinct ways of distributing a program.

• ”source-code”, with the Euphoria ”interpreter”

• ”shroud” into .il code, with Euphoria ”backend”

• ”bind” into a Euphoria executable

• ”translate” into a C-compiled executable

In the first way you simply ship your users the interpreter along with your Euphoria source files including any Euphoria
includes that may be necessary from the euphoria/include directory. If the Euphoria source files and the interpreter are
placed together in one directory then your user can run your program by typing eui followed by the path of your main
executable source file. You might also provide a small .bat file so people will not actually have to type the interpreter
name. This way assumes that you are willing to share your Euphoria source code with your users.

The Binder gives you two more ways of distribution. You can shroud your program, or you can bind your program.
Shrouding combines all of the Euphoria source code that your program needs to create a single .il file. Binding combines
your shrouded program with the Euphoria backend (eub or eubw on Windows) to create a single, stand-alone executable
file. For example, if your program is called ”myprog.ex” you can create ”myprog.exe” which will run identically. For
more information about shrouding and binding, see Shrouding and Binding.

Finally, with the Euphoria To C Translator, you can translate your Euphoria program into C and then compile it with
a C compiler to get an executable program.

30

Chapter 13
Command Line Switches

You can launch Euphoria with some extra command line switches, in order to add or change configuration elements. When
running a GUI, there is always some way to open a prompt and enter any text with options, arguments and whatever the
program being launched may need for proper, expected operation. Under Windows, this is achieved by clicking the Start

button and selecting Run..., or hitting Windows-R.
Command line switches may be changed or added, one at a time.
In the table below, (all) indicates that the given switch applies to the Interpreter, Translator and Binder. Use of

(interpreter), (translator) and/or (binder) indicates that the referenced switch applies only to that execution
mode.

-BATCH (all)
Executes the program but if any error occurs, the ”Press Enter” prompt is not presented. The exit code will be set
to 1 on error, 0 on success. This option can also be set via the with batch directive.

-COM dir (translator)

Specifies the include directory for the C compiler once EUPHORIA code is translated.

This should be set such that dir/include/euphoria.h exists.

-COPYRIGHT (all)
Displays the copyright banner for euphoria.

-C config file (all)
Specifies either a file name or the path for where the default file called eu.cfg exists. The configuration file which
holds a set of additional command line switches. See Also Configuration file format

-CON (translator)
Windows only. Specifies that the translated program should be a console application. The default is to build a
windowed application.

-D word (all)
Defines a word as being set. Words are processed by the ifdef statement. Words can also be defined via the with /
without define directive.

-DEBUG (translator)
Enable debug mode for the generated code.

31

CHAPTER 13. COMMAND LINE SWITCHES

(interpreter)
An external debugger translated into a .DLL or .so library to be used instead of the built-in debugger.

-DLL, -SO (translator)
Compiles and links the translated euphoria code into a DLL, SO or DYLIB (depending on the platform).

-EUDIR dir (all)
This overrides the environment variable EUDIR.

-H, (all)
Displays the list of available command line options.

-I include path (all)
Specifies an extra include path.

-LIB file (translator)
Specifies the run-time library to use when translating euphoria programs.

-LIB-PIC file (translator)
Specifies the run-time library to use when translating euphoria programs as shared objects. The library should be
built using the -fPIC (position independent code) flag. This is meant to be used in a eu.cfg file to be able to specify
both a non-PIC (using the -lib option) and a PIC option in the same eu.cfg file.

-PLAT word (translator)
Specify the target platform for translation. This allows euphoria code to be translated for any supported platform from
any other supported platform. Supported platforms: FREEBSD, LINUX, NETBSD, OPENBSD, OSX, WINDOWS

-STRICT (all)
This turns on all warnings, overriding any with/without warning statement found in the source. This option can
also be set via the with/without warning directive.

-TEST (all)
Parses the code only and issues any warnings or errors to STDOUT. On error the exit code will be 1, otherwise 0. If
an error was found, the normal ”Press Enter” prompt will not be presented when using the -TEST parameter which
enables many editor/IDE programs to test the syntax of your Euphoria source in real time.

-TRACE-LINES n (all)
Changes the number of lines that will be used in ctrace.out for lines traced under trace(3). The default is 500.

-VERSION (all)
Displays the version of euphoria that is running.

-W warning name (all)
Resets, or adds to, the current list of warnings that may be emitted. The list of known names is to be found in the
subsection with/without warning. A name should appear without quotes. If the warning name begins with a plus
symbol ’+’, this warning is added to the current set of warnings checked for, otherwise the first usage resets the list
to the warning being introduced, and each subsequent -W warning name adds to the list.

-WF file name (all)
Sets the file where the warnings should go instead of the standard error. Warnings are written to that file regardless
of whether or not there are errors in the source. If there are no warnings, the -wf file is not created. If the -wf file
cannot be created, a suitable message is displayed on STDERR and written to ex.err.

-X;
Resets, or adds to, the list of warnings that will not be issued. This is opposite of the -W switch.

The case of the switches is ignored, so -I and -i are equivalent.

32

CHAPTER 13. COMMAND LINE SWITCHES 13.1. FURTHER NOTES

13.1 Further Notes

• Included files are searched for in all included paths, in the following order:

1. The current path

2. Paths specified in a -I command line switch, which can also come from any configuration files found.

3. Paths listed in the EUINC environment variable, in the order in which they appear

4. Paths listed in the EUDIR environment variable, in the order in which they appear

5. The interpreter’s path

33

Part IV

Language Reference

34

Chapter 14
Definition

14.1 Objects

14.1.1 Atoms and Sequences

All data objects in Euphoria are either atoms or sequences. An atom is a single numeric value. A sequence is a
collection of objects, either atoms or sequences themselves. A sequence can contain any mixture of atom and sequences;
a sequence does not have to contain all the same data type. Because the objects contained in a sequence can be an
arbitrary mix of atoms or sequences, it is an extremely versatile data structure, capable of representing any sort of data.

A sequence is represented by a list of objects in brace brackets , separated by commas with an optional sequence
terminator, $. Atoms can have any integer or double-precision floating point value. They can range from approximately
-1e300 (minus one times 10 to the power 300) to +1e300 with 15 decimal digits of accuracy. Here are some Euphoria
objects:

1 -- examples of atoms:

2 0

3 1000

4 98.6

5 -1e6

6 23 _100_000

7 x

8 $

9

10 -- examples of sequences:

11 {2, 3, 5, 7, 11, 13, 17, 19}

12 {1, 2, {3, 3, 3}, 4, {5, {6}}}

13 {{"jon", "smith"}, 52389, 97.25}

14 {} -- the 0-element sequence

By default, number literals use base 10, but you can have integer literals written in other bases, namely binary (base
2), octal (base 8), and hexadecimal (base 16). To do this, the number is prefixed by a 2-character code that lets Euphoria
know which base to use.

Code Base
0b 2 = Binary
0t 8 = Octal
0d 10 = Decimal
0x 16 = Hexadecimal

For example:

0b101 --> decimal 5

0t101 --> decimal 65

35

CHAPTER 14. DEFINITION 14.1. OBJECTS

0d101 --> decimal 101

0x101 --> decimal 257

Additionally, hexadecimal integers can also be written by prefixing the number with the ’#’ character.
For example:

#FE -- 254

#A000 -- 40960

#FFFF00008 -- 68718428168

-#10 -- -16

Only digits and the letters A, B, C, D, E, F, in either uppercase or lowercase, are allowed in hexadecimal numbers.
Hexadecimal numbers are always positive, unless you add a minus sign in front of the # character. So for instance

1. FFFFFFFF is a huge positive number (4294967295), not -1, as some machine-language programmers might expect.

Sometimes, and especially with large numbers, it can make reading numeric literals easier when they have embedded
grouping characters. We are familiar with using commas (periods in Europe) to group large numbers by three-digit
subgroups. In Euphoria we use the underscore character to achieve the same thing, and we can group them anyway that
is useful to us.

1 atom big = 32 _873_787 -- Set ’big ’ to the value 32873787

2

3 atom salary = 56_110 .66 -- Set salary to the value 56110.66

4

5 integer defflags = #0323 _F3CD

6

7 object phone = 61 _3_5536_7733

8

9 integer bits = 0b11_00010_1

Sequences can be nested to any depth, i.e. you can have sequences within sequences within sequences and so on
to any depth (until you run out of memory). Brace brackets are used to construct sequences out of a list of expressions.
These expressions can be constant or evaluated at run-time. e.g.

{ x+6, 9, y*w+2, sin (0.5) }

All sequences can include a special end of sequence marker which is the $ character. This is for convience of editing
lists that may change often as development proceeds.

sequence seq_1 = { 10, 20, 30, $ }

sequence seq_2 = { 10, 20, 30 }

equal(seq_1 , seq_2) -- TRUE

The ”Hierarchical Objects” part of the Euphoria acronym comes from the hierarchical nature of nested sequences.
This should not be confused with the class hierarchies of certain object-oriented languages.

Why do we call them atoms? Why not just ”numbers”? Well, an atom is just a number, but we wanted to have a
distinctive term that emphasizes that they are indivisible (that’s what ”atom” means in Greek). In the world of physics
you can ’split’ an atom into smaller parts, but you no longer have an atom–only various particles. You can ’split’ a number
into smaller parts, but you no longer have a number–only various digits.

Atoms are the basic building blocks of all the data that a Euphoria program can manipulate. With this analogy,
sequences might be thought of as ”molecules”, made from atoms and other molecules. A better analogy would be that
sequences are like directories, and atoms are like files. Just as a directory on your computer can contain both files and
other directories, a sequence can contain both atoms and other sequences (and those sequences can contain atoms and
sequences and so on).

. object

. / \

. / \

. atom sequence

36

CHAPTER 14. DEFINITION 14.1. OBJECTS

As you will soon discover, sequences make Euphoria very simple and very powerful. Understanding atoms and
sequences is the key to understanding Euphoria.

Performance Note:
Does this mean that all atoms are stored in memory as eight-byte floating-point numbers? No. The Euphoria
interpreter usually stores integer-valued atoms as machine integers (four bytes) to save space and improve execution
speed. When fractional results occur or integers get too big, conversion to IEEE eight-byte floating-point format
happens automatically.

14.1.2 Character Strings and Individual Characters

A character string is just a sequence of characters. It may be entered in a number of ways ...

• Using double-quotes e.g.

"ABCDEFG"

• Using raw string notation e.g.

-- Using back -quotes

‘ABCDEFG ‘

or

-- Using three double -quotes

"""ABCDEFG"""

• Using binary strings e.g.

b"1001 00110110 0110 _0111 1_0101_1010" -- ==> {#9 ,#36 ,#67 ,#15A}

• Using hexadecimal byte strings e.g.

x"65 66 67 AE" -- ==> {#65 ,#66 ,#67 ,#AE}

When you put too many hex characters together they are split up appropriately for you:

x"656667 AE" -- 8-bit ==> {#65 ,#66 ,#67 ,#AE}

The rules for double-quote strings are:

1. They begin and end with a double-quote character

2. They cannot contain a double-quote

3. They must be only on a single line

4. They cannot contain the TAB character

5. If they contain the back-slash ’\’ character, that character must immediately be followed by one of the special escape
codes. The back-slash and escape code will be replaced by the appropriate single character equivalent. If you need
to include double-quote, end-of-line, back-slash, or TAB characters inside a double-quoted string, you need to enter
them in a special manner.

e.g.

37

CHAPTER 14. DEFINITION 14.1. OBJECTS

"Bill said\n\t\"This is a back -slash \\ character\".\n"

Which, when displayed should look like ...

Bill said

"This is a back -slash \ character ".

The rules for raw strings are:

1. Enclose with three double-quotes """...""" or back-quote. ‘...‘

2. The resulting string will never have any carriage-return characters in it.

3. If the resulting string begins with a new-line, the initial new-line is removed and any trailing new-line is also removed.

4. A special form is used to automatically remove leading whitespace from the source code text. You might code this
form to align the source text for ease of reading. If the first line after the raw string start token begins with one
or more underscore characters, the number of consecutive underscores signifies the maximum number of whitespace
characters that will be removed from each line of the raw string text. The underscores represent an assumed left
margin width. Note, these leading underscores do not form part of the raw string text.

e.g.

1 -- No leading underscores and no leading whitespace

2 ‘

3

4 Bill said

5 "This is a back -slash \ "character"."

6 ‘

Which, when displayed should look like ...

Bill said

"This is a back -slash \ character ".

1 -- No leading underscores and but leading whitespace

2 ‘

3

4 Bill said

5 "This is a back -slash \ "character"."

6 ‘

Which, when displayed should look like ...

Bill said

"This is a back -slash \ character ".

1 -- Leading underscores and leading whitespace

2 ‘

3

4 _____Bill said

5 "This is a back -slash \ "character"."

6 ‘

Which, when displayed should look like ...

Bill said

"This is a back -slash \ character ".

38

CHAPTER 14. DEFINITION 14.1. OBJECTS

Extended string literals are useful when the string contains new-lines, tabs, or back-slash characters because they do
not have to be entered in the special manner. The back-quote form can be used when the string literal contains a set of
three double-quote characters, and the triple quote form can be used when the text literal contains back-quote characters.
If a literal contains both a back quote and a set of three double-quotes, you will need to concatenate two literals.

object TQ, BQ, QQ

TQ = ‘This text contains """ for some reason.‘

BQ = """This text contains a back quote ‘ for some reason."""

QQ = """This text contains a back quote ‘ """ & ‘and """ for some reason.‘

The rules for binary strings are...

1. they begin with the pair b" and end with a double-quote (") character

2. they can only contain binary digits (0-1), and space, underscore, tab, newline, carriage-return. Anything else is
invalid.

3. an underscore is simply ignored, as if it was never there. It is used to aid readability.

4. each set of contiguous binary digits represents a single sequence element

5. they can span multiple lines

6. The non-digits are treated as punctuation and used to delimit individual values.

b"1 10 11_0100 01010110 _01111000" == {0x01 , 0x02 , 0x34 , 0x5678}

The rules for hexadecimal strings are:

1. They begin with the pair x" and end with a double-quote (") character

2. They can only contain hexadecimal digits (0-9 A-F a-f), and space, underscore, tab, newline, carriage-return.
Anything else is invalid.

3. An underscore is simply ignored, as if it was never there. It is used to aid readability.

4. Each pair of contiguous hex digits represents a single sequence element with a value from 0 to 255

5. They can span multiple lines

6. The non-digits are treated as punctuation and used to delimit individual values.

x"1 2 34 5678 _AbC" == {0x01 , 0x02 , 0x34 , 0x56 , 0x78 , 0xAB , 0x0C}

Character strings may be manipulated and operated upon just like any other sequences. For example the string we
first looked at ”ABCDEFG” is entirely equivalent to the sequence:

{65, 66, 67, 68, 69, 70, 71}

which contains the corresponding ASCII codes. The Euphoria compiler will immediately convert ”ABCDEFG” to the
above sequence of numbers. In a sense, there are no ”strings” in Euphoria, only sequences of numbers. A quoted string is
really just a convenient notation that saves you from having to type in all the ASCII codes. It follows that ”” is equivalent
to . Both represent the sequence of zero length, also known as the empty sequence. As a matter of programming style,
it is natural to use ”” to suggest a zero length sequence of characters, and to suggest some other kind of sequence. An
individual character is an atom. It must be entered using single quotes. There is a difference between an individual
character (which is an atom), and a character string of length 1 (which is a sequence). e.g.

’B’ -- equivalent to the atom 66 - the ASCII code for B

"B" -- equivalent to the sequence {66}

Again, ’B’ is just a notation that is equivalent to typing 66. There are no ”characters” in Euphoria, just numbers
(atoms). However, it is possible to use characters without ever having to use their numerical representation.

Keep in mind that an atom is not equivalent to a one-element sequence containing the same value, although there are
a few built-in routines that choose to treat them similarly.

39

CHAPTER 14. DEFINITION 14.2. IDENTIFIERS

14.1.3 Escaped Characters

Special characters may be entered using a back-slash:
Code Meaning
\n newline
\r carriage return
\t tab
\\ backslash
\” double quote
\’ single quote
\0 null
\e escape
\E escape
\b/d..d/ A binary coded value, the \b is followed by 1 or more

binary digits.
Inside strings, use the space character to delimit or end a
binary value.
\x/hh/ A 2-hex-digit value, e.g. ”\x5F” ==> 95
\u/hhhh/ A 4-hex-digit value, e.g. ”\u2A7C” ==> 10876
\U/hhhhhhhh/ An 8-hex-digit value, e.g. ”\U8123FEDC” ==>

2166619868

For example, "Hello, World!\n", or ’\\’. The Euphoria editor displays character strings in green.
Note that you can use the underscore character ’ ’ inside the \b, \x, \u, and \U values to aid readability, e.g.

"\U8123 FEDC" ==> 2166619868

14.2 Identifiers

An identifier is just the name you give something in your program. This can be a variable, constant, function, procedure,
parameter, or namespace. An identifier must begin with either a letter or an underscore, then followed by zero or more
letters, digits or underscore characters. There is no theoretical limit to how large an identifier can be but in practice it
should be no more than about 30 characters.

Identifiers are case-sensitive. This means that "Name" is a different identifier from "name", or "NAME", etc...
Examples of valid identifiers:

1 n

2 color26

3 ShellSort

4 quick_sort

5 a_very_long_indentifier_that_is_really_too_long_for_its_own_good

6 _alpha

Examples of invalid identifiers:

0n -- must not start with a digit

^color26 -- must not start with a punctuation character

Shell Sort -- Cannot have spaces in identifiers.

quick -sort -- must only consist of letters , digits or underscore.

14.3 Comments

Comments are ignored by Euphoria and have no effect on execution speed. The editor displays comments in red.
There are three forms of comment text:

• The line format comment is started by two dashes and extends to the end of the current line.

40

CHAPTER 14. DEFINITION 14.4. EXPRESSIONS

e.g.

-- This is a comment which extends to the end of this line only.

• The multi-line format comment is started by /* and extends to the next occurrence of */, even if that occurs on a
different line.

e.g.

/* This is a comment which

extends over a number

of text lines.

*/

• On the first line only of your program, you can use a special comment beginning with the two character sequence
#!. This is mainly used to tell Unix shells which program to execute the ’script’ program with.

e.g.

#!/ home/rob/euphoria/bin/eui

This informs the Linux shell that your file should be executed by the Euphoria interpreter, and gives the full path to
the interpreter. If you make your file executable, you can run it, just by typing its name, and without the need to type
”eui”. On Windows this line is just treated as a comment (though Apache Web server on Windows does recognize it.).
If your file is a shrouded .il file, use eub.exe instead of eui.

Line comments are typically used to annotate a single (or small section) of code, whereas multi-line comments are
typically used to give larger pieces of documentation inside the source text.

14.4 Expressions

Like other programming languages, Euphoria lets you calculate results by forming expressions. However, in Euphoria you
can perform calculations on entire sequences of data with one expression, where in most other languages you would have
to construct a loop. In Euphoria you can handle a sequence much as you would a single number. It can be copied, passed
to a subroutine, or calculated upon as a unit. For example,

{1,2,3} + 5

is an expression that adds the sequence 1,2,3 and the atom 5 to get the resulting sequence 6,7,8.

We will see more examples later.

14.4.1 Relational Operators

The relational operators < > <= >= = != each produce a 1 (true) or a 0 (false) result.

1 8.8 < 8.7 -- 8.8 less than 8.7 (false)

2 -4.4 > -4.3 -- -4.4 greater than -4.3 (false)

3 8 <= 7 -- 8 less than or equal to 7 (false)

4 4 >= 4 -- 4 greater than or equal to 4 (true)

5 1 = 10 -- 1 equal to 10 (false)

6 8.7 != 8.8 -- 8.7 not equal to 8.8 (true)

As we will soon see you can also apply these operators to sequences.

41

CHAPTER 14. DEFINITION 14.4. EXPRESSIONS

14.4.2 Logical Operators

The logical operators and, or, xor, and not are used to determine the ”truth” of an expression. e.g.

1 1 and 1 -- 1 (true)

2 1 and 0 -- 0 (false)

3 0 and 1 -- 0 (false)

4 0 and 0 -- 0 (false)

5

6 1 or 1 -- 1 (true)

7 1 or 0 -- 1 (true)

8 0 or 1 -- 1 (true)

9 0 or 0 -- 0 (false)

10

11 1 xor 1 -- 0 (false)

12 1 xor 0 -- 1 (true)

13 0 xor 1 -- 1 (true)

14 0 xor 0 -- 0 (false)

15

16 not 1 -- 0 (false)

17 not 0 -- 1 (true)

You can also apply these operators to numbers other than 1 or 0. The rule is: zero means false and non-zero means
true. So for instance:

5 and -4 -- 1 (true)

not 6 -- 0 (false)

These operators can also be applied to sequences. See below.
In some cases short circuit evaluation will be used for expressions containing and or or. Specifically, short circuiting

applies inside decision making expressions. These are found in the if statement, while statement and the loop until
statement. More on this later.

14.4.3 Arithmetic Operators

The usual arithmetic operators are available: add, subtract, multiply, divide, unary minus, unary plus.

1 3.5 + 3 -- 6.5

2 3 - 5 -- -2

3 6 * 2 -- 12

4 7 / 2 -- 3.5

5 -8.1 -- -8.1

6 +8 -- +8

Computing a result that is too big (i.e. outside of -1e300 to +1e300) will result in one of the special atoms +infinity
or -infinity. These appear as inf or -inf when you print them out. It is also possible to generate nan or -nan. ”nan”
means ”not a number”, i.e. an undefined value (such as inf divided by inf). These values are defined in the IEEE
floating-point standard. If you see one of these special values in your output, it usually indicates an error in your program
logic, although generating inf as an intermediate result may be acceptable in some cases. For instance, 1/inf is 0, which
may be the ”right” answer for your algorithm.

Division by zero, as well as bad arguments to math library routines, e.g. square root of a negative number, log of a
non-positive number etc. cause an immediate error message and your program is aborted.

The only reason that you might use unary plus is to emphasize to the reader of your program that a number is positive.
The interpreter does not actually calculate anything for this.

14.4.4 Operations on Sequences

All of the relational, logical and arithmetic operators described above, as well as the math routines described in Language
Reference, can be applied to sequences as well as to single numbers (atoms).

42

CHAPTER 14. DEFINITION 14.4. EXPRESSIONS

When applied to a sequence, a unary (one operand) operator is actually applied to each element in the sequence to
yield a sequence of results of the same length. If one of these elements is itself a sequence then the same rule is applied
again recursively. e.g.

x = -{1, 2, 3, {4, 5}} -- x is {-1, -2, -3, {-4, -5}}

If a binary (two-operand) operator has operands which are both sequences then the two sequences must be of the same
length. The binary operation is then applied to corresponding elements taken from the two sequences to get a sequence
of results. e.g.

1 x = {5, 6, 7, 8} + {10, 10, 20, 100}

2 -- x is {15, 16, 27, 108}

3 x = {{1, 2, 3}, {4, 5, 6}} + {-1, 0, 1} -- ERROR: 2 != 3

4 -- but

5 x = {{1, 2, 3} + {-1, 0, 1}, {4, 5, 6} + {-1, 0, 1}} -- CORRECT

6 -- x is {{0, 2, 4}, {3, 5, 7}}

If a binary operator has one operand which is a sequence while the other is a single number (atom) then the single
number is effectively repeated to form a sequence of equal length to the sequence operand. The rules for operating on
two sequences then apply. Some examples:

1 y = {4, 5, 6}

2 w = 5 * y -- w is {20, 25, 30}

3

4 x = {1, 2, 3}

5 z = x + y -- z is {5, 7, 9}

6 z = x < y -- z is {1, 1, 1}

7

8 w = {{1, 2}, {3, 4}, {5}}

9 w = w * y -- w is {{4, 8}, {15, 20}, {30}}

10

11 w = {1, 0, 0, 1} and {1, 1, 1, 0} -- {1, 0, 0, 0}

12 w = not {1, 5, -2, 0, 0} -- w is {0, 0, 0, 1, 1}

13

14 w = {1, 2, 3} = {1, 2, 4} -- w is {1, 1, 0}

15

16 -- note that the first ’=’ is assignment , and the

17 -- second ’=’ is a relational operator that tests

18 -- equality

Note: When you wish to compare two strings (or other sequences), you should not (as in some other languages) use
the ’=’ operator:

if "APPLE" = "ORANGE" then -- ERROR!

’=’ is treated as an operator, just like ’+’, ’*’ etc., so it is applied to corresponding sequence elements, and the sequences
must be the same length. When they are equal length, the result is a sequence of ones an zeros. When they are not
equal length, the result is an error. Either way you’ll get an error, since an if-condition must be an atom, not a sequence.
Instead you should use the equal built-in routine:

if equal("APPLE", "ORANGE") then -- CORRECT

In general, you can do relational comparisons using the compare built-in routine:

if compare("APPLE", "ORANGE") = 0 then -- CORRECT

You can use compare for other comparisons as well:

if compare("APPLE", "ORANGE") < 0 then -- CORRECT

-- enter here if "APPLE" is less than "ORANGE" (TRUE)

Especially useful is the idiom compare(x, "") = 1 to determine whether x is a non empty sequence. compare(x,

"") = -1 would test for x being an atom, but atom(x) = 1 does the same faster and is clearer to read.

43

CHAPTER 14. DEFINITION 14.4. EXPRESSIONS

14.4.5 Subscripting of Sequences

A single element of a sequence may be selected by giving the element number in square brackets. Element numbers start
at 1. Non-integer subscripts are rounded down to an integer.

For example, if x contains 5, 7.2, 9, 0.5, 13 then x[2] is 7.2. Suppose we assign something different to x[2]:

x[2] = {11 ,22 ,33}

Then x becomes: 5, 11,22,33, 9, 0.5, 13. Now if we ask for x[2] we get 11,22,33 and if we ask for x[2][3]
we get the atom 33. If you try to subscript with a number that is outside of the range 1 to the number of elements, you will
get a subscript error. For example x[0], x[-99] or x[6] will cause errors. So will x[1][3] since x[1] is not a sequence.
There is no limit to the number of subscripts that may follow a variable, but the variable must contain sequences that are
nested deeply enough. The two dimensional array, common in other languages, can be easily represented with a sequence
of sequences:

1 x = {

2 {5, 6, 7, 8, 9}, -- x[1]

3 {1, 2, 3, 4, 5}, -- x[2]

4 {0, 1, 0, 1, 0} -- x[3]

5 }

where we have written the numbers in a way that makes the structure clearer. An expression of the form x[i][j] can be
used to access any element.

The two dimensions are not symmetric however, since an entire ”row” can be selected with x[i], but you need to use
vslice in the Standard Library to select an entire column. Other logical structures, such as n-dimensional arrays, arrays of
strings, structures, arrays of structures etc. can also be handled easily and flexibly:

3-D array:

1 y = {

2 {{1,1}, {3,3}, {5,5}},

3 {{0,0}, {0,1}, {9,1}},

4 {{-1,9},{1,1}, {2,2}}

5 }

6

7 -- y[2][3][1] is 9

Array of strings:

s = {"Hello", "World", "Euphoria", "", "Last One"}

-- s[3] is "Euphoria"

-- s[3][1] is ’E’

A Structure:

1 employee = {

2 {"John","Smith"},

3 45000,

4 27,

5 185.5

6 }

To access ”fields” or elements within a structure it is good programming style to make up an enum that names the
various fields. This will make your program easier to read. For the example above you might have:

1 enum NAME , SALARY , AGE , WEIGHT

2 enum FIRST_NAME , LAST_NAME

3

4 employees = {

5 {{"John","Smith"}, 45000, 27, 185.5} , -- a[1]

6 {{"Bill","Jones"}, 57000, 48, 177.2} , -- a[2]

44

CHAPTER 14. DEFINITION 14.4. EXPRESSIONS

7 -- etc.

8 }

9

10 -- employees [2][SALARY] would be 57000.

The length built-in function will tell you how many elements are in a sequence. So the last element of a sequence s,
is:

s[length(s)]

A short-hand for this is:

s[$]

Similarly,

s[length(s)-1]

can be simplified to:

s[$-1]

The $ may only appear between square braces and it equals the length of the sequence that is being subscripted.
Where there’s nesting, e.g.:

s[$ - t[$-1] + 1]

The first $ above refers to the length of s, while the second $ refers to the length of t (as you’d probably expect).
An example where $ can save a lot of typing, make your code clearer, and probably even faster is:

longname[$][$] -- last element of the last element

Compare that with the equivalent:

longname[length(longname)][length(longname[length(longname)])]

Subscripting and function side-effects:
In an assignment statement, with left-hand-side subscripts:

lhs_var[lhs_expr1][lhs_expr2]... = rhs_expr

The expressions are evaluated, and any subscripting is performed, from left to right. It is possible to have function
calls in the right-hand-side expression, or in any of the left-hand-side expressions. If a function call has the side-effect
of modifying the lhs var, it is not defined whether those changes will appear in the final value of the lhs var, once the
assignment has been completed. To be sure about what is going to happen, perform the function call in a separate
statement, i.e. do not try to modify the lhs var in two different ways in the same statement. Where there are no left-
hand-side subscripts, you can always assume that the final value of the lhs var will be the value of rhs expr, regardless of
any side-effects that may have changed lhs var.

Euphoria data structures are almost infinitely flexible.
Arrays in many languages are constrained to have a fixed number of elements, and those elements must all be of

the same type. Euphoria eliminates both of those restrictions by defining all arrays (sequences) as a list of zero or more
Euphoria objects whose element count can be changed at any time. You can easily add a new structure to the employee
sequence above, or store an unusually long name in the NAME field and Euphoria will take care of it for you. If you
wish, you can store a variety of different employee ”structures”, with different sizes, all in one sequence. However, when
you retrieve a sequence element, it is not guaranteed to be of any type. You, as a programmer, need to check that the
retrieved data is of the type you’d expect, Euphoria will not. The only thing it will check is whether an assignment is
legal. For example, if you try to assign a sequence to an integer variable, Euphoria will complain at the time your code
does the assignment.

Not only can a Euphoria program represent all conventional data structures but you can create very useful, flexible
structures that would be hard to declare in many other languages.

Note that expressions in general may not be subscripted, just variables. For example: 5+2,6-1,7*8,8+1[3] is not
supported, nor is something like: date()[MONTH]. You have to assign the sequence returned by date to a variable, then
subscript the variable to get the month.

45

CHAPTER 14. DEFINITION 14.4. EXPRESSIONS

14.4.6 Slicing of Sequences

A sequence of consecutive elements may be selected by giving the starting and ending element numbers. For example if
x is 1, 1, 2, 2, 2, 1, 1, 1 then x[3..5] is the sequence 2, 2, 2. x[3..3] is the sequence 2. x[3..2] is also
allowed. It evaluates to the zero length sequence . If y has the value: "fred", "george", "mary" then y[1..2] is
"fred", "george".

We can also use slices for overwriting portions of variables. After x[3..5] = 9, 9, 9 x would be 1, 1, 9, 9,

9, 1, 1, 1. We could also have said x[3..5] = 9 with the same effect. Suppose y is 0, "Euphoria", 1, 1. Then
y[2][1..4] is "Euph". If we say y[2][1..4] = "ABCD" then y will become 0, "ABCDoria", 1, 1.

In general, a variable name can be followed by 0 or more subscripts, followed in turn by 0 or 1 slices. Only variables
may be subscripted or sliced, not expressions.

We need to be a bit more precise in defining the rules for empty slices. Consider a slice s[i..j] where s is of length
n. A slice from i to j, where j = i - 1 and i >= 1 produces the empty sequence, even if i = n + 1. Thus 1..0 and
n + 1..n and everything in between are legal (empty) slices. Empty slices are quite useful in many algorithms. A slice
from i to j where j < i - 1 is illegal , i.e. ”reverse” slices such as s[5..3] are not allowed.

We can also use the $ shorthand with slices, e.g.

s[2..$]

s[5..$-2]

s[$-5..$]

s[$][1.. floor($/2)] -- first half of the last element of s

14.4.7 Concatenation of Sequences and Atoms - The ’&’ Operator

Any two objects may be concatenated using the & operator. The result is a sequence with a length equal to the sum of
the lengths of the concatenated objects. e.g.

1 {1, 2, 3} & 4 -- {1, 2, 3, 4}

2

3 4 & 5 -- {4, 5}

4

5 {{1, 1}, 2, 3} & {4, 5} -- {{1, 1}, 2, 3, 4, 5}

6

7 x = {}

8 y = {1, 2}

9 y = y & x -- y is still {1, 2}

You can delete element i of any sequence s by concatenating the parts of the sequence before and after i:

s = s[1..i-1] & s[i+1.. length(s)]

This works even when i is 1 or length(s), since s[1..0] is a legal empty slice, and so is s[length(s)+1..length(s)].

14.4.8 Sequence-Formation

Finally, sequence-formation, using braces and commas:

{a, b, c, ... }

is also an operator. It takes n operands, where n is 0 or more, and makes an n-element sequence from their values.
e.g.

x = {apple , orange*2, {1,2,3}, 99/4+ foobar}

The sequence-formation operator is listed at the bottom of the a precedence chart.

46

CHAPTER 14. DEFINITION 14.4. EXPRESSIONS

14.4.9 Multiple Assignment

Special sequence notation on the left hand side of an assignment can be made to assign to multiple variables with a single
statement. This can be useful for using functions that return multiple values in a sequence, such as value.

1 atom success , val

2

3 { success , val } = value("100")

4

5 -- success = GET_SUCCESS

6 -- val = 100

It is also possible to ignore some of the values in the right hand side. Any elements beyond the number supplied on
the left hand side are ignored. Other values can also be ignored by using a question mark (’?’) instead of a variable name:

{ ?, val } = value("100")

Variables may only appear once on the left hand side, however, they may appear on both the left and right hand side.
For instance, to swap the values of two variables:

{ a, b } = { b, a }

14.4.10 Other Operations on Sequences

Some other important operations that you can perform on sequences have English names, rather than special characters.
These operations are built-in to eui.exe/euiw.exe, so they’ll always be there, and so they’ll be fast. They are described in
detail in the Language Reference, but are important enough to Euphoria programming that we should mention them here
before proceeding. You call these operations as if they were subroutines, although they are actually implemented much
more efficiently than that.

length(sequence s)

Returns the length of a sequence s.
This is the number of elements in s. Some of these elements may be sequences that contain elements of their own,

but length just gives you the ”top-level” count. Note however that the length of an atom is always 1. e.g.

length ({5 ,6 ,7}) -- 3

length ({1, {5,5,5}, 2, 3}) -- 4 (not 6!)

length ({}) -- 0

length (5) -- 1

repeat(object o1, integer count)

Returns a sequence that consists of an item repeated count times. e.g.

repeat(0, 100) -- {0,0,0,...,0} i.e. 100 zeros

repeat("Hello", 3) -- {" Hello", "Hello", "Hello "}

repeat (99 ,0) -- {}

The item to be repeated can be any atom or sequence.

append(sequence s1, object o1)

Returns a sequence by adding an object o1 to the end of a sequence s1.

append ({1,2,3}, 4) -- {1,2,3,4}

append ({1,2,3}, {5,5,5}) -- {1,2,3,{5,5,5}}

append ({}, 9) -- {9}

The length of the new sequence is always 1 greater than the length of the original sequence. The item to be added to
the sequence can be any atom or sequence.

47

CHAPTER 14. DEFINITION 14.5. PRECEDENCE CHART

prepend(sequence s1, object o1)

Returns a new sequence by adding an element to the beginning of a sequence s. e.g.

1 append ({1,2,3}, 4) -- {1,2,3,4}

2 prepend ({1,2,3}, 4) -- {4,1,2,3}

3

4 append ({1,2,3}, {5,5,5}) -- {1,2,3,{5,5,5}}

5 prepend ({}, 9) -- {9}

6 append ({}, 9) -- {9}

The length of the new sequence is always one greater than the length of the original sequence. The item to be added
to the sequence can be any atom or sequence.

These two built-in functions, append and prepend, have some similarities to the concatenate operator, &, but there
are clear differences. e.g.

1 -- appending a sequence is different

2 append ({1,2,3}, {5,5,5}) -- {1,2,3,{5,5,5}}

3 {1,2,3} & {5,5,5} -- {1,2,3,5,5,5}

4

5 -- appending an atom is the same

6 append ({1,2,3}, 5) -- {1,2,3,5}

7 {1,2,3} & 5 -- {1,2,3,5}

insert(sequence in what, object what, atom position)

This function takes a target sequence, in what, shifts its tail one notch and plugs the object what in the hole just created.
The modified sequence is returned. For instance:

s = insert("Joe",’h’ ,3) -- s is "Johe", another string

s = insert("Joe","h" ,3) -- s is {’J’,’o’,{’h’},’e’}, not a string

s = insert ({1,2,3},4,-0.5) -- s is {4,1,2,3}, like prepend ()

s = insert ({1,2 ,3},4 ,8.5) -- s is {1,2,3,4}, like append ()

The length of the returned sequence is one more than the one of in what. This is the same rule as for append and
prepend above, which are actually special cases of insert.

splice(sequence in what, object what, atom position)

If what is an atom, this is the same as insert. But if what is a sequence, that sequence is inserted as successive elements
into in what at position. Example:

1 s = splice("Joe",’h’ ,3)

2 -- s is "Johe", like insert ()

3 s = splice("Joe","hn Do" ,3)

4 -- s is "John Doe", another string

5 s = splice("Joh","n Doe" ,9.3)

6 -- s is "John Doe", like with the & operator

7 s = splice ({1,2,3},4,-2)

8 -- s is {4,1,2,3}, like with the & operator in reversed order

The length of splice(in what, what, position) always is length(in what) + length(what), like for concate-
nation using &.

14.5 Precedence Chart

When two or more operators follow one another in an expression, there must be rules to tell in which order they should be
evaluated, as different orders usually lead to different results. It is common and convenient to use a precedence order on

48

CHAPTER 14. DEFINITION 14.5. PRECEDENCE CHART

operators. Operators with the highest degree of precedence are evaluated first, then those with highest precedence among
what remains, and so on.

The precedence of operators in expressions is as follows:
highest precedence

** highest precedence **

function/type calls

unary - unary+ not

* /

+ -

&

< > <= >= = !=

and or xor

lowest precedence

{ , , , }

Thus 2+6*3 means 2+(6*3) rather than (2+6)*3. Operators on the same line above have equal precedence and are
evaluated left to right. You can force any order of operations by placing round brackets () around an expression. For
instance, 6/3*5 is 2*5, not 6/15.

Different languages or contexts may have slightly different precedence rules. You should be careful when translating
a formula from a language to another; Euphoria is no exception. Adding superfluous parentheses to explicitly denote
the exact order of evaluation does not cost much, and may help either readers used to some other precedence chart or
translating to or from another context with slightly different rules. Watch out for and and or, or * and /.

The equals symbol ’=’ used in an assignment statement is not an operator, it’s just part of the syntax of the language.

49

Chapter 15
Declarations

15.1 Identifiers

Identifiers, which encompass all explicitly declared variable, constant or routine names, may be of any length. Upper
and lower case are distinct. Identifiers must start with a letter or underscore and then be followed by any combination of
letters, digits and underscores. The following reserved words have special meaning in Euphoria and cannot be used as
identifiers:

1 and export public

2 as fallthru retry

3 break for return

4 by function routine

5 case global switch

6 constant goto then

7 continue if to

8 do ifdef type

9 else include until

10 elsedef label while

11 elsif loop with

12 elsifdef namespace without

13 end not xor

14 entry or

15 enum override

16 exit procedure

The Euphoria editor displays these words in blue
The following are Euphoria built-in routines. It is best if you do not use these for your own identifiers:

1 abort getenv peek4s system

2 and_bits gets peek4u system_exec

3 append hash peeks tail

4 arctan head platform tan

5 atom include_paths poke task_clock_start

6 c_func insert poke2 task_clock_stop

7 c_proc integer poke4 task_create

8 call length position task_list

9 call_func log power task_schedule

10 call_proc machine_func prepend task_self

11 clear_screen machine_proc print task_status

12 close match printf task_suspend

13 command_line match_from puts task_yield

14 compare mem_copy rand time

50

CHAPTER 15. DECLARATIONS 15.1. IDENTIFIERS

15 cos mem_set remainder trace

16 date not_bits remove xor_bits

17 delete object repeat ?

18 delete_routine open replace &

19 equal option_switches routine_id $

20 find or_bits sequence

21 find_from peek sin

22 floor peek_string splice

23 get_key peek2s sprintf

24 getc peek2u sqrt

Identifiers can be used in naming the following:

• procedures

• functions

• types

• variables

• constants

• enums

15.1.1 procedures

These perform some computation and may contain a list of parameters, e.g.

1 procedure empty()

2 end procedure

3

4 procedure plot(integer x, integer y)

5 position(x, y)

6 puts(1, ’*’)

7 end procedure

There are a fixed number of named parameters, but this is not restrictive since any parameter could be a variable-length
sequence of arbitrary objects. In many languages variable-length parameter lists are impossible. In C, you must set up
strange mechanisms that are complex enough that the average programmer cannot do it without consulting a manual or
a local guru.

A copy of the value of each argument is passed in. The formal parameter variables may be modified inside the procedure
but this does not affect the value of the arguments. Pass by reference can be achieved using indexes into some fixed
sequence.

Performance Note:
The interpreter does not actually copy sequences or floating-point numbers unless it becomes necessary. For example,

y = {1,2,3,4,5,6,7,8.5,"ABC"}

x = y

The statement x = y does not actually cause a new copy of y to be created. Both x and y will simply ”point” to the
same sequence. If we later perform x[3] = 9, then a separate sequence will be created for x in memory (although
there will still be just one shared copy of 8.5 and "ABC"). The same thing applies to ”copies” of arguments passed
in to subroutines.

For a number of procedures or functions–see below–some parameters may have the same value in many cases. The most
expected value for any parameter may be given a default value. To pass the default value, use a question mark ?, or omit
the value. When the parameter is not the last in the list to the routine, you should use the ? for clarity, rather than simply
omitting the parameter, and having consecutive commas.

51

CHAPTER 15. DECLARATIONS 15.1. IDENTIFIERS

1 procedure foo(sequence s, integer n=1)

2 ? n + length(s)

3 end procedure

4

5 foo("abc") -- prints out 4 = 3 + 1. n was not specified , so was set to 1.

6 foo("abc", ?) -- prints out 4 = 3 + 1. n was not specified , so was set to 1.

7 foo("abc", 3) -- prints out 6 = 3 + 3

This is not limited to the last parameter(s):

1 procedure bar(sequence s="abc", integer n, integer p=1)

2 ? length(s)+n+p

3 end procedure

4

5 bar(?, 2) -- prints out 6 = 3 + 2 + 1

6 bar(, 2) -- prints out 6 = 3 + 2 + 1. Legal , but considered bad form.

7 bar (2) -- errors out , as 2 is not a sequence

8 bar(?, 2, ?) -- same as bar(,2)

9 bar(?, 2, 3) -- prints out 8 = 3 + 22 + 3

10 bar({}, 2, ?) -- prints out 3 = 0 + 2 + 1

11 bar() -- errors out , second parameter is omitted ,

12 -- but doesn ’t have a default value

Any expression may be used in a default value. Parameters that have been already mentioned may even be part of the
expression:

1 procedure baz(sequence s, integer n=length(s))

2 ? n

3 end procedure

4

5 baz("abcd") -- prints out 4

15.1.2 functions

These are just like procedures, but they return a value, and can be used in an expression, e.g.

1 function max(atom a, atom b)

2 if a >= b then

3 return a

4 else

5 return b

6 end if

7 end function

15.1.3 return statement

Any Euphoria object can be returned. You can, in effect, have multiple return values, by returning a sequence of objects.
e.g.

return {x_pos , y_pos}

However, Euphoria does not have variable lists. When you return a sequence, you still have to dispatch its contents to
variables as needed. And you cannot pass a sequence of parameters to a routine, unless using call func or call proc, which
carries a performance penalty.

We will use the general term ”subroutine”, or simply ”routine” when a remark is applicable to both procedures and
functions.

Defaulted parameters can be used in functions exactly as they are in procedures. See the section above for a few
examples.

52

CHAPTER 15. DECLARATIONS 15.1. IDENTIFIERS

15.1.4 types

These are special functions that may be used in declaring the allowed values for a variable. A type must have exactly one
parameter and should return an atom that is either true (non-zero) or false (zero). Types can also be called just like other
functions. See Specifying the Type of a variable.

Although there are no restrictions to using defaulted parameters with types, their use is so much constrained by a type
having exactly one parameter that they are of little practical help there.

You cannot use a type to perform any adjustment to the value being checked, if only because this value may be the
temporary result of an expression, not an actual variable.

15.1.5 variables

These may be assigned values during execution e.g.

1 -- x may only be assigned integer values

2 integer x

3 x = 25

4

5 -- a, b and c may be assigned *any* value

6 object a, b, c

7 a = {}

8 b = a

9 c = 0

When you declare a variable you name the variable (which protects you against making spelling mistakes later on) and
you define which sort of values may legally be assigned to the variable during execution of your program.

The simple act of declaring a variable does not assign any value to it. If you attempt to read it before assigning any
value to it, Euphoria will issue a run-time error as ”variable xyz has never been assigned a value”.

To guard against forgetting to initialize a variable, and also because it may make the code clearer to read, you can
combine declaration and assignment:

integer n = 5

This is equivalent to

integer n

n = 5

It is not infrequent that one defines a private variable that bears the same name as one already in scope. You can
reuse the value of that variable when performing an initialization on declare by using a default namespace for the current
file:

1 namespace app

2

3 integer n

4 n=5

5

6 procedure foo()

7 integer n = app:n + 2

8 ? n

9 end procedure

10

11 foo() -- prints out 7

15.1.6 constants

These are variables that are assigned an initial value that can never change e.g.

53

CHAPTER 15. DECLARATIONS 15.1. IDENTIFIERS

constant MAX = 100

constant Upper = MAX - 10, Lower = 5

constant name_list = {"Fred", "George", "Larry"}

The result of any expression can be assigned to a constant, even one involving calls to previously defined functions,
but once the assignment is made, the value of the constant variable is ”locked in”.

Constants may not be declared inside a subroutine.

15.1.7 enum

An enumerated value is a special type of constant where the first value defaults to the number 1 and each item after that
is incremented by 1 by default. An optional by keyword can be supplied to change the increment value. As with sequences,
enums can also be terminated with a $ for ease of editing enum lists that may change frequently during development.

enum ONE , TWO , THREE , FOUR

-- ONE is 1, TWO is 2, THREE is 3, FOUR is 4

You can change the value of any one item by assigning it a numeric value. Enums can only take numeric values. You
cannot set the starting value to an expression or other variable. Subsequent values are always the previous value plus one,
unless they too are assigned a default value.

enum ONE , TWO , THREE , ABC=10, DEF , XYZ

-- ONE is 1, TWO is 2, THREE is 3

-- ABC is 10, DEF is 11, XYZ is 12

Euphoria sequences use integer indexes, but with enum you may write code like this:

enum X, Y

sequence point = { 0,0 }

point[X] = 3

point[Y] = 4

By default, unless an enum member is being specifically set to some value, its value will be one more than the previous
member’s value, with the first default value being 1. This default can be overridden. The syntax is:

enum by DELTA member1 , member2 , ... ,memberN

where ’DELTA’ is a literal number with an optional operation code (*, +, -, /) preceding it.

Examples:

enum by 2 A,B,C=6,D --> values are 1,3,6,8

enum by -2 A=10,B,C,D --> values are 10,8,6,4

enum by * 2 A,B,C,D,E --> values are 1,2,4,8,16

enum by / 3 A=81,B,C,D,E --> values are 81,27,9,3,1

Also note that enum members do not have to be integers.

enum by / 2 A=5,B,C --> values are 5, 2.5, 1.25

15.1.8 enum type

There is also a special form of enum, an enum type. This is a simple way to write a user-defined type based on the set of
values in a specific enum group. The type created this way can be used anywhere a normal user-defined type can be use.

For example,

54

CHAPTER 15. DECLARATIONS 15.2. SPECIFYING THE TYPE OF A VARIABLE

1 enum type RGBA RED , GREEN , BLUE , ALPHA end type

2

3 -- Only allow values of RED , GREEN , BLUE , or ALPHA as parameters

4 procedure xyz(RGBA x, RGBA y)

5 -- do stuff ...

6 end procedure

However there is one significant difference when it comes to enum types. For normal types, when calling the type
function, it returns either 0 or 1. The enum type function returns 0 if the argument is not a member of the enum set, and
it returns a positive integer when the argument is a member. The value returned is the ordinal number of the member
in the enum’s definition, regardless of what the member’s value is. As an exception to this, if two enums share the same
value, then they will share the same ordinal number. The ordinal numbers of enums surrounding these will continue to
increment as if every enum had a unique ordinal number, causing some numbers to be skipped.

For example,

1 enum type color RED=4, GREEN=7, BLACK=1, BLUE=3 , PINK =10 end type

2

3 ? color(RED) --> 1

4 ? color(GREEN) --> 2

5 ? color(BLACK) --> 3

6 ? color(BLUE) --> 4

7 ? color(PINK) --> 5

8

9 constant color_names = {"rouge", "vert", "noir", "bleu", "rose"}

10

11 puts(1, color_names[color(BLUE)]) --> bleu

But with the exception,

1 enum type color RED , GREEN=7, BLACK=1, BLUE=3 , PINK =10 end type

2 ? color(RED) --> 1

3 ? color(GREEN) --> 2

4 ? color(BLACK) --> 1

5 ? color(BLUE) --> 4

6 ? color(PINK) --> 5

Note that none of the enums have an ordinal number with a value of 3. This is simply skipped.

15.2 Specifying the type of a variable

So far you’ve already seen some examples of variable types but now we will define types more precisely.
Variable declarations have a type name followed by a list of the variables being declared. For example,

1 object a

2

3 global integer x, y, z

4

5 procedure fred(sequence q, sequence r)

The types: object, sequence, atom and integer are predefined. Variables of type object may take on any value.
Those declared with type sequence must always be sequences. Those declared with type atom must always be atoms.

Variables declared with type integer must be atoms with integer values from -1073741824 to +1073741823 inclusive.
You can perform exact calculations on larger integer values, up to about 15 decimal digits, but declare them as atom,
rather than integer.

Note:
In a procedure or function parameter list like the one for fred above, a type name may only be followed by a single
parameter name.

55

CHAPTER 15. DECLARATIONS 15.2. SPECIFYING THE TYPE OF A VARIABLE

Performance Note:
Calculations using variables declared as integer will usually be somewhat faster than calculations involving variables
declared as atom. If your machine has floating-point hardware, Euphoria will use it to manipulate atoms that are not
integers. If your machine doesn’t have floating-point hardware (this may happen on old 386 or 486 PCs), Euphoria
will call software floating-point arithmetic routines contained in euid.exe (or in Windows). You can force eui.exe

to bypass any floating-point hardware, by setting an environment variable:

SET NO87=1

The slower software routines will be used, but this could be of some advantage if you are worried about the floating-
point bug in some early Pentium chips.

15.2.1 User-defined types

To augment the predefined types, you can create user-defined types. All you have to do is define a single-parameter
function, but declare it with type ... end type instead of function ... end function. For example,

1 type hour(integer x)

2 return x >= 0 and x <= 23

3 end type

4

5 hour h1, h2

6

7 h1 = 10 -- ok

8 h2 = 25 -- error! program aborts with a message

Variables h1 and h2 can only be assigned integer values in the range 0 to 23 inclusive. After each assignment to h1 or
h2 the interpreter will call hour, passing the new value. The value will first be checked to see if it is an integer (because of
”integer x”). If it is, the return statement will be executed to test the value of x (i.e. the new value of h1 or h2). If hour
returns true, execution continues normally. If hour returns false then the program is aborted with a suitable diagnostic
message.

”hour” can be used to declare subroutine parameters as well:

procedure set_time(hour h)

set time can only be called with a reasonable value for parameter h, otherwise the program will abort with a message.
A variable’s type will be checked after each assignment to the variable (except where the compiler can predetermine that

a check will not be necessary), and the program will terminate immediately if the type function returns false. Subroutine
parameter types are checked each time that the subroutine is called. This checking guarantees that a variable can never
have a value that does not belong to the type of that variable.

Unlike other languages, the type of a variable does not affect any calculations on the variable, nor the way its contents
are displayed. Only the value of the variable matters in an expression. The type just serves as an error check to prevent
any ”corruption” of the variable. User-defined types can catch unexpected logical errors in your program. They are not
designed to catch or correct user input errors. In particular, they cannot adjust a wrong value to some other, presumably
legal, one.

Type checking can be turned off or on between subroutines using the with type check or without type check (see
specialstatements). It is initially on by default.

Note to Bench markers:
When comparing the speed of Euphoria programs against programs written in other languages, you should specify
without type check at the top of the file. This gives Euphoria permission to skip run-time type checks, thereby
saving some execution time. All other checks are still performed, e.g. subscript checking, uninitialized variable
checking etc. Even when you turn off type checking, Euphoria reserves the right to make checks at strategic places,
since this can actually allow it to run your program faster in many cases. So you may still get a type check failure
even when you have turned off type checking. Whether type checking is on or off, you will never get a machine-level
exception. You will always get a meaningful message from Euphoria when something goes wrong. (This
might not be the case when you T directly into memory, or call routines written in C or machine code.)

56

CHAPTER 15. DECLARATIONS 15.2. SPECIFYING THE TYPE OF A VARIABLE

Euphoria’s way of defining types is simpler than what you will find in other languages, yet Euphoria provides the programmer
with greater flexibility in defining the legal values for a type of data. Any algorithm can be used to include or exclude
values. You can even declare a variable to be of type object which will allow it to take on any value. Routines can be
written to work with very specific types, or very general types.

For many programs, there is little advantage in defining new types, and you may wish to stick with the four predefined
types. Unlike other languages, Euphoria’s type mechanism is optional. You don’t need it to create a program.

However, for larger programs, strict type definitions can aid the process of debugging. Logic errors are caught close to
their source and are not allowed to propagate in subtle ways through the rest of the program. Furthermore, it is easier to
reason about the misbehavior of a section of code when you are guaranteed that the variables involved always had a legal
value, if not the desired value.

Types also provide meaningful, machine-checkable documentation about your program, making it easier for you or
others to understand your code at a later date. Combined with the subscript checking, uninitialized variable checking,
and other checking that is always present, strict run-time type checking makes debugging much easier in Euphoria than in
most other languages. It also increases the reliability of the final program since many latent bugs that would have survived
the testing phase in other languages will have been caught by Euphoria.

Anecdote 1:
In porting a large C program to Euphoria, a number of latent bugs were discovered. Although this C program was
believed to be totally ”correct”, we found: a situation where an uninitialized variable was being read; a place where
element number ”-1” of an array was routinely written and read; and a situation where something was written just
off the screen. These problems resulted in errors that weren’t easily visible to a casual observer, so they had survived
testing of the C code.

Anecdote 2:
The Quick Sort algorithm presented on page 117 of Writing Efficient Programs by Jon Bentley has a subscript
error! The algorithm will sometimes read the element just before the beginning of the array to be sorted, and will
sometimes read the element just after the end of the array. Whatever garbage is read, the algorithm will still work
- this is probably why the bug was never caught. But what if there isn’t any (virtual) memory just before or just
after the array? Bentley later modifies the algorithm such that this bug goes away–but he presented this version as
being correct. Even the experts need subscript checking!

Performance Note:
When typical user-defined types are used extensively, type checking adds only 20 to 40 percent to execution time.
Leave it on unless you really need the extra speed. You might also consider turning it off for just a few heavily-
executed routines. Profiling can help with this decision.

15.2.2 integer

An Euphoria integer is a mathematical integer restricted to the range -1,073,741,824 to +1,073,741,823. As a result,
a variable of the integer type, while allowing computations as fast as possible, cannot hold 32-bit machine addresses, even
though the latter are mathematical integers. You must use the atom type for this purpose. Also, even though the product
of two integers is a mathematical integer, it may not fit into an integer, and should be kept in an atom instead.

15.2.3 atom

An atom can hold three kinds of data:

• Mathematical integers in the range -power(2,53) to +power(2,53)

• Floating point numbers, in the range -power(2,1024)+1 to +power(2,1024)-1

• Large mathematical integers in the same range, but with a fuzz that grows with the magnitude of the integer.

power(2,53) is slightly above 9.1015, power(2,1024) is in the 10308 range.
Because of these constraints, which arise in part from common hardware limitations, some care is needed for specific

purposes:

57

CHAPTER 15. DECLARATIONS 15.3. SCOPE

• The sum or product of two integers is an atom, but may not be an integer.

• Memory addresses, or handles acquired from anything non Euphoria, including the operating system, must be stored
as an atom.

• For large numbers, usual operations may yield strange results:

1 integer n = power(2, 27) -- ok

2 integer n_plus = n + 1, n_minus = n - 1 -- ok

3 atom a = n * n -- ok

4 atom a1 = n_plus * n_minus -- still ok

5 ? a - a1 -- prints 0, should be 1 mathematically

This is not an Euphoria bug. The IEEE 754 standard for floating point numbers provides for 53 bits of precision for any
real number, and an accurate computation of a-a1 would require 54 of them. Intel FPU chips do have 64 bit precision
registers, but the low order 16 bits are only used internally, and Intel recommends against using them for high precision
arithmetic. Their SIMD machine instruction set only uses the IEEE 754 defined format.

15.2.4 sequence

A sequence is a type that is a container. A sequence has elements which can be accessed through their index, like in
my sequence[3]. sequences are so generic as being able to store all sorts of data structures: strings, trees, lists, anything.
Accesses to sequences are always bound checked, so that you cannot read or write an element that does not exist, ever. A
large amount of extraction and shape change operations on sequences is available, both as built-in operations and library
routines. The elements of a sequence can have any type.

sequences are implemented very efficiently. Programmers used to pointers will soon notice that they can get most
usual pointer operations done using sequence indexes. The loss in efficiency is usually hard to notice, and the gain in code
safety and bug prevention far outweighs it.

15.2.5 object

This type can hold any data Euphoria can handle, both atoms and sequences.
The object type returns 0 if a variable is not initialized, else 1.

15.3 Scope

15.3.1 Why scopes, and what are they?

The scope of an identifier is the portion of the program where its declaration is in effect, i.e. where that identifier is visible.
Euphoria has many pre-defined procedures, functions and types. These are defined automatically at the start of any

program. The Euphoria editor shows them in magenta. These pre-defined names are not reserved. You can override them
with your own variables or routines.

It is possible to use a user-defined identifier before it has been declared, provided that it will be declared at some point
later in the program.

For example, procedures, functions and types can call themselves or one another recursively. Mutual recursion, where
routine A calls routine B which directly or indirectly calls routine A, implies one of A or B being called before it is defined.
This was traditionally the most frequent situation which required using the routine id mechanism, but is now supported
directly. See Indirect Routine Calling for more details on the routine id mechanism.

15.3.2 Defining the scope of an identifier

The scope of an identifier is a description of what code can ’access’ it. Code in the same scope of an identifier can access
that identifier and code not in the same scope cannot access it.

The scope of a variable depends upon where and how it is declared.

58

CHAPTER 15. DECLARATIONS 15.3. SCOPE

• If it is declared within a for, while, loop or switch, its scope starts at the declaration and ends at the respective
end statement.

• In an if statement, the scope starts at the declaration and ends either at the next else, elsif or end if statement.

• If a variable is declared within a routine (known as a private variable) and outside one of the structures listed above,
the scope of the variable starts at the declaration and ends at the routine’s end statement.

• If a variable is declared outside of a routine (known as a module variable), and does not have a scope modifier, its
scope starts at the declaration and ends at the end of the file it is declared in.

The scope of a constant that does not have a scope modifier, starts at the declaration and ends at the end of the file
it is declared in.

The scope of a enum that does not have a scope modifier, starts at the declaration and ends at the end of the file it
is declared in.

The scope of all procedures, functions and types, which do not have a scope modifier, starts at the beginning of the
source file and ends at the end of the source file in which they are declared. In other words, these can be accessed by any
code in the same file.

Constants, enums, module variables, procedures, functions and types, which do not have a scope modifier are referred
to as local. However, these identifiers can have a scope modifier preceding their declaration, which causes their scope to
extend beyond the file they are declared in.

• If the keyword global precedes the declaration, the scope of these identifiers extends to the whole application. They
can be accessed by code anywhere in the application files.

• If the keyword public precedes the declaration, the scope extends to any file that explicitly includes the file in which
the identifier is declared, or to any file that includes a file that in turn public includes the file containing the
public declaration.

• If the keyword export precedes the declaration, the scope only extends to any file that directly includes the file in
which the identifier is declared.

When you [a Euphoria file in another file, only the identifiers declared using a scope modifier are accessible to the file
doing the include. The other declarations in the included file are invisible to the file doing the include, and you will get an
error message, ”Errors resolving the following references”, if you try to use them.

There is a variant of the include statement, called public include, which will be discussed later and behaves differently
on public symbols.

Note that constant and enum declarations must be outside of any subroutine.
Euphoria encourages you to restrict the scope of identifiers. If all identifiers were automatically global to the whole

program, you might have a lot of naming conflicts, especially in a large program consisting of files written by many
different programmers. A naming conflict might cause a compiler error message, or it could lead to a very subtle bug,
where different parts of a program accidentally modify the same variable without being aware of it. Try to use the most
restrictive scope that you can. Make variables private to one routine where possible, and where that is not possible, make
them local to a file, rather than global to the whole program. And whenever an identifier needs to be known from a few
files only, make it public or export so as to hide it from whoever does not need to see it – and might some day define
the same identifier.

For example:

1 -- sublib.e

2 export procedure bar()

3 ?0

4 end procedure

5

6 -- some_lib.e

7 include sublib.e

8 export procedure foo()

9 ?1

10 end procedure

59

CHAPTER 15. DECLARATIONS 15.3. SCOPE

11 bar() -- ok, declared in sublib.e

12

13 -- my_app.exw

14 include some_lib.e

15 foo() -- ok, declared in some_lib.e

16 bar() -- error! bar() is not declared here

Why not declare foo as global, as it is meant to be used anywhere? Well, one could, but this will increase the risks of
name conflicts. This is why, for instance, all public identifiers from the standard library have public scope. global should
be used rarely, if ever. Because earlier versions of Euphoria didn’t have public or export, it has to remain there for a while.
One should be very sure of not polluting any foreign file’s symbol table before using global scope. Built-in identifiers act
as if declared as global – but they are not declared in any Euphoria coded file.

15.3.3 Using namespaces

Euphoria namespaces are used to disambiguate between symbols (routines, variables, constants, etc) with the same names
in different files. They may be declared as a default namespace in a file for the convenience of the users of that file, or
they may be declared at the point where a file is included. Note that unlike namespaces in some other languages, this
does not provide a sandbox around the symbols in the file. It is just an easy way to tell euphoria to look for a symbol in
a particular file.

Identifiers marked as global, public or export are known as exposed variables because they can be used in files
other than the one they were declared in.

All other identifiers can only be used within their own file. This information is helpful when maintaining or enhancing
the file, or when learning how to use the file. You can make changes to the internal routines and variables, without having
to examine other files, or notify other users of the include file.

Sometimes, when using include files developed by others, you will encounter a naming conflict. One of the include file
authors has used the same name for a exposed identifier as one of the other authors. One of way of fixing this, if you have
the source, is to simply edit one of the include files to correct the problem, however then you’d have repeat this process
whenever a new version of the include file was released.

Euphoria has a simpler way to solve this. Using an extension to the include statement, you can say for example:

1 include johns_file.e as john

2 include bills_file.e as bill

3

4 john:x += 1

5 bill:x += 2

In this case, the variable x was declared in two different files, and you want to refer to both variables in your file. Using
the namespace identifier of either john or bill, you can attach a prefix to x to indicate which x you are referring to.
We sometimes say that john refers to one namespace, while bill refers to another distinct namespace. You can attach
a namespace identifier to any user-defined variable, constant, procedure or function. You can do it to solve a conflict, or
simply to make things clearer. A namespace identifier has local scope. It is known only within the file that declares it,
i.e. the file that contains the include statement. Different files might define different namespace identifiers to refer to the
same included file.

There is a special, reserved namespace, eu for referring to built-in Euphoria routines. This can be useful when a built-in
routine has been overridden:

1 procedure puts(integer fn , object text)

2 eu:puts(fn, "Overloaded puts says: "& text)

3 end procedure

4

5 puts(1, "Hello , world !\n")

6 eu:puts(1, "Hello , world !\n")

Files can also declare a default namespace to be used with the file. When a file with a default namespace is included, if
the include statement did not specify a namespace, then the default namespace will be automatically declared in that file.
If the include statement declares a namespace for the newly included file, then the specified namespace will be available

60

CHAPTER 15. DECLARATIONS 15.3. SCOPE

instead of the default. No two files can use the same namespace identifier. If two files with the same default namespaces
are included, at least one will be required to have a different namespace to be specified.

To declare a default namespace in a file, the first token (whitespace and comments are ignored) should be ’namespace’
followed by the desired name:

-- foo.e : this file does some stuff

namespace foo

A namespace that is declared as part of an include statement is local to the file where the include statement is.
A default namespace declared in a file is considered a public symbol in that file. Namespaces and other symbols (e.g.,
variables, functions, procedures and types) can have the same name without conflict. A namespace declared through an
include statement will mask a default namespace declared in another file, just like a normal local variable will mask a
public variable in another file. In this case, rather than using the default namespace, declare a new namespace through
the include statement.

Note that declaring a namespace, either through the include statement or as a default namespace does not require
that every symbol reference must be qualified with that namespace. The namespace simply allows the user to deconflict
symbols in different files with the same name, or to allow the programmer to be explicit about where symbols are coming
from for the purposes of clarity, or to avoid possible future conflicts.

A qualified reference does not absolutely restrict the reference to symbols that actually reside within the specified file.
It can also apply to symbols included by that file. This is especially useful for multi-file libraries. Programmers can use a
single namespace for the library, even though some of the visible symbols in that library are not declared in the main file:

1 -- lib.e

2 namespace lib

3

4 public include sublib.e

5

6 public procedure main()

7 ...

8

9 -- sublib.e

10 public procedure sub()

11 ...

12

13 -- app.ex

14 include lib.e

15

16 lib:main()

17 lib:sub()

Now, what happens if you do not use ’public include’?

1 -- lib2.e

2 include sublib.e

3 ...

4

5 -- app2.ex

6 include lib.e

7 lib:main()

8 lib:sub() -- error. sub() is visible in lib2.e but not in app2.ex

15.3.4 The visibility of public and export identifiers

When a file needs to see the public or exported identifiers in another file that includes the first file, the first file must
include that other (including) file.

For example,

-- Parent file: foo.e --

61

CHAPTER 15. DECLARATIONS 15.3. SCOPE

public integer Foo = 1

include bar.e -- bar.e needs to see Foo

showit () -- execute a routine in bar.e

1 -- Included file: bar.e --

2 include foo.e -- included so I can see Foo

3 constant xyz = Foo + 1

4

5 public procedure showit ()

6 ? xyz

7 end procedure

Public symbols can only be seen by the file that explicitly includes the file where those public symbols are declared.
For example,

-- Parent file: foo.e --

include bar.e

showit () -- execute a public routine in bar.e

If however, a file wants a third file to also see the symbols that it can, it needs to do a public include.
For example,

1 -- Parent file: foo.e --

2 public include bar.e

3 showit () -- execute a public routine in bar.e

4

5 public procedure fooer ()

6 . . .

7 end procedure

-- Appl file: runner.ex --

include foo.e

showit () -- execute a public routine that foo.e can see in bar.e

fooer () -- execute a public routine in foo.e

The public include facility is designed to make having a library composed of multiple files easy for an application
to use. It allows the main library file to expose symbols in files that it includes as if the application had actually included
them. That way, symbols meant for the end user can be declared in files other than the main file, and the library can still
be organized however the author prefers without affecting the end user.

Another example
Given that we have two files LIBA.e and LIBB.e ...

1 -- LIBA.e --

2 public constant

3 foo1 = 1,

4 foo2 = 2

5

6 export function foobarr1 ()

7 return 0

8 end function

9

10 export function foobarr2 ()

11 return 0

12 end function

and

-- LIBB.e --

-- I want to pass on just the constants not

62

CHAPTER 15. DECLARATIONS 15.3. SCOPE

-- the functions from LIBA.e.

public include LIBA.e

The export scope modifier is used to limit the extent that symbols can be accessed. It works just like public except
that export symbols are only ever passed up one level only. In other words, if a file wants to use an export symbol, that
file must include it explicitly.

In this example above, code in LIBB.e can see both the public and export symbols declared in LIBA.e (foo1, foo2

foobarr1 and foobarr2) because it explicitly includes LIBA.e. And by using the public prefix on the include of
LIBA.e, it also allows any file that includes LIBB.e to the public symbols from LIBA.e but they will not see any export

symbols declared in LIBA.e.
In short, a public include is used expose public symbols that are included, up one level but not any export

symbols that were include.

15.3.5 The complete set of resolution rules

Resolution is the process by which the interpreter determines which specific symbol will actually be used at any given
point in the code. This is usually quite easy as most symbol names in a given scope are unique and so Euphoria does not
have to choose between them. However, when the same symbol name is used in different but enclosing scopes, Euphoria
has to make a decision about which symbol the coder is referring to.

When Euphoria sees an identifier name being used, it looks for the name’s declaration starting from the current scope
and moving outwards through the enclosing scopes until the name’s declaration is found.

The hierarchy of scopes can be viewed like this ...

global/public/export

file

routine

block 1

block 2

...

block n

So, if a name is used at a block level, Euphoria will first check for its declaration in the same block, and if not found
will check the enclosing blocks until it reaches the routine level, in which case it checks the routine (including parameter
names), and then check the file that the block is declared in and finally check the global/public/export symbols.

By the way, Euphoria will not allow a name to be declared if it is already declared in the same scope, or enclosing
block or enclosing routine. Thus the following examples are illegal...

integer a

if x then

integer a -- redefinition not allowed.

end if

1 if x then

2 integer a

3 if y then

4 integer a -- redefinition not allowed.

5 end if

6 end if

1 procedure foo(integer a)

2 if x then

3 integer a -- redefinition not allowed.

4 end if

5 end procedure

But note that this below is valid ...

63

CHAPTER 15. DECLARATIONS 15.3. SCOPE

1 integer a = 1

2 procedure foo()

3 integer a = 2

4 ? a

5 end procedure

6 ? a

In this situation, the second declaration of ’a’ is said to shadow the first one. The output from this example will be ...

2

1

Symbols all declared in the same file (be they in blocks, routines or at the file level) are easy to check by Euphoria
for scope clashes. However, a problem can arise when symbol names declared as global/public/export in different files
are placed in the same scope during include processing. As it is quite possible for these files to come from independent
developers that are not aware of each other’s symbol names, the potential for name clashes is high. A name clash is just
when the same name is declared in the same scope but in different files. Euphoria cannot generally decide which name
you were referring to when this happens, so it needs you help to resolve it. This is where the namespace concept is used.

A namespace is just a name that you assign to an include file so that your code can exactly specify where an identifier
that your code is using actually comes from. Using a namespace with an identifier, for example:

include somefile.e as my_lib

include another.e

my_lib:foo()

enables Euphoria to resolve the identifier (foo) as explicitly coming from the file associated with the namespace
”my lib”. This means that if foo was also declared as global/public/export in another.e then that foo would be ignored
and the foo in somefile.e would be used instead. Without that namespace, Euphoria would have complained (Errors
resolving the following references:)

If you need to use both foo symbols you can still do that by using two different namespaces. For example:

include somefile.e as my_lib

include another.e as her_ns

my_lib:foo() -- Calls the one in somefile.e

her_ns:foo() -- Calls the one in another.e

Note that there is a reserved namespace name that is always in use. The special namespace eu is used to let Euphoria
know that you are accessing a built-in symbol rather than one of the same name declared in someone’s file.

For example...

include somefile.e as my_lib

result = my_lib:find(something) -- Calls the ’find ’ in somefile.e

xy = eu:find(X, Y) -- Calls Euphoria ’s built -in ’find ’

The controlling variable used in a for statement is special. It is automatically declared at the beginning of the loop
block, and its scope ends at the end of the for-loop. If the loop is inside a function or procedure, the loop variable cannot
have the same name as any other variable declared in the routine or enclosing block. When the loop is at the top level,
outside of any routine, the loop variable cannot have the same name as any other file-scoped variable. You can use the
same name in many different for-loops as long as the loops are not nested. You do not declare loop variables as you
would other variables because they are automatically declared as atoms. The range of values specified in the for statement
defines the legal values of the loop variable.

Variables declared inside other types of blocks, such as a loop, while, if or switch statement use the same scoping
rules as a for-loop index.

15.3.6 The override qualifier

There are times when it is necessary to replace a global, public or export identifier. Typically, one would do this to extend
the capabilities of a routine. Or perhaps to supersede the user defined type of some public, export or global variable, since
the type itself may not be global.

64

CHAPTER 15. DECLARATIONS 15.4. DEPRECATION

This can be achieved by declaring the identifier as override:

override procedure puts(integer channel ,sequence text)

eu:puts(log_file , text)

eu:puts(channel , text)

end procedure

A warning will be issued when you do this, because it can be very confusing, and would probably break code, for the
new routine to change the behavior of the former routine. Code that was calling the former routine expects no difference
in service, so there should not be any.

If an identifier is declared global, public or export, but not override, and there is a built-in of the same name, Euphoria
will not assume an override, and will choose the built-in. A warning will be generated whenever this happens.

15.4 Deprecation

Beginning in Euphoria 4.1, procedures and functions can be marked as deprecated. Deprecation is a computer software term
that assigns a status to a particular item to indicate that it should be avoided, typically because it has been superseded.
Deprecated routines remain in the language or library but should be avoided.

The deprecate modifier will cause a warning to appear if that routine is used. It serves no more purpose but is a
powerful way to keep an evolving library clean, slim and fit for the task. Instead of simply removing an old routine authors
are encouraged to use the deprecate modifier on a routine and leave it a part of the library for at least one major version
increment. It can then be removed. This allows your users time to upgrade their code to the new recommended routine.
Deprecated routines should be included in your manual, state when and why they were deprecated and what is the path
future for accomplishing the same task.

1 --**

2 -- Say hello to someone

3 --

4 -- Parameters:

5 -- * name - name of person to say hello to

6 --

7 -- Deprecated:

8 -- ## say_hello ## has been deprecated in favor of the new greet routine.

9 --

10

11 deprecate public procedure say_hello(sequence name)

12 printf(1, "Hello , %s\n", { name })

13 end procedure

14

15 public procedure greet(sequence name="World", sequence greeting="Hello")

16 printf(1, "%s, %s\n", { greeting , name })

17 end procedure

When deprecating a routine, the keyword deprecate should occur before any scope modifier.

65

Chapter 16
Assignment statement

An assignment statement assigns the value of an expression to a simple variable, or to a subscript or slice of a variable.
e.g.

x = a + b

y[i] = y[i] + 1

y[i..j] = {1, 2, 3}

The previous value of the variable, or element(s) of the subscripted or sliced variable are discarded. For example,
suppose x was a 1000-element sequence that we had initialized with:

object x

x = repeat(0, 1000) -- a sequence of 1000 zeros

and then later we assigned an atom to x with:

x = 7

This is perfectly legal since x is declared as an object. The previous value of x, namely the 1000-element sequence,
would simply disappear. Actually, the space consumed by the 1000-element sequence will be automatically recycled due
to Euphoria’s dynamic storage allocation.

Note that the equals symbol ’=’ is used for both assignment and for equality testing. There is never any confusion
because an assignment in Euphoria is a statement only, it can’t be used as an expression (as in C).

16.1 Assignment with Operator

Euphoria also provides some additional forms of the assignment statement.
To save typing, and to make your code a bit neater, you can combine assignment with one of the operators:

+ - / * &

For example, instead of saying:

mylongvarname = mylongvarname + 1

You can say:

mylongvarname += 1

Instead of saying:

galaxy[q_row][q_col][q_size] = galaxy[q_row][q_col][q_size] * 10

66

CHAPTER 16. ASSIGNMENT STATEMENT 16.1. ASSIGNMENT WITH OPERATOR

You can say:

galaxy[q_row][q_col][q_size] *= 10

and instead of saying:

accounts[start .. finish] = accounts[start .. finish] / 10

You can say:

accounts[start .. finish] /= 10

In general, whenever you have an assignment of the form:

left -hand -side = left -hand -side op expression

You can say:

left -hand -side op= expression

where op is one of:

+ - * / &

When the left-hand-side contains multiple subscripts/slices, the op= form will usually execute faster than the longer
form. When you get used to it, you may find the op= form to be slightly more readable than the long form, since you
don’t have to visually compare the left-hand-side against the copy of itself on the right side.

You cannot use assignment with operators while declaring a variable, because that variable is not initialized when you
perform the assignment.

67

Chapter 17
Branching Statements

17.1 if statement

An if statement tests a condition to see whether it is true or false, and then depending on the result of that test, executes
the appropriate set of statements.

The syntax of if is

1 IFSTMT ==: IFTEST [ELSIF ...] [ELSE] ENDIF

2 IFTEST ==: if ATOMEXPR [LABEL] then [STMTBLOCK]

3 ELSIF ==: elsif ATOMEXPR then [STMTBLOCK]

4 ELSE ==: else [STMTBLOCK]

5 ENDIF ==: end if

Description of syntax

• An if statement consists of the keyword if, followed by an expression that evaluates to an atom, optionally followed
by a label clause, followed by the keyword then. Next is a set of zero or more statements. This is followed by zero
or more elsif clauses. Next is an optional else clause and finally there is the keyword end followed by the keyword
if.

• An elsif clause consists of the key word elsif, followed by an expression that evaluates to an atom, followed by the
keyword then. Next is a set of zero or more statements.

• An else clause consists of the keyword else followed by a set of zero or more statements.

In Euphoria, false is represented by an atom whose value is zero and true is represented by an atom that has any
non-zero value.

• When an expression being tested is true, Euphoria executes the statements immediately following the then keyword
after the expression, up to the corresponding elsif or else, whichever comes next, then skips down to the
corresponding end if.

• When an expression is false, Euphoria skips over any statements until it comes to the next corresponding elsif or
else, whichever comes next. If this is an elsif then its expression is tested otherwise any statements following the
else are executed.

For example:

1 if a < b then

2 x = 1

3 end if

4

68

CHAPTER 17. BRANCHING STATEMENTS 17.2. SWITCH STATEMENT

5 if a = 9 and find(0, s) then

6 x = 4

7 y = 5

8 else

9 z = 8

10 end if

11

12 if char = ’a’ then

13 x = 1

14 elsif char = ’b’ or char = ’B’ then

15 x = 2

16 elsif char = ’c’ then

17 x = 3

18 else

19 x = -1

20 end if

Notice that elsif is a contraction of else if, but it’s cleaner because it does not require an end if to go with it.
There is just one end if for the entire if statement, even when there are many elsif clauses contained in it.

The if and elsif expressions are tested using short circuit evaluation.
An if statement can have a label clause just before the first then keyword. See the section on Header Labels. Note

that an elsif clause can not have a label.

17.2 switch statement

The switch statement is used to run a specific set of statements, depending on the value of an expression. It often replaces
a set of if-elsif statements due to it’s ability to be highly optimized, thus much greater performance. There are some key
differences, however. A switch statement operates upon the value of a single expression, and the program flow continues
based upon defined cases. The syntax of a switch statement:

1 switch <expr > [with fallthru] [label "<label name >"] do

2 case <val >[, <val2 >, ...] then

3 [code block]

4 [[break [label]]| fallthru]

5 case <val >[, <val2 >, ...] then

6 [code block]

7 [[break [label]]| fallthru]

8 case <val >[, <val2 >, ...] then

9 [code block]

10 [[break [label]]| fallthru]

11 ...

12

13 [case else]

14 [code block]

15 [[break [label]]| fallthru]

16 end switch

The above example could be written with if statements like this ..

1 object temp = expression

2 object breaking = false

3 if equal(temp , val1) then

4 [code block 1]

5 [breaking = true]

6 end if

7 if not breaking and equal(temp , val2) then

8 [code block 2]

9 [breaking = true]

69

CHAPTER 17. BRANCHING STATEMENTS 17.2. SWITCH STATEMENT

10 end if

11 if not breaking and equal(temp , val3) then

12 [code block 3]

13 [breaking = true]

14 end if

15 ...

16 if not breaking then

17 [code block 4]

18 [breaking = true]

19 end if

The <val> in a case must be either an atom, literal string, constant or enum. Multiple values for a single case can
be specified by separating the values by commas. The same symbol (or literal) may not be used multiple times as a case

for the same switch. If two different symbols used as case values happen to have the same value, they must be in the
same case...then statement, or an error will occur. If the parser can determine all values when the switch is parsed,
then a compile time error will be thrown. Otherwise, the error will occur the first time that the switch is encountered.
Likewise, when translating code, if the parser cannot determine all values at the time when the case values are parsed,
the compilation will fail due to mulitple case values in the emitted C code (it is assumed that the programmer should
work out this sort of bug in interpreted mode).

By default, control flows to the end of the switch block when the next case is encountered. The default behavior
can be modified in two ways. The default for a particular switch block can be changed so that control passes to the next
executable statement whenever a new case is encountered by using with fallthru in the switch statement:

1 switch x with fallthru do

2 case 1 then

3 ? 1

4 case 2 then

5 ? 2

6 break

7 case else

8 ? 0

9 end switch

Note that when with fallthru is used, the break statement can be used to jump out of the switch block. The
behavior of individual cases can be changed by using the fallthru statement:

1 switch x do

2 case 1 then

3 ? 1

4 fallthru

5 case 2 then

6 ? 2

7 case else

8 ? 0

9 end switch

Note that the break statement before case else was omitted, because the equivalent action is taken automatically
by default.

1 switch length(x) do

2 case 1 then

3 -- do something

4 fallthru

5 case 2 then

6 -- do something extra

7 case 3 then

8 -- do something usual

9

10 case else

70

CHAPTER 17. BRANCHING STATEMENTS 17.3. IFDEF STATEMENT

11 -- do something else

12 end switch

The label "name" is optional and if used it gives a name to the switch block. This name can be used in nested
switch break statements to break out of an enclosing switch rather than just the owning switch.
Example:

1 switch opt label "LBLa" do

2 case 1, 5, 8 then

3 FuncA()

4

5

6 case 4, 2, 7 then

7 FuncB()

8 switch alt label "LBLb" do

9 case "X" then

10 FuncC()

11 break "LBLa"

12

13 case "Y" then

14 FuncD()

15

16 case else

17 FuncE()

18 end switch

19 FuncF()

20

21 case 3 then

22 FuncG()

23 break

24

25 case else

26 FuncH()

27 end switch

28 FuncM ()

In the above, if opt is 2 and alt is ”X” then it runs...
FuncB() FuncC() FuncM()

But if opt is 2 and alt is ”Y” then it runs ...
FuncB() FuncD() FuncF() FuncG() FuncM()

In other words, the break "LBLa" skips to the end of the switch called ”LBLa” rather than the switch called ”LBLb”.

17.3 ifdef statement

The ifdef statement has a similar syntax to the if statement.

1 ifdef SOME_WORD then

2 --... zero or more statements

3 elsifdef SOME_OTHER_WORD then

4 --... zero or more statements

5 elsedef

6 --... zero or more statements

7 end ifdef

Of course, the elsifdef and elsedef clauses are optional, just like elsif and else are option in an if statement.

The major differences between and if and ifdef statement are that ifdef is executed at parse time not runtime,
and ifdef can only test for the existence of a defined word whereas if can test any boolean expression.

71

CHAPTER 17. BRANCHING STATEMENTS 17.3. IFDEF STATEMENT

Note that since the ifdef statement executes at parse time, run-time values cannot be checked, only words defined
by the -D command line switch, or by the with define directive, or one of the special predefined words.

The purpose of ifdef is to allow you to change the way your program operates in a very efficient manner. Rather
than testing for a specific condition repeatedly during the running of a program, ifdef tests for it once during parsing
and then generates the precise IL code to handle the condition.

For example, assume you have some debugging code in your application that displays information to the screen.
Normally you would not want to see this display so you set a condition so it only displays during a ’debug’ session. The
first example below shows how would could do this just using the if statement, and the second example shows the same
thing but using the idef statement.

-- Example 1. --

if find("-DEBUG", command_line ()) then

writefln("Debug x=[], y=[]", {x,y})

end if

-- Example 1. --

ifdef DEBUG then

writefln("Debug x=[], y=[]", {x,y})

end ifdef

As you can see, they are almost identical. However, in the first example, everytime the program gets to this point in
the code, it tests the command line for the -DEBUG switch before deciding to display the information or not. But in the
second example, the existence of DEBUG is tested once at parse time, and if it exists then, Euphoria generates the IL code
to do the display. Thus when the program is running then everytime it gets to this point in the code, it does not check
that DEBUG exists, instead it already knows it does so it just does the display. If however, DEBUG did not exist at parse
time, then the IL code for the display would simply be omitted, meaning that during the running of the program, when it
gets to this point in the code, it does not recheck for DEBUG, instead it already knows it doesn’t exist and the IL code
to do the display also doesn’t exist so nothing is displayed. This can be a much needed performance boost for a program.

Euphoria predefines some words itself:

17.3.1 Euphoria Version Definitions

• EU4 - Major Euphoria Version

• EU4 1 - Major and Minor Euphoria Version

• EU4 1 0 - Major, Minor and Release Euphoria Version

Euphoria is released with the common version scheme of Major, Minor and Release version identifiers in the form of
major.minor.release. When 4.1.1 is released, EU4 1 1 will be defined and EU4 1 will still be defined, but EU4 1 0 will no
longer be defined. When 4.2 is released, EU4 1 will no longer be defined, but EU4 2 will be defined. Finally, when 5.0 is
released, EU4 will no longer be defined, but EU5 will be defined.

17.3.2 Platform Definitions

• CONSOLE - Euphoria is being executed with the Console version of the interpreter (on windows, eui.exe, others
are eui)

• GUI - Platform is Windows and is being executed with the GUI version of the interpreter (euiw.exe)

• WINDOWS - Platform is Windows (GUI or Console)

• LINUX - Platform is Linux

• OSX - Platform is Mac OS X

• FREEBSD - Platform is FreeBSD

• OPENBSD - Platform is OpenBSD

72

CHAPTER 17. BRANCHING STATEMENTS 17.3. IFDEF STATEMENT

• NETBSD - Platform is NetBSD

• BSD - Platform is a BSD variant (FreeBSD, OpenBSD, NetBSD and OS X)

• UNIX - Platform is any Unix

17.3.3 Architecture Definitions

Chip architecture:

• X86

• X86 64

• ARM

Size of pointers and euphoria objects. This information can be derived from the chip architecture, but is provided for
convenience.

• BITS32

• BITS64

Size of long integers. On Windows, long integers are always 32 bits. On other platforms, long integers are the same
size as pointers. This information can also be derived from a combination of other architecture and platform ifdefs, but is
provided for convenience.

• LONG32

• LONG64

17.3.4 Application Definitions

• EUI - Application is being interpreted by eui.

• EUC - Application is being translated by euc.

• EUC DLL - Application is being translated by euc into a DLL file.

• EUB - Application is being converted to a bound program by eub.

• EUB SHROUD - Application is being converted to a shrouded program by eub.

• CONSOLE - Application is being translated, or converted to a bound console program by euc or eub, respectively.

• GUI - Application is being converted to a bound Windows GUI program by eub.

17.3.5 Library Definitions

• DATA EXECUTE - Application will always get executable memory from allocate even when the system has Data
Execute Protection enabled for the Euphoria Interpreter.

• SAFE - Enables safe runtime checks for operations for routines found in machine.e and dll.e

• UCSTYPE DEBUG - Found in include/std/ucstypes.e

• CRASH - Found in include/std/unittest.e

More examples

73

CHAPTER 17. BRANCHING STATEMENTS 17.3. IFDEF STATEMENT

1 -- file: myproj.ex

2 puts(1, "Hello , I am ")

3 ifdef EUC then

4 puts(1, "a translated")

5 end ifdef

6 ifdef EUI then

7 puts(1, "an interpreted")

8 end ifdef

9 ifdef EUB then

10 puts(1, "a bound")

11 end ifdef

12 ifdef EUB_SHROUD then

13 puts(1, ", shrouded")

14 end ifdef

15 puts(1, " program .\n")

C:\myproj > eui myproj.ex

Hello , I am an interpreted program.

C:\myproj > euc -con myprog.ex

... translating ...

... compiling ...

C:\myproj > myprog.exe

Hello , I am a translated program.

C:\myproj > bind myprog.ex

...

C:\myproj > myprog.exe

Hello , I am a bound program.

C:\myproj > shroud myprog.ex

...

C:\myproj > eub myprog.il

Hello , I am a bound , shrouded program.

It is possible for one or more of the above definitions to be true at the same time. For instance, EUC and EUC DLL will
both be true when the source file has been translated to a DLL. If you wish to know if your source file is translated and
not a DLL, then you can

ifdef EUC and not EUC_DLL then

-- translated to an application

end ifdef

17.3.6 Using ifdef

You can define your own words either in source:

with define MY_WORD -- defines

without define OTHER_WORD -- undefines

or by command line:

eui -D MY_WORD myprog.ex

This can handle many tasks such as change the behavior of your application when running on Linux vs. Windows,
enable or disable debug style code or possibly work differently in demo/shareware applications vs. registered applications.

You should surround code that is not portable with ifdef like:

1 ifdef WINDOWS then

2 -- Windows specific code.

3 elsedef

74

CHAPTER 17. BRANCHING STATEMENTS 17.3. IFDEF STATEMENT

4 include std/error.e

5 crash("This program must be run with the Windows interpreter.")

6 end ifdef

When writing include files that you cannot run on some platform, issue a crash call in the include file. Yet make
sure that public constants and procedures are defined for the unsupported platform as well.

1 ifdef UNIX then

2 include std/bash.e

3 end ifdef

4

5 -- define exported and public constants and procedures for

6 -- OSX as well

7 ifdef WINDOWS or OSX then

8 -- OSX is not supported but we define public symbols for it anyhow.

The reason for doing this is so that the user that includes your include file sees an ”OS not supported” message instead
of an ”undefined reference” message.

Defined words must follow the same character set of an identifier, that is, it must start with either a letter or underscore
and contain any mixture of letters, numbers and underscores. It is common for defined words to be in all upper case,
however, it is not required.

A few examples:

1 for a = 1 to length(lines) do

2 ifdef DEBUG then

3 printf(1, "Line %i is %i characters long\n", {a, length(lines[a])})

4 end ifdef

5 end for

6

7 sequence os_name

8 ifdef UNIX then

9 include unix_ftp.e

10 elsifdef WINDOWS then

11 include win32_ftp.e

12 elsedef

13 crash("Operating system is not supported")

14 end ifdef

15

16 ifdef SHAREWARE then

17 if record_count > 100 then

18 message("Shareware version can only contain 100 records. Please register")

19 abort (1)

20 end if

21 end ifdef

The ifdef statement is very efficient in that it makes the decision only once during parse time and only emits the
TRUE portions of code to the resulting interpreter. Thus, in loops that are iterated many times there is zero performance
hit when making the decision. Example:

1 while 1 do

2 ifdef DEBUG then

3 puts(1, "Hello , I am a debug message\n")

4 end ifdef

5 -- more code

6 end while

If DEBUG is defined, then the interpreter/translator actually sees the code as being:

while 1 do

puts(1, "Hello , I am a debug message\n")

75

CHAPTER 17. BRANCHING STATEMENTS 17.3. IFDEF STATEMENT

-- more code

end while

Now, if DEBUG is not defined, then the code the interpreter/translator sees is:

while 1 do

-- more code

end while

Do be careful to put the numbers after the platform names for Windows:

1 -- This puts() routine will never be called

2 -- even when run by the Windows interpreter!

3 ifdef WINDOWS then

4 puts(1,"I am on Windows\n")

5 end ifdef

76

Chapter 18
Loop statements

An iterative code block repeats its own execution zero, one or more times. There are several ways to specify for how long
the process should go on, and how to stop or otherwise alter it. An iterative block may be informally called a loop, and
each execution of code in a loop is called an iteration of the loop.

Euphoria has three flavors of loops. They all may harbor a Header Labels, in order to make exiting or resuming them
more flexible.

18.1 while statement

A while statement tests a condition to see if it is non-zero (true), and if so, a body of statements is executed. The
condition is re-tested after when the statements are run, and if still true the statements are run again, and so on.

Syntax Format: while expr [with entry] [label "name"] do statements [entry] statements end

while

Example 1

while x > 0 do

a = a * 2

x = x - 1

end while

Example 2

1 while sequence(Line) with entry do

2 proc(Line)

3 entry

4 Line = gets(handle)

5 end while

Example 3

1 while true label "main" do

2 res = funcA()

3 if res > 5 then

4 if funcB () > some_value then

5 continue "main" -- go to start of loop

6 end if

7 procC()

8 end if

9 procD(res)

10 for i = 1 to res do

11 if i > some_value then

12 exit "main" -- exit the "main" loop , not just this ’for ’ loop.

77

CHAPTER 18. LOOP STATEMENTS 18.2. LOOP UNTIL STATEMENT

13 end if

14 procF(i,res)

15 end if

16

17 res = funcE(res , some_value)

18 end while

18.2 loop until statement

A loop statement tests a condition to see if it is non-zero (true), and until it is true a loop is executed.
Syntax Format: loop [with entry] [label "name"] do statements

until expr end loop

1 loop do

2 a = a * 2

3 x = x - 1

4 until x<=0

5 end loop

1 loop with entry do

2 a = a * 2

3 entry

4 x = x - 1

5 until x<=0

6 end loop

1 loop label "GONEXT" do

2 a = a * 2

3 y += 1

4 if y = 7 then continue "GONEXT" end if

5 x = x - 1

6 until x<=0

7 end loop

A while statement differs from a loop statement because the body of a loop is executed at least once, since testing
takes place after the body completes. However in a while statement, the test is taken before the body is executed.

18.3 for statement

Syntax Format: for loopvar = startexpr to endexpr [by delta] do statements end for

A for statement sets up a special loop that has its own loop variable. The loop variable starts with the specified
initial value and increments or decrements it to the specified final value. The for statement is used when you need to
repeat a set of statements a specific number of times.
Example:

1 -- Display the numbers 1 to 6 on the screen.

2 puts(1, "1\n")

3 puts(1, "2\n")

4 puts(1, "3\n")

5 puts(1, "4\n")

6 puts(1, "5\n")

7 puts(1, "6\n")

This block of code simply starts at the first line and runs each in turn. But it could be written more simply and flexibly
by using a for statement.

78

CHAPTER 18. LOOP STATEMENTS 18.3. FOR STATEMENT

for i = 1 to 6 do

printf(1, "%d\n", i)

end for

Now it’s just three lines of code rather than six. More importantly, if we needed to change the program to print the
numbers from 1 to 100, we only have to change one line rather than add 94 new lines.

for i = 1 to 100 do -- One line change.

printf(1, "%d\n", i)

end for

Or using another way ...

1 for i = 1 to 10 do

2 ? i -- ? is a short form for print ()

3 end for

4

5 -- fractional numbers allowed too

6 for i = 10.0 to 20.5 by 0.3 do

7 for j = 20 to 10 by -2 do -- counting down

8 ? {i, j}

9 end for

10 end for

However, adding together floating point numbers that are not the ratio of an integer by a power of 2 – 0.3 is not
such a ratio–leads to some ”fuzz” in the value of the index. In some cases, you might get unexpected results because
of this fuzz, which arises from a common hardware limitation. For instance, floor(10*0.1) is 1 as expected, but
floor(0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1) is 0.

The loop variable is declared automatically and exists until the end of the loop. Outside of the loop the variable has
no value and is not even declared. If you need its final value, copy it into another variable before leaving the loop. The
compiler will not allow any assignments to a loop variable. The initial value, loop limit and increment must all be atoms.
If no increment is specified then +1 is assumed. The limit and increment values are established only on entering the loop,
and are not affected by anything that happens during the execution of the loop.

79

Chapter 19
Flow control statements

Program execution flow refers to the order in which program statements are run in. By default, the next statement to run
after the current one is the next statement physically located after the current one.
Example:

a = b + c

printf(1, "The result of adding %d and %d is %d", {b,c,a})

In that example, b is added to c, assigning the result to a, and then the information is displayed on the screen using
the printf statement.

However, there are many times in which the order of execution needs to be different from the default order, to get the
job done. Euphoria has a number of flow control statements that you can use to arrange the execution order of statements.

A set of statements that are run in their order of appearance is called a block. Blocks are good ways to organize code
in easily identifiable chunks. However it can be desirable to leave a block before reaching the end, or slightly alter the
default course of execution.

The following flow control keywords are available.

break retry entry exit continue return goto end

19.1 exit statement

Exiting a loop is done with the keyword exit. This causes flow to immediately leave the current loop and recommence
with the first statement after the end of the loop.

1 for i = a to b do

2 c = i

3 if doSomething(i) = 0 then

4 exit -- Stop executing code inside the ’for ’ block.

5 end if

6 end for

7

8 -- Flow restarts here.

9 if c = a then ...

But sometimes you need to leave a block that encloses the current one. Euphoria has two ways available for you to
do this. The safest way, in terms of future maintenance, is to name the block you want to exit from and use that name
on the exit statement. The other way is to use a number on the exit statement that refers to the depth that you want to
exit from.

80

CHAPTER 19. FLOW CONTROL STATEMENTS 19.1. EXIT STATEMENT

A block’s name is always a string literal and only a string literal. You cannot use a variable that contains the block’s
name on an exit statement. The name comes after the label keyword, just before the do keyword.
Example:

1 integer b

2 b = 0

3 for i = 1 to 20 label "main" do

4 for j = 1 to 20 do

5 b += i + j

6 ? {i, j, b}

7 if b > 50 then

8 b = 0

9 exit "main"

10 end if

11 end for

12 end for

13 ? b

The output from this is ...

1 {1, 1, 2}

2 {1, 2, 5}

3 {1, 3, 9}

4 {1, 4, 14}

5 {1, 5, 20}

6 {1, 6, 27}

7 {1, 7, 35}

8 {1, 8, 44}

9 {1, 9, 54}

10 0

The exit ”main” causes execution flow to leave the for block named main.
The same thing could be achieved using the exit N format...

1 integer b

2 b = 0

3 for i = 1 to 20 do

4 for j = 1 to 20 do

5 b += i + j

6 ? {i, j, b}

7 if b > 50 then

8 b = 0

9 exit 2 -- exit 2 levels of depth

10 end if

11 end for

12 end for

13

14 ? b

But using this way means you have to take more care when changing the program so that if you change the depth,
you also need to change the exit statement.

Note:
A special form of exit N is exit 0. This leaves all levels of loop, regardless of the depth. Control continues after
the outermost loop block. Likewise, exit -1 exits the second outermost loop, and so on.

For easier and safer program maintenance, the explicit label form is to be preferred. Other forms are variously sensitive
to changes in the program organization. Yet, they may prove more convenient in short, short lived programs, and are
provided mostly for this purpose.

For information on how to associate a string to a block of code, see the section Header Labels.

81

CHAPTER 19. FLOW CONTROL STATEMENTS 19.2. BREAK STATEMENT

An exit without any label or number in a while statement or a for statement causes immediate termination of that
loop, with control passing to the first statement after the loop.
Example:

1 for i = 1 to 100 do

2 if a[i] = x then

3 location = i

4 exit

5 end if

6 end for

It is also quite common to see something like this:

1 constant TRUE = 1

2

3 while TRUE do

4 ...

5 if some_condition then

6 exit

7 end if

8 ...

9 end while

i.e. an ”infinite” while-loop that actually terminates via an exit statement at some arbitrary point in the body of the
loop.

Performance Note:
Euphoria optimizes this type of loop. At run-time, no test is performed at the top of the loop. There’s just a simple
unconditional jump from end while back to the first statement inside the loop.

19.2 break statement

Works exactly like the exit statement, but applies to if statements or switch statements rather than to loop statements
of any kind. Example:

1 if s[1] = ’E’ then

2 a = 3

3 if s[2] = ’u’ then

4 b = 1

5 if s[3] = ’p’ then

6 break 0 -- leave topmost if block

7 end if

8 a = 2

9 else

10 b = 4

11 end if

12 else

13 a = 0

14 b = 0

15 end if

This code results in:

• ”Dur” -> a=0 b=0

• ”Exe” -> a=3 b=4

• ”Eux” -> a=2 b=1

82

CHAPTER 19. FLOW CONTROL STATEMENTS 19.3. CONTINUE STATEMENT

• ”Eup” -> a=3 b=1

The same optional parameters can be used with the break statement as with the exit statement, but of course apply
to if and switch blocks only, instead of loops.

19.3 continue statement

Likewise, skipping the rest of an iteration in a single code block is done using a single keyword, continue. The continue
statement continues execution of the loop it applies to by going to the next iteration now. Going to the next iteration
means testing a condition (for while and loop constructs, or changing the for construct variable index and checking
whether it is still within bounds.

1 for i = 3 to 6 do

2 ? i

3 if i = 4 then

4 puts(1,"(2)\n")

5 continue

6 end if

7 ? i * i

8 end for

This will print 3, 9, 4, (2), 5 25, 6 36.

1 integer b

2 b = 0

3 for i = 1 to 20 label "main" do

4 for j = 1 to 20 do

5 b += i + j

6 if b > 50 then

7 printf(1, "%d ", b)

8 b = 0

9 continue "main"

10 end if

11 end for

12 end for

13

14 ? b

The same optional parameters that can be used in an exit statement can apply to a continue statement.

19.4 retry statement

The retry statement retries executing the current iteration of the loop it applies to. The statement branches to the first
statement of the designated loop, without testing anything nor incrementing the for loop index.

Normally, a sub-block which contains a retry statement also contains another flow control keyword, since otherwise
the iteration would be endlessly executed.

1 errors = 0

2 for i = 1 to length(files_to_open) do

3 fh = open(files_to_open[i], "rb")

4 if fh=-1 then

5 if errors > 5 then

6 exit

7 else

8 errors += 1

9 retry

10 end if

11 end if

83

CHAPTER 19. FLOW CONTROL STATEMENTS 19.5. WITH ENTRY STATEMENT

12 file_handles[i] = fh

13 end for

Since retry does not change the value of i and tries again opening the same file, there has to be a way to break from
the loop, which the exit statement provides.

The same optional parameters that can be used in an exit statement can apply to a retry statement.

19.5 with entry statement

It is often the case that the first iteration of a loop is somehow special. Some things have to be done before the loop
starts–they are done before the statement starting the loop. Now, the problem is that, just as often, some things do not
need to, or should not, be done at this initialization stage. The entry keyword is an alternative to setting flags relentlessly
and forgetting to update them. Just add the entry keyword at the point you wish the first iteration starts.

1 public function find_all(object x, sequence source , integer from)

2 sequence ret = {}

3

4 while from > 0 with entry do

5 ret &= from

6 from += 1

7 entry

8 from = find_from(x, source , from)

9 end while

10

11 return ret

12 end function

Instead of performing an initial test, which may crash because from has not been assigned a value yet, the first iteration
jumps at the point where from is being computed. The following iterations are normal. To emphasize the fact that the
first iteration is not normal, the entry clause must be added to the loop header, after the condition.

The entry statement is not supported for for loops, because they have a more rigid nature structure than while or
loop constructs.

Note on infinite loops.
With eui.exe or eui, control-c will always stop your program immediately, but with the euiw.exe that has not
produced any console output, you will have to use the Windows process monitor to end the application.

19.6 goto statement

goto instructs the computer to resume code execution at a place which does not follow the statement. The place to
resume execution is called the target of the statement. It is restricted to lie in the current routine, or the current file if
outside any routine.

Syntax is:

goto "label string"

The target of a goto statement can be any accessible label statement:

label "label string"

Label names must be double quoted constant strings. Characters that would be illegal in an Euphoria identifier may
appear in a label name, since it is a regular string.

Header Labels do not count as possible goto targets.
Use goto in production code when all the following applies:

• you want to proceed with a statement which is not the following one;

84

CHAPTER 19. FLOW CONTROL STATEMENTS 19.7. HEADER LABELS

• the various structured constructs wouldn’t do, or very awkwardly;

• you contemplate a significant gain in speed/reliability from such a direct move;

• the code flow remains understandable for an outsider nevertheless.

During early development, it may be nice to have while the code is not firmly structured. But most instances of goto
should melt into structured constructs as soon as possible as code matures. You may find out that modifying a program
that has goto statements is usually trickier than if it had not had them.

The following may be situations where goto can help:

• A routine has several return statements, and some processing must be done before returning, no matter from where.
It may be clearer to goto a single return point and perform the processing only at this point.

• An exit statement in a loop corresponds to an early exit, and the normal processing that immediately follows the
loop is not relevant. Replacing an exit statement followed by various flag testing by a single goto can help.

Explicit label names will tremendously help maintenance. Remember that there is no limit to their contents.
goto-ing into a scope (like an if block, a for loop,...) will just do that. Some variables may be defined only in that

scope, and they may or may not have sensible values. It is up to the programmer to take appropriate action in this respect.

19.7 Header Labels

As shown in the above section on control flow statements, most can have their own label. To label a flow control statement,
use a label clause immediately preceding the flow control’s terminator keyword (then / do).

A label clause consists of the keyword label followed by a string literal. The string is the label name.
Examples:

1 if n=0 label "an_if_block" then

2 ...

3 end if

4

5 while TRUE label "a_while_block" do

6 ...

7 end while

8

9 loop label "a_loop_block" do

10 ...

11 until TRUE

12 end loop

13

14 switch x label "a_switch_block" do

15 ...

16 end switch

Note: If a flow control statement has both an entry clause and a label clause, the entry clause must come before
the label clause:

while 1 label "top" with entry do -- WRONG

while 1 with entry label "top" do -- CORRECT

85

Chapter 20
Short-Circuit Evaluation

When the condition tested by if, elsif, until, or while contains and or or operators, short circuit evaluation will be used.
For example,

if a < 0 and b > 0 then ...

If a < 0 is false, then Euphoria will not bother to test if b is greater than 0. It will know that the overall result is false
regardless. Similarly,

if a < 0 or b > 0 then ...

if a < 0 is true, then Euphoria will immediately decide that the result is true, without testing the value of b, since the
result of this test would be irrelevant.

In general, whenever we have a condition of the form:

A and B

where A and B can be any two expressions, Euphoria will take a short-cut when A is false and immediately make the
overall result false, without even looking at expression B.

Similarly, with:

A or B

when A is true, Euphoria will skip the evaluation of expression B, and declare the result to be true.
If the expression B contains a call to a function, and that function has possible side-effects, i.e. it might do more

than just return a value, you will get a compile-time warning. Older versions (pre-2.1) of Euphoria did not use short circuit
evaluation, and it’s possible that some old code will no longer work correctly, although a search of the Euphoria archives
did not turn up any programs that depend on side-effects in this way, but other Euphoria code might do so.

The expression, B, could contain something that would normally cause a run-time error. If Euphoria skips the evaluation
of B, the error will not be discovered. For instance:

if x != 0 and 1/x > 10 then -- divide by zero error avoided

while 1 or {1,2,3,4,5} do -- illegal sequence result avoided

B could even contain uninitialized variables, out-of-bounds subscripts etc.
This may look like sloppy coding, but in fact it often allows you to write something in a simpler and more readable

way. For instance:

if length(x) > 1 and x[2] = y then

Without short-circuiting, you would have a problem when x contains less than 2 items. With short-circuiting, the
assignment to x[2] will only be done when x has at least 2 items. Similarly:

86

CHAPTER 20. SHORT-CIRCUIT EVALUATION

1 -- find ’a’ or ’A’ in s

2 i = 1

3 while i <= length(s) and s[i] != ’a’ and s[i] != ’A’ do

4 i += 1

5 end while

In this loop the variable i might eventually become greater than length(s). Without short-circuit evaluation, a subscript
out-of-bounds error will occur when s[i] is evaluated on the final iteration. With short-circuiting, the loop will terminate
immediately when i <= length(s) becomes false. Euphoria will not evaluate s[i] != ’a’ and will not evaluate s[i] != ’A’.
No subscript error will occur.

Short-circuit evaluation of and and or takes place inside decision making expressions. These are found in the if
statement, while statement and the loop until statement. It is not used in other contexts. For example, the assignment
statement:

x = 1 or {1,2,3,4,5} -- x should be set to {1,1,1,1,1}

If short-circuiting were used here, we would set x to 1, and not even look at 1,2,3,4,5. This would be wrong. Short-
circuiting can be used in if/elsif/until/while conditions because we only care if the result is true or false, and conditions
are required to produce an atom as a result.

87

Chapter 21
Special Top-Level Statements

Before any of your statements are executed, the Euphoria front-end quickly reads your entire program. All statements
are syntax checked and converted to a low-level intermediate language (IL). The interpreter immediately executes the IL
after it is completely generated. The translator converts the IL to C. The binder/shrouder saves the IL on disk for later
execution. These three tools all share the same front-end (written in Euphoria).

If your program contains only routine and variable declarations, but no top-level executable statements, then nothing
will happen when you run it (other than syntax checking). You need a top-level statement to call your main routine
(see Example Programs). It’s quite possible to have a program with nothing but top-level executable statements and no
routines. For example you might want to use Euphoria as a simple calculator, typing just a few print or ? statements into
a file, and then executing it.

As we have seen, you can use any Euphoria statement, including for statement, while statement, if statement, etc...
(but not return), at the top level i.e. outside of any function or procedure. In addition, the following special statements
may only appear at the top level:

• include

• with / without

21.1 include statement

When you write a large program it is often helpful to break it up into logically separate files, by using include statements.
Sometimes you will want to reuse some code that you have previously written, or that someone else has written. Rather
than copy this code into your main program, you can use an include statement to refer to the file containing the code.
The first form of the include statement is:

include filename

This reads in (compiles) a Euphoria source file.

Some Examples:

include std/graphics.e

include /mylib/myroutines.e

public include library.e

Any top-level code in the included file will be executed at start up time.
Any global identifiers that are declared in the file doing the including will also be visible in the file being included.

However the situation is slightly different for an identifier declared as public or export. In these cases the file being
included will not see public/export symbols declared in the file doing the including, unless the file being included also
explicitly includes the file doing the including. Yes, you would better read that again because its not that obvious. Here’s
an example...

We have two files, a.e and b.e ...

88

CHAPTER 21. SPECIAL TOP-LEVEL STATEMENTS 21.1. INCLUDE STATEMENT

-- a.e --

? c -- declared as global in ’b.e’

-- b.e --

include a.e

global integer c = 0

This will work because being global the symbol ’c’ in b.e can be seen by all files in this include tree.
However ...

-- a.e --

? c -- declared as public in ’b.e’

-- b.e --

include a.e

public integer c = 0

Will not work as public symbols can only be seen when their declaring file is explicitly included. So to get this to work
you need to write a.e as ...

-- a.e --

include b.e

? c -- declared as public in ’b.e’

N.B. Only those symbols declared as global in the included file will be visible (accessible) in the remainder of the
including file. Their visibility in other included files or in the main program file depends on other factors. Specifically, a
global symbols can only be accessed by files in the same include tree. For example...

If we have danny.e declare a global symbol called ’foo’, and bob.e includes danny.e, then code in bob.e can access
danny’s ’foo’. Now if we also have cathy.e declare a global symbol called ’foo’, and anne.e includes cathy.e, then code
in ann.e can access cathy’s ’foo’. Nothing unusual about that situation. Now, if we have a program that includes both
bob.e and anne.e, the code in bob.e and anne.e should still work even though there are now two global ’foo’ symbols
available. This is because the include tree for bob.e only contains danny.e and likewise the include tree for anne.e only
contains cathy.e. So as the two ’foo’ symbols are in separate include trees (from bob.e and anne.e perspective) code in
those files continues to work correctly. A problem can occur if the main program (the one that includes both bob.e and
anne.e) references ’foo’. In order for Euphoria to know which one the code author meant to use, the coder must use the
namespace facility.

1 --- mainprog.ex ---

2 include anne.e as anne

3 include bob.e as bob

4

5 anne:foo() -- Specify the ’foo ’ from anne.e.

If the above code did not use namespaces, Euphoria would not have know which ’foo’ to use – the one from bob.e or
the one in anne.e.

If public precedes the include statement, then all public identifiers from the included file will also be visible to the
including file, and visible to any file that includes the current file.

If an absolute filename is given, Euphoria will open it and start parsing it. When a relative filename is given, Euphoria
will try to open the file relative to the following directories, in the following order:

1. The directory containing the current source file. i.e. the source file that contains the include statement that is being
processed.

2. The directory containing the main file given on the interpreter, translator or binder – see command line.

3. If you’ve defined an environment variable named EUINC, Euphoria will check each directory listed in EUINC (from
left to right). EUINC should be a list of directories, separated by semicolons (colons on Linux / FreeBSD), similar

89

CHAPTER 21. SPECIAL TOP-LEVEL STATEMENTS 21.2. WITH / WITHOUT

in form to your PATH variable. EUINC can be added to your set of Linux / FreeBSD or Windows environment
variables. (Via Control Panel / Performance & Maintenance / System / Advanced on XP, or AUTOEXEC.
BAT on older versions of Windows). e.g. SET EUINC=C:\EU\MYFILES;C:\EU\WINDOWSLIB EUINC lets you organize
your include files according to application areas, and avoid adding numerous unrelated files to euphoria\include.

4. Finally, if it still hasn’t found the file, it will look in euphoria\include. This directory contains the standard
Euphoria include files. The environment variable EUDIR tells Euphoria where to find your euphoria directory.

An included file can include other files. In fact, you can ”nest” included files up to 30 levels deep.
Include file names typically end in .e, or sometimes .ew or .eu (when they are intended for use with Windows or

Unix). This is just a convention. It is not required.
If your filename (or path) contains blanks or escape-able characters , you must enclose it in double-quotes, otherwise

quotes are optional. When a filename is enclosed in double-quotes, you can also use the standard escape character notation
to specify filenames that have non-ASCII characters in them.

Note that under Windows, you can also use the forward slash ’/’ instead of the usually back-slash ’\’. By doing this,
the file paths are compatible with Unix systems and it means you don’t have to ’escape’ the back-slashes.
For example:

include "c:/ program files/myfile.e"

Other than possibly defining a new namespace identifier (see below), an include statement will be quietly ignored if
the same file has already been included.

An include statement must be written on a line by itself. Only a comment can appear after it on the same line.
The second form of the include statement is:

include filename as namespace identifier :
This is just like the simple include, but it also defines a namespace identifier that can be attached to global identifiers
in the included file that you want to refer to in the main file. This might be necessary to disambiguate references to
those identifiers, or you might feel that it makes your code more readable. This as identifier namespace exists
in the current file, along with any namespace identifier the included file may define.

See Also: Using namespaces.

21.2 with / without

These special statements affect the way that Euphoria translates your program into internal form. Options to the with

and without statement come in two flavors. One simply turns an option on or off, while the others have multiple states.

21.2.1 On / Off options

Default Option
without profile
without profile time
without trace
without batch
with type check
with indirect includes
with inline
with turns on one of the options and without turns off one of the options.
For more information on the profile, profile time and trace options, see Debugging and Profiling. For more

information on the type check option, see Performance Tips.
There is also a rarely-used special with option where a code number appears after with. In previous releases this code

was used by RDS to make a file exempt from adding to the statement count in the old ”Public Domain” Edition. This is
not used any longer, but does not cause an error.

90

CHAPTER 21. SPECIAL TOP-LEVEL STATEMENTS 21.2. WITH / WITHOUT

You can select any combination of settings, and you can change the settings, but the changes must occur between
subroutines, not within a subroutine. The only exception is that you can only turn on one type of profiling for a given run
of your program.

An included file inherits the with/without settings in effect at the point where it is included. An included file can
change these settings, but they will revert back to their original state at the end of the included file. For instance, an
included file might turn off warnings for itself and (initially) for any files that it includes, but this will not turn off warnings
for the main file.

indirect includes, This with/without option changes the way in which global symbols are resolved. Normally, the
parser uses the way that files were included to resolve a usage of a global symbol. If without indirect includes is in
effect, then only direct includes are considered when resolving global symbols.

This option is especially useful when a program uses some code that was developed for a prior version of Euphoria that
uses the pre-4.0 standard library, when all exposed symbols were global. These can often clash with symbols in the new
standard library. Using without indirect includes would not force a coder to use namespaces to resolve symbols that
clashed with the new standard library.

Note that this setting does not propagate down to included files, unlike most with/without options. Each file
begins with indirect includes turned on.

with batch, Causes the program to not present the ”Press Enter” prompt if an error occurs. The exit code will still
be set to 1 on error. This is helpful for programs that run in a mode where no human may be directly interacting with it.
For example, a CGI application or a CRON job.

You can also set this option via a command line parameter.

21.2.2 Complex with / without options

with / without warning

Any warnings that are issued will appear on your screen after your program has finished execution. Warnings indicate
minor problems. A warning will never terminate the execution of your program. You will simply have to hit the Enter key
to keep going – which may stop the program on an unattended computer.

The forms available are ...

with warning

enables all warnings

without warning

disables all warnings

with warning warning name list with warning = warning name list

enables only these warnings, and disables all other

without warning warning name list without warning = warning name list

enables all warnings except the warnings listed

with warning &= warning name list with warning += warning name list

enables listed warnings in addition to whichever are enabled already

without warning &= warning name list without warning += warning name list

disables listed warnings and leaves any not listed in its current state.

with warning save

saves the current warning state, i.e. the list of all enabled warnings. This destroys any previously saved state.

with warning restore

causes the previously saved state to be restored.

without warning strict

overrides some of the warnings that the -STRICT command line option tests for, but only until the end of the next
function or procedure. The warnings overridden are * default arg type * not used * short circuit * not reached *
empty case * no case else

91

CHAPTER 21. SPECIAL TOP-LEVEL STATEMENTS 21.2. WITH / WITHOUT

The with/without warnings directives will have no effect if the -STRICT command line switch is used. The latter
turns on all warnings and ignores any with/without warnings statement. However, it can be temporarily affected by the
”without warning strict” directive.

Warning Names

Name Meaning
none When used with the with option, this turns off all warn-

ings. When used with the without option, this turns on
all warnings.

resolution an identifier was used in a file, but was defined in a file
this file doesn’t (recursively) include.

short circuit a routine call may not take place because of short circuit
evaluation in a conditional clause.

override a built-in is being overridden
builtin chosen an unqualified call caused Euphoria to choose between a

built-in and another global which does not override it. Eu-
phoria chooses the built-in.

not used A variable has not been used and is going out of scope.
no value A variable never got assigned a value and is going out of

scope.
custom Any warning that was defined using the warning proce-

dure.
not reached After a keyword that branches unconditionally, the only

thing that should appear is an end of block keyword, or
possibly a label that a goto statement can target. Other-
wise, there is no way that the statement can be reached
at all. This warning notifies this condition.

translator An option was given to the translator, but this option is
not recognized as valid for the C compiler being used.

cmdline A command line option was not recognized.
mixed profile For technical reasons, it is not possible to use both with

profile and with profile time in the same section of
code. The profile statement read last is ignored, and this
warning is issued.

empty case In switch that have without fallthru, an empty case
block will result in no code being executed within the
switch statement.

default case A switch that does not have a case else clause.
default arg type Reserved (not in use yet)
deprecated Reserved (not in use yet)
all Turns all warnings on. They can still be disabled by with-

/without warning directives.
Example

with warning save

without warning &= (builtin_chosen , not_used)

. . . -- some code that might otherwise issue warnings

with warning restore

Initially, only the following warnings are enabled:

• resolution

• override

• builtin chosen

92

CHAPTER 21. SPECIAL TOP-LEVEL STATEMENTS 21.2. WITH / WITHOUT

• translator

• cmdline

• mixed profile

• not reached

• custom

This set can be changed using -W or -X command line switches.

with / without define

As mentioned about ifdef statement, this top level statement is used to define/undefine tags which the ifdef statement
may use.

The following tags have a predefined meaning in Euphoria:

• WINDOWS: platform is any version of Windows (tm) from ’95 on to Vista and beyond

• WINDOWS: platform is any kind of Windows system

• UNIX: platform is any kind of Unix style system

• LINUX: platform is Linux

• FREEBSD: platform is FreeBSD

• OSX: platform is OS X for Macintosh

• SAFE: turns on a slower debugging version of memory.e called safe.e when defined. Switching mode by renaming
files no longer works.

• EU4: defined on all versions of the version 4 interpreter

• EU4 0: defined on all versions of the interpreter from 4.0.0 to 4.0.X

• EU4 0 0: defined only for version 4.0.0 of the interpreter

The name of a tag may contain any character that is a valid identifier character, that is A-Za-z0-9 . It is not required,
but by convention defined words are upper case.

21.2.3 with / without inline

This directive allows coders some flexibility with inlined routines. The default is for inlining to be on. Any routine that is
defined when without inline is in effect will never be inlined.

with inline takes an optional integer parameter that defines the largest routine (by size of IL code) that will be
considered for inlining. The default is 30.

93

Part V

Formal Syntax

94

Chapter 22
Formal Syntax

22.1 Basics

The syntax of Euphoria is described using a form of BNF notation.

ALPHA ==: (’a’ - ’z’) | (’A’ - ’Z’)

DIGIT ==: (’0’ - ’9’)

USCORE ==: ’_’

EOL ==: new line character

IDENTIFIER ==: (ALPHA | USCORE) [(AlPHA | DIGIT | USCORE) ...]

EXPRESSION ==: NUMEXPR | STREXPR | SEQEXPR | BOOLEXPR

NUMEXPR ==: (an expression that evaluates to an atom)

STREXPR ==: (an expression that evaluates to a string sequence)

SEQEXPR ==: (an expression that evaluates to an sequence)

BOOLEXPR ==: (an expression that evaluates to an atom in which zero represents

falsehood and non -zero represents truth)

BINARYEXPR ==: [EXPRESSION BINOP EXPRESSION]

BINOP ==: ’and ’ | ’or ’ | ’xor ’ | ’+’ | ’-’ | ’*’ | ’/’

UNARYEXPR ==: [UNARYOP EXPRESSION]

UNARYOP ==: ’not ’ | ’-’

STATEMENT ==:

STMTBLK ==: STATEMENT [STATEMENT ...]

LABEL ==: ’label ’ STRINGLIT

LISTDELIM ==: ’,’

STRINGLIT ==: SIMPLESTRINGLIT | RAWSTRINGLIT

SIMPLESTRINGLIT ==: SSLITSTART [(CHAR | ESCCHAR) ...] SSLITEND

95

CHAPTER 22. FORMAL SYNTAX 22.2. STATEMENTS

SSLITSTART ==: ’"’

SSLITEND ==: ’"’

CHAR ==: (any byte value)

ESCCHAR ==: ESCLEAD (’t’ | ’n’ | ’r’ | ’\’ | ’"’ \ ’’’)

ESCLEAD ==: ’\’

RAWSTRINGLIT ==: DQRAWSTRING | BQRAWSTRING

DQRAWSTRING ==: ’"""’ [MARGINSTR] [CHAR ...] ’"""’

BQRAWSTRING ==: ’‘’ [MARGINSTR] [CHAR ...] ’‘’

MARGINSTR ==: ’_’ ...

SCOPETYPE ==: ’global ’ | ’public ’ | ’export ’ | ’override ’

DATATYPE ==: ’atom ’ | ’integer ’ | ’sequence ’ | ’object ’ | IDENTIFER

22.2 Statements

22.2.1 Directives

INCLUDESTMT
WITHSTMT
NAMESPACE

22.2.2 Variables, Constants, Enums

VARDECLARE
CONSTDECLARE
ENUMDECLARE
SLICING

22.2.3 Flow Control

IFSTMT
SWITCHSTMT
BREAKSTMT
CONTINUESTMT
RETRYSTMT
EXITSTMT
FALLTHRUSTMT
FORSTMT
WHILESTMT
LOOPSTMT
GOTOSTMT
CALL
IFDEFSTMT

22.2.4 Routines

PROCDECLARE
FUNCDECLARE
TYPEDECLARE

96

CHAPTER 22. FORMAL SYNTAX 22.3. SEQUENCE SLICE

RETURN

22.2.5 include

INCLUDESTMT

INCLUDESTMT ==: ’include ’ FILEREF [’as’ NAMESPACEID] EOL

FILEREF ==: A file path that may be enclosed in double -quotes.

NAMESPACEID ==: IDENTIFIER

NOTE that after the file reference, the only text allowed is the keyword ’as’ or the start of a comment. Nothing else is
permitted on the same text line.

See Also: include statement

22.3 Sequence Slice

SLICING

SLICE ==: SLICESTART INTEXPRESSION SLICEDELIM INTEXPRESSION SLICEEND

SLICESTART ==: ’[’

SLICEDELIM ==: ’..’

SLICEEND ==: ’]’

See Also: Slicing of Sequences

22.4 if

IFSTMT

IFSTMT ==: IFTEST [ELSIF ...] [ELSE] ENDIF

IFTEST ==: ’if’ ATOMEXPR [LABEL] ’then ’ [STMTBLOCK]

ELSIF ==: ’elsif ’ ATOMEXPR ’then ’ [STMTBLOCK]

ELSE ==: ’else ’ [STMTBLOCK]

ENDIF ==: ’end ’ ’if ’

See Also: if statement

22.5 ifdef

IFDEFSTMT

IFDEFSTMT ==: IFDEFTEST [ELSDEFIF ...] [ELSEDEF] ENDDEFIF

IFDEFTEST ==: ’ifdef ’ DEFEXPR ’then ’ [STMTBLOCK]

ELSDEFIF ==: ’elsifdef ’ DEFEXPR ’then ’ [STMTBLOCK]

ELSEDEF ==: ’elsedef ’ [STMTBLOCK]

ENDDEFIF ==: ’end ’ ’ifdef ’

DEFEXPR ==: DEFTERM [DEFOP DEFTERM]

DEFTERM ==: [’not ’ IDENTIFIER]

DEFOP ==: ’and ’ | ’or ’

See Also: ifdef statement

97

CHAPTER 22. FORMAL SYNTAX 22.6. BREAK

22.5.1 switch

SWITCHSTMT

SWITCHSTMT ==: SWITCHTEST CASE [CASE ...] [CASEELSE] [ENDSWITCH]

SWITCHTEST ==: ’switch ’ EXPRESSION [WITHFALL] [LABEL] ’do ’

WITHFALL ==: (’with ’ | ’without ’) ’fallthru ’

CASE ==: ’case ’ CASELIST ’then ’ [STMTBLOCK]

CASELIST ==: EXPRESSION [(LISTDELIM EXPRESSION) ...]

CASEELSE ==: ’case ’ ’else ’

ENDSWITCH ==: ’end ’ ’switch ’

See Also: switch statement

22.6 break

BREAKSTMT

BREAKSTMT ==: ’break ’ [STRINGLIT]

See Also: break statement

22.7 continue

CONTINUESTMT

CONTINUESTMT ==: ’continue ’ [STRINGLIT]

See Also: continue statement

22.8 retry

RETRYSTMT

RETRYSTMT ==: ’retry ’ [STRINGLIT]

See Also: retry statement

22.9 exit

EXITSTMT

EXITSTMT ==: ’exit ’ [STRINGLIT]

See Also: exit statement

22.10 fallthru

FALLTHRUSTMT

FALLTHRUSTMT ==: ’fallthru ’

See Also: switch statement

98

CHAPTER 22. FORMAL SYNTAX 22.11. FOR

22.11 for

FORSTMT

FORSTMT ==: ’for ’ FORIDX [LABEL] ’do ’ [STMTBLK] ’end ’ ’for ’

FORIDX ==: IDENTIFIER ’=’ NUMEXPR ’to’ NUMEXPR [’by’ NUMEXPR]

See Also: for statement

22.12 while

WHILESTMT

WHILESTMT ==:

’while ’ BOOLEXPR [WITHENTRY] [LABEL] ’do’ STMTBLK [ENTRY] ’end ’ ’while ’

WITHENTRY ==: ’with ’ ’entry ’

ENTRY ==: ’entry ’ [STMTBLK]

See Also: while statement

22.13 loop

LOOPSTMT

LOOPSTMT ==:

’loop ’ [WITHENTRY] [LABEL] ’do’ STMTBLK [ENTRY] ’until ’ BOOLEXPR ’end ’ ’loop ’

See Also: loop until statement

22.14 goto

GOTOSTMT

GOTOSMT ==: ’goto ’ LABEL

See Also: goto statement

22.15 declare a variable

VARDECLARE

VARDECLARE ==: [SCOPETYPE] DATATYPE IDENTLIST

IDENTLIST ==: IDENT [’,’ IDENTLIST]

IDENT ==: IDENTIFIER [’=’ EXPRESSION]

Notes:

• The type of the EXPRESSION must be compatable with the DATATYPE.

22.16 declare a constant

CONSTDECLARE

CONSTDECLARE ==: [SCOPETYPE] ’constant ’ IDENTLIST

99

CHAPTER 22. FORMAL SYNTAX 22.17. DECLARE AN ENUMERATED VALUE

22.17 declare an enumerated value

ENUMDECLARE

ENUMDECLARE ==: [SCOPETYPE] [ENUMVAL | ENUMTYPE]

ENUMVAL ==: ’enum ’ [’by ’ ENUMDELTA] IDENTLIST

ENUMDELTA ==: [’+’ | ’-’ | ’*’ | ’/’] NUMEXPR

ENUMTYPE ==: ’enum ’ ’type ’ [’by’ ENUMDELTA] IDENTLIST ’end ’ ’type ’

22.18 call a procedure or function

CALL Used to call (invoke) either a procedure or a function.

CALL ==: IDENTIFIER ’(’ [ARGLIST] ’)’

ARGLIST ==: ARGUMENT [’,’ ARGLIST]

See Also: procedures functions

22.19 declare a procedure

PROCDECLARE

PROCDECLARE ==: [SCOPETYPE] ’procedure ’ IDENTIFIER ’(’ [PARMLIST] ’)’ [STMTBLK] ’end ’ ’procedure ’

PARMLIST ==: PARAMETER [’,’ PARMLIST]

PARAMETER ==: DATATYPE IDENTIFER

Notes:

• The procedure statement block must not contain a return statememt.

See Also: procedures

22.20 declare a function

FUNCDECLARE

FUNCDECLARE ==: [SCOPETYPE] ’function ’ IDENTIFIER ’(’ [PARMLIST] ’)’ [STMTBLK] ’end ’ ’function ’

PARMLIST ==: PARAMETER [’,’ PARMLIST]

PARAMETER ==: DATATYPE IDENTIFER

Notes:

• The function statement block must contain a return statememt.

See Also: functions

22.21 declare a user defined type

TYPEDECLARE

TYPEDECLARE ==: [SCOPETYPE] ’type ’ IDENTIFIER ’(’ PARAMETER ’)’ [STMTBLK] ’end ’ ’type ’

PARAMETER ==: DATATYPE IDENTIFER

Notes:

• The type statement block must contain a return statememt.

• It must return an integer; 0 means that the supplied argument is not of the correct type.

See Also: types

100

CHAPTER 22. FORMAL SYNTAX 22.22. RETURN THE RESULT OF A FUNCTION

22.22 return the result of a function

RETURN

RETURN ==: ’return ’ EXPRESSION

See Also: types

22.23 default namespace

NAMESPACE ==: ’namespace ’ IDENTIFIER EOL

See Also: Using namespaces

22.24 with options

WITHSTMT

WITHSTMT ==: ["with" | "without"] WITHOPTION

WITHOPTION ==: ["profile" | "profile_time" | "trace" | "batch" |

"type_check" | "indirect_includes" | "inline" | WITHWARNING]

WITHWARNING ==: "warning" [WARNOPT]

WARNOPT ==: SETWARN | ADDWARN | SAVEWARN | RESTOREWARN | STRICTWARN

SETWARN ==: [’=’] ’{’ WARNLIST ’}’

ADDWARN ==: [’+=’ | ’&=’] ’{’ WARNLIST ’}’

SAVEWARN ==: ’save ’

RESTOREWARN ==: ’restore ’

STRICTWARN ==: ’strict ’

See Also: with / without

101

Chapter 23
Euphoria Internals

The interpreter has four binary components:

• Interpreter

• Translator

• Backend

• Library

The Euphoria interpreter has two parts: the frontend and the backend. The frontend is a parser that converts source-
code into a set of Intermediate Language (IL) instructions. The backend then takes the IL instructions and executes
the program.

When the interpreter executes source-code, the frontend parses and prepares the code, and then the backend executes
the code.

When the shrouder executes source-code, only the frontend is run producing an .il file. This .il file may be run by
the backend as an independent step to execute the program.

When the binder executes source-code, the .il instructions produced by the frontend are combined with the backend
to produce a stand-alone executable program. The executable program may then be run independetly at any time.

When the translator executes source-code, the .il instructions are translated into C-code. This C-code is compiled
with an installed C compiler producing an executable program.

The library is called by the backend for the many builtins included in Euphoria.

23.1 The Euphoria Data Structures

23.1.1 The Euphoria representation of a Euphoria Object

Every Euphoria object is stored as-is. A special unlikely floating point value is used for NOVALUE. NOVALUE signifies that
a variable has not been assigned a value or the end of a sequence.

23.1.2 The C Representation of a Euphoria Object

Every Euphoria object is either stored as is, or as an encoded pointer. A Euphoria integer is stored in a 32-bit signed
integer. If the number is too big for a Euphoria integer, it is assigned to a 64-bit double float in a structure and an
encoded pointer to that structure is stored in the said 32-bit memory space. Sequences are stored in a similar way.

32 bit number range:

0X8 0XA 0XC 0XE 0X0 0X2 0X4 0X6 0X8

-4*2^29 -3*2^29 -2*2^29-1 -2^29 0*2^29 1*2^29 2*2^29 3*2^29 4*2^29

102

CHAPTER 23. EUPHORIA INTERNALS23.2. THE C REPRESENTATIONS OF A EUPHORIA SEQUENCE AND A EUPHORIA ATOM

----------------*--------*--------*--------*--------*--------*--------o

o NOVALUE = -2*2^29 -1

o<-----------ATOM_INT ---------[-2*2^29..4*2^29)------>o

|<----------------ATOM_DBL -------[-3*2^29..4*2^29)------------>o

-->| |<-- IS_SEQUENCE [-4*2^29.. -3*2^29)

-->| o<--- IS_DBL_OR_SEQUENCE [-4*2^29.. -2*2^29 -1)

-->|sequence|<-------

|<------------------ atom --------------->|

------->| double |<--------

|<-------- integer --------->|

|<--------------------- object ---------------------->|

Euphoria integers are stored in object variables as-is. An object variable is a four byte signed integer. Legal integer
values for Euphoria integers are between -1,073,741,824 (-230) and +1,073,741,823 (230-1). Unsigned hexadecimal
numbers from C000 0000 to FFFF FFFF are the negative integers and numbers from 0000 0000 to 3FFF FFFF are the
positive integers. The hexadecimal values not used as integers are thus 4000 0000 to BFFF FFFF. Other values are for
encoded pointers. Pointers are always 8 byte aligned. So a pointer is stored in 29-bits instead of 32 and can fit in a
hexadecimal range 0x2000 0000 long. The pointers are encoded in such a way that their encoded values will never be
in the range of the integers. Pointers to sequence structures (struct s1) are encoded into a range between 8000 0000 to
9FFF FFFF. Pointers to structures for doubles (struct d) are encoded into a range between A000 0000 to BFFF FFFF. A
special value NOVALUE is at the end of the range of encoded pointers is BFFF FFFF and it signifies that there is no value
yet assigned to a variable and it also signifies the end of a sequence. In C, values of this type are stored in the ’object’
type. The range 4000 0000 to 7FFF FFFF is unused.

A double structure ’struct d’ could indeed contain a value that is legally in the range of a Euphoria integer. So the
encoded pointer to this structure is recognized by the interpreter as an ’integer’ but in this internals document when we
say Euphoria integer we mean it actually is a C integer in the legal Euphoria integer range.

23.2 The C Representations of a Euphoria Sequence and a Euphoria Atom

// Sequence Header

struct s1

{

object_ptr base; // base is such that base [1] is the first element

long length; // this is the sequence length

long ref; // ref is the number of as virtual copies of this sequence

long postfill; // is how many extra objects could fit at the end of base

cleanup_ptr cleanup; // this is a pointer to a Euphoria routine that is run

// just before the sequence is freed.

}

However, we allocate more than this structure. Inside the allocated data but past the structure, there also is an area
of ’pre free space’; sequence data pointed to by base[1] to base[$], $ being the length; a NOVALUE terminator for the
sequence, and an area of post fill space. In memory, immediately following the structure there is the following data stored:

object pre_fill_space []; // could have 0 (not exist) or more elements before used data

object base [1..$]; // sequence members pointed to by base

object base[$+1]; // a magic number terminating the sequence members (NOVALUE)

object post_fill_space [];// could have 0 (not exist) or more elements after used data

Taken together these are what get represented in memory.

base length ref postfill cleanup pre fill
space

base[1..$] NOVALUE post fill
space

By their nature, sequences are variable length, dynamic entities and so the C structure needs to cater for this. When
a sequence is created, we allocate enough RAM for the combined header and the initial storage for the elements.

103

CHAPTER 23. EUPHORIA INTERNALS23.2. THE C REPRESENTATIONS OF A EUPHORIA SEQUENCE AND A EUPHORIA ATOM

Field Description
base This contains the address of the first element less the

length of one element. Thus base[1] points to the first
element and base[0] points to a fictitious element just
before the first one, which is never used.

Initially, base contains the address of the last member of
the sequence header but as the sequence is resized, it can
point to the last member or anywhere after.
length Contains the current number of elements in the sequence.
ref Contains the count of references to this sequence. Only

when this is zero, can the RAM used by the sequence be
returned to the system for reuse.

postfill The size of ’post fill space’ in element spaces. Rather than
using bytes, postfill is measured in objects which are each
address wide elements. If this is non-zero, we can append
to the sequence with at most postfill new elements
before needing to reallocate RAM.

cleanup If not null, it points to a routine that is called immediately
before the sequence is deleted.

pre fill space There are 0 or more spaces before base[1]. We can calcu-
late the free space in *objects* at the front of a sequence,
s1, in C by

(&s1.base[1] - (object ptr)(1+&s1)).
In EUPHORIA, you will have to divide by the size of a
C POINTER on the difference. When elements are re-
moved from the front of a sequence, we simply adjust the
address in base to point to the new first element and re-
duce the length count. If we want to prepend and this
pre fill space has some positive size, then we make room
by decrementing base and increment the length. The
new data is then assigned to base[1].
base[1]..base[length] sequence data This is actual data.
base[$+1] This is always set to NOVALUE.
post fill space There are 0 or more spaces after base[length+1]. The

number of spaces is stored in postfill. If postfill

is non-zero we can append by incrementing the length,
decrementing postfill and assigning the new data to
base[$]. When we remove from the end of the sequence,
we increment postfill and decrement the length.

// Atom Header

struct d

{

double dbl; // the actual value of a double number.

long ref; // ref is the number of virtual copies of this double

cleanup_ptr cleanup; // this is a pointer to a Euphoria routine that is run

// just before the sequence is freed.

}

Now offset of the ’ref’ in struct d must be the same as the offset of the ’ref’ in struct s1. To this end, the 64bit
implementation of 4.1 has these members in a different order.

104

CHAPTER 23. EUPHORIA INTERNALS 23.3. THE EUPHORIA OBJECT MACROS AND FUNCTIONS

23.3 The Euphoria Object Macros and Functions

23.3.1 Description

The macros are imperfect. For example, IS SEQUENCE(NOVALUE) returns TRUE and IS ATOM DBL will return TRUE for
integer values as well as encoded pointers to ’struct d’s. This is why there is an order that these tests are made: We test
IS ATOM INT and if that fails we can use IS ATOM DBL and then that will only be true if we pass an encoded pointer to a
double. We must be sure that something is not NOVALUE before we use IS SEQUENCE on it.

Often we know foo is not NOVALUE before getting into this:

// object foo

if (IS_ATOM_INT(foo)) {

// some code for a Euphoria integer

} else if (IS_ATOM_DBL(foo)) {

// some code for a double

} else {

// code for a sequence foo

}

A sequence is held in a ’struct s1’ type and a double is contained in a ’struct d’.

23.4 Type Value Functions and Macros

23.4.1 IS ATOM INT

<internal > int IS_ATOM_INT(object o)

Returns

true if object is a Euphoria integer and not an encoded pointer.

Note

IS ATOM INT will return true even though the argument is out of the Euphoria integer range when the argument is positive.
These values are not possible encoded pointers.

23.4.2 IS ATOM DBL

<internal > int IS_ATOM_DBL(object o)

Returns

true if the object is an encoded pointer to a double struct.

Assumption

o must not be a Euphoria integer.

23.4.3 IS ATOM

<internal > int IS_ATOM(object o)

105

CHAPTER 23. EUPHORIA INTERNALS 23.5. TYPE CONVERSION FUNCTIONS AND MACROS

Returns

true if the object is a Euphoria integer or an encoded pointer to a ’struct d’.

23.4.4 IS SEQUENCE

<internal > int IS_SEQUENCE(object o)

Returns

true if the object is an encoded pointer to a ’struct s1’.

Assumption

o is not NOVALUE.

23.4.5 IS DBL OR SEQUENCE

<internal > int IS_DBL_OR_SEQUENCE(object o)

Returns

true if the object is an encoded pointer of either kind of structure.

23.5 Type Conversion Functions and Macros

23.5.1 MAKE INT

<internal > object MAKE_INT(signed int x)

Returns

an object with the same value as x. x must be with in the integer range of a legal Euphoria integer type.

23.5.2 MAKE UINT

<internal > object MAKE_UINT(unsigned int x)

Returns

an object with the same value as x.

Assumption

x must be an unsigned integer with in the integer range of a C unsigned int type.

Example

MAKE UINT(4*1000*1000*1000) will make a Euphoria value of four billion by creating a double.

106

CHAPTER 23. EUPHORIA INTERNALS 23.5. TYPE CONVERSION FUNCTIONS AND MACROS

23.5.3 MAKE SEQ

<internal > object MAKE_SEQ(struct s1 * sptr)

Returns

an object with an argument of a pointer to a ’struct s1’ The pointer is encoded into a range for sequences and returned.

23.5.4 NewString

<internal > object NewString(char *s)

Returns

an object representation of a Euphoria byte string s. The returned encoded pointer is a sequence with all of the bytes
from s copied over.

23.5.5 MAKE DBL

<internal > object MAKE_DBL(struct d * dptr)

Returns

an object with an argument of a pointer to a ’struct d’ The pointer is encoded into a range for doubles and returned.

23.5.6 NewDouble

<internal > object NewDouble(double dbl)

Returns

an object with an argument a double dbl. A struct d is allocated and dbl is assigned to the value part of that structure.
The pointer is encoded into the range for doubles and returned.

23.5.7 DBL PTR

<internal > struct d * DBL_PTR(object o)

Returns

The pointer to a ’struct d’ from the object o.

Assumption

IS ATOM INT(o) is FALSE and IS ATOM DBL(o) is TRUE.

23.5.8 SEQ PTR

<internal > struct s1 * SEQ_PTR(object o)

107

CHAPTER 23. EUPHORIA INTERNALS 23.6. CREATING OBJECTS

Returns

The pointer to a ’struct s1’ from the object o.

Assumption

IS SEQUENCE(o) is TRUE and o is not NOVALUE.

get pos int

#include be_machineh

<internal > uintptr_t get_pos_int(char *where , object x)

Returns

a unsigned long value by truncating what x’s value is to an integer

Comment

Any object may be passed. A sequence results in a runtime failure. There may be a cast of a double to a smaller ranged
long type.

23.6 Creating Objects

23.6.1 NewS1

<internal > object NewS1 (long size)

Returns

A sequence object with size members which are not yet set to a value.

23.7 Object Constants

Use MAXINT and MININT to check for overflow and underflow, NOVALUE to check if a variable has not been assigned,
and use NOVALUE to terminate a sequence.

23.7.1 NOVALUE

<internal > object NOVALUE

Indicates that a variable has not been assigned and also terminates a sequence.

23.7.2 MININT

<internal > signed int MININT

The minimal Euphoria integer. This is -(230).

108

CHAPTER 23. EUPHORIA INTERNALS 23.7. OBJECT CONSTANTS

23.7.3 MAXINT

<internal > signed int MAXINT

The maximal Euphoria integer. This is 230-1.

23.7.4 HIGH BITS

<internal > signed int HIGH_BITS

HIGH BITS is an integer value such that if another integer value c lies outside of the range between MININT and
MAXINT, c+HIGH BITS will be non-negative.

Proof that HIGH BITS is #C000 0000 on 32-bit version of EUPHORIA.

• In the following expressions powers have higher precedence than unuary minus.* if c is a non-ATOM-INT value, then

c belongs to the set [-231,-230-1(=NOVALUE)] U [230,231].
c+-230 belongs to the set [-231-230,-230-1-230] U [230-230,230] which is [-3*230,-231-1] U [0,230]. However the lower

values wrap around to non-negative numbers:
-231-1 wraps to 231-1. -3*230 wraps around to 230.
c+-230 belongs to the set [230,231-1] U [0,230] = [0,231-1]
This is the set of all non-negative numbers that can fit into 32-bit signed longs. -230 is the unsigned version of

#C000 0000. QED.
A visual way of looking at it is, adding #C000 0000 to the set of non-ATOM INTS rotates the set to the negative

side by -MININT (2ˆ30). The already negative ones wrap around to the positive; the positive numbers stay positive and
hug the zero. Since adding #C000 0000 on registers is 1-1 and onto, we also know that ATOM INTs will all be mapped
to negative signed longs.

Testing for Overflow:

There are two ways to test for overflow:

1. (c > MAXINT) —— (c < MININT)

2. (c + HIGH BITS) >= 0

23.7.5 Parser

Inserting tokens into the token buffer is the easiest way to add features to the EUPHORIA parser. The tokens are
two-element sequences one of the class of token and the other the token’s value:

<class>,<value>
Each of the class values are capitalized words for some keyword or VARIABLE. The list of constants is in reswords.e.

Often it is enough to only examin the class. In the case of variables, it is important to know which variable. In this case
the second element, comes into play.

You can use putback to put tokens into the token buffer. The tokens will be pulled out by the parser in a filo manner,
like a stack.

23.7.6 Backend Instructions

After the Parser processes the instructions. It creates Backend instructions that are easily translated or interpreted. The
system uses opcodes and some parameters which are put on a stack. This backend language is similar to assembler. You
have opcodes (instructions) and parameters. These parameters must be integers themselves but some may serve as pointers
to arbitrary EUPHORIA objects. As a developer of EUPHORIA itself, rather than a developer that uses EUPHORIA, it is

109

CHAPTER 23. EUPHORIA INTERNALS 23.7. OBJECT CONSTANTS

important to know exactly what these opcodes do and what they are for. In this section we will document what they are
for, and how they manipulate the instruction pointer, and stack.

IF instruction:
The IF instruction is used for making runtime branch statements. The IF instruction takes the top of the stack as

the condition value, if the condition is 0, it passes control to the address stored just below the top of the stack. If the
condition is non-zero and an atom the instruction pointer just past the failure address.

[IF instruction] [test value] [failure address]
INTEGER CHECK instruction:
The INTEGER CHECK is used to ensure that something has a value considered to be ’integer’ to the EUPHORIA

language definition. The instruction takes the next argument as a pointer to a value and determines whether this value
is in the legal integer range, regardless of how that number is represented. If not in legal range, then the program ends
execution in a type-check failure error message.

[INTEGER CHECK instruction] [test pointer]
ATOM CHECK instruction:
The ATOM CHECK is used to determine whether something has a numeric value rather than a sequence. The

instruction takes an argument as a pointer to a value and determines whether the value is an atom. If it is not an atom,
then the program ends execution in a type-check failure error message.

[ATOM CHECK instruction] [test pointer]
IS AN INTEGER instruction:
The IS AN INTEGER instruction is used to determine whether something has a value considered to be ’integer’ to the

EUPHORIA language definition. The instruction takes the argument as a pointer to a value and determines whether this
value is in the legal integer range, regardless of how that number is represented. If it is in the ’integer’ range then the
value pointed by the second argument will be 1 otherwise it will be 0.

[IS AN INTEGER instruction] [test pointer][return value pointer]

110

Part VI

Mini-Guides

111

Chapter 24
Debugging and Profiling

24.1 Debugging

Extensive run-time checking provided by the Euphoria interpreter catches many bugs that in other languages might take
hours of your time to track down. When the interpreter catches an error, you will always get a brief report on your screen,
and a detailed report in a file called ex.err. These reports include a full English description of what happened, along
with a call-stack traceback. The file ex.err will also have a dump of all variable values, and optionally a list of the most
recently executed statements. For extremely large sequences, only a partial dump is shown. If the name ex.err is not
convenient, or if a nondefault path is required, you can choose another file name, anywhere on your system, by calling
crash file.

In addition, you are able to create user-defined types that precisely determine the set of legal values for each of your
variables. An error report will occur the moment that one of your variables is assigned an illegal value.

Sometimes a program will misbehave without failing any run-time checks. In any programming language it may be a
good idea to simply study the source code and rethink the algorithm that you have coded. It may also be useful to insert
print statements at strategic locations in order to monitor the internal logic of the program. This approach is particularly
convenient in an interpreted language like Euphoria since you can simply edit the source and rerun the program without
waiting for a re-compile/re-link.

24.1.1 The with / without trace directive

The interpreter provides you with additional powerful tools for debugging. Using trace(1) you can trace the execution of
your program on one screen while you witness the output of your program on another. trace(2) is the same as trace(1)
but the trace screen will be in monochrome. Finally, using trace(3), you can log all executed statements to a file called
ctrace.out.

The with/without trace special statements select the parts of your program that are available for tracing. Often you
will simply insert a with trace statement at the very beginning of your source code to make it all traceable. Sometimes it
is better to place the first with trace after all of your user-defined types, so you don’t trace into these routines after each
assignment to a variable. At other times, you may know exactly which routine or routines you are interested in tracing, and
you will want to select only these ones. Of course, once you are in the trace window, you can skip viewing the execution
of any routine by pressing down-arrow on the keyboard rather than Enter. However, once inside a routine, you must step
through till it returns, even if stepping in was an mistake.

Only traceable lines can appear in ctrace.out or in ex.err as ”Traced lines leading up to the failure”, should a
run-time error occur. If you want this information and didn’t get it, you should insert a with trace and then rerun your
program. Execution will be slower when lines compiled with trace are executed, especially when trace(3) is used.

After you have predetermined the lines that are traceable, your program must then dynamically cause the trace facility
to be activated by executing a trace statement. You could simply say:

with trace

trace (1)

112

CHAPTER 24. DEBUGGING AND PROFILING 24.2. THE TRACE SCREEN

However, you cannot dynamically set or free breakpoints while tracing. You must abort program, edit, change setting,
save and run again.

At the top of your program, so you can start tracing from the beginning of execution. More commonly, you will want
to trigger tracing when a certain routine is entered, or when some condition arises. e.g.

if x < 0 then

trace (1)

end if

You can turn off tracing by executing a trace(0) statement. You can also turn it off interactively by typing ’q’ to
quit tracing. Remember that with trace must appear outside of any routine, whereas trace can appear inside a routine
or outside.

You might want to turn on tracing from within a type. Suppose you run your program and it fails, with the ex.err

file showing that one of your variables has been set to a strange, although not illegal value, and you wonder how it could
have happened. Simply create a type for that variable that executes trace(1) if the value being assigned to the variable
is the strange one that you are interested in. e.g.

1 type positive_int(integer x)

2 if x = 99 then

3 trace (1) -- how can this be???

4 return 1 -- keep going

5 else

6 return x > 0

7 end if

8 end type

When positive int returns, you will see the exact statement that caused your variable to be set to the strange value,
and you will be able to check the values of other variables. You will also be able to check the output screen to see what
has happened up to this precise moment. If you define positive int so it returns zero for the strange value (99) instead
of one, you can force a diagnostic dump into ex.err.

Remember that the argument to trace does not need to be a constant. It only needs to be 0, 1, 2 or 3, but these
values may be the result from any expression passed to trace. Other values will cause trace to fail.

24.2 The Trace Screen

When a trace(1) or trace(2) statement is executed by the interpreter, your main output screen is saved and a trace
screen appears. It shows a view of your program with the statement that will be executed next highlighted, and several
statements before and after showing as well. You cannot scroll the window further up or down though. Several lines at
the bottom of the screen are reserved for displaying variable names and values. The top line shows the commands that
you can enter at this point:

113

CHAPTER 24. DEBUGGING AND PROFILING 24.2. THE TRACE SCREEN

Command Action

F1 display main output screen
take a look at your program’s output so far
F2 redisplay trace screen. Press this key while viewing the

main output screen
to return to the trace display.
Enter execute the currently-highlighted statement only
down-arrow continue execution and break when any statement coming

after
this one in the source listing is about to be executed.
This lets you skip over subroutine calls. It also lets you
stop on the first statement following the end of a loop
without having to witness all iterations of the loop.
? display the value of a variable. After hitting ? you will be

prompted for the name of the variable.
Many variables are displayed for you automatically as they
are assigned a value. If a variable is not currently being
displayed, or is only partially displayed, you can ask for it.
Large sequences are limited to one line on the trace screen,
but when you ask for the value of
a variable that contains a large sequence, the screen will
clear, and you can scroll through
a pretty-printed display of the sequence. You will then be
returned to the trace screen,
where only one line of the variable is displayed. Variables
that are not defined at this point
in the program cannot be shown. Variables that have not
yet been initialized will have
”< NO VALUE >” beside their name. Only variables, not
general expressions, can be displayed.
As you step through execution of the program, the system
will update any values showing
on the screen. Occasionally it will remove variables that
are no longer in scope, or
that haven’t been updated in a long time compared with
newer, recently-updated variables.
q quit tracing and resume normal execution. Tracing will

start again when the next trace(1) is executed.
Q quit tracing and let the program run freely to its normal

completion. trace statements will be ignored.
! this will abort execution of your program. A traceback and

dump of variable values will go to ex.err.

As you trace your program, variable names and values appear automatically in the bottom portion of the screen.
Whenever a variable is assigned to, you will see its name and new value appear at the bottom. This value is always kept
up-to-date. Private variables are automatically cleared from the screen when their routine returns. When the variable
display area is full, least-recently referenced variables will be discarded to make room for new variables. The value of a
long sequence will be cut off after 80 characters.

For your convenience, numbers that are in the range of printable ASCII characters (32-127) are displayed along with
the ASCII character itself. The ASCII character will be in a different color (or in quotes in a mono display). This is done
for all variables, since Euphoria does not know in general whether you are thinking of a number as an ASCII character or
not. You will also see ASCII characters (in quotes) in ex.err. This can make for a rather ”busy” display, but the ASCII
information is often very useful.

The trace screen adopts the same graphics mode as the main output screen. This makes flipping between them quicker

114

CHAPTER 24. DEBUGGING AND PROFILING 24.3. THE TRACE FILE

and easier.
When a traced program requests keyboard input, the main output screen will appear, to let you type your input as you

normally would. This works fine for a gets (read one line) input. When a get key (quickly sample the keyboard) is called
you will be given 8 seconds to type a character, otherwise it is assumed that there is no input for this call to get key.
This allows you to test the case of input and also the case of no input for get key.

24.3 The Trace File

When your program calls trace(3), tracing to a file is activated. The file, ctrace.out will be created in the current
directory. It contains the last 500 Euphoria statements that your program executed. It is set up as a circular buffer that
holds a maximum of 500 statements. Whenever the end of ctrace.out is reached, the next statement is written back at
the beginning. The very last statement executed is always followed by ”=== THE END ===”. Because it’s circular, the
last statement executed could appear anywhere in ctrace.out. The statement coming after ”=== THE END ===” is
the 500th-last.

This form of tracing is supported by both the interpreter and the the Euphoria to C translator. It is particularly useful
when a machine-level error occurs that prevents Euphoria from writing out an ex.err diagnostic file. By looking at the
last statement executed, you may be able to guess why the program crashed. Perhaps the last statement was a poke into
an illegal area of memory. Perhaps it was a call to a C routine. In some cases it might be a bug in the interpreter or the
translator.

The source code for a statement is written to ctrace.out, and flushed, just before the statement is performed, so
the crash will likely have happened during execution of the final statement that you see in ctrace.out.

24.4 Profiling

If you specify a with profile or with profile time (Windows only) directive, then a special listing of your program,
called a profile, will be produced by the interpreter when your program finishes execution. This listing is written to the
file ex.pro in the current directory.

There are two types of profiling available: execution-count profiling, and time profiling. You get execution-count
profiling when you specify with profile. You get time profiling when you specify with profile time. You can not mix
the two types of profiling in a single run of your program. You need to make two separate runs.

We ran the sieve8k.ex benchmark program in demo\bench under both types of profiling. The results are in sieve8k.

pro (execution-count profiling) and sieve8k.pro2 (time profiling).
Execution-count profiling shows precisely how many times each statement in your program was executed. If the

statement was never executed the count field will be blank.
Time profiling shows an estimate of the total time spent executing each statement. This estimate is expressed as a

percentage of the time spent profiling your program. If a statement was never sampled, the percentage field will be blank.
If you see 0.00 it means the statement was sampled, but not enough to get a score of 0.01.

Only statements compiled with profile or with profile time are shown in the listing. Normally you will specify
either with profile or with profile time at the top of your main .ex* file, so you can get a complete listing. View
this file with the Euphoria editor to see a color display.

Profiling can help you in many ways:

• It lets you see which statements are heavily executed, as a clue to speeding up your program

• It lets you verify that your program is actually working the way you intended

• It can provide you with statistics about the input data

• It lets you see which sections of code were never tested – don’t let your users be the first!

Sometimes you will want to focus on a particular action performed by your program. For example, in the Language
War game, we found that the game in general was fast enough, but when a planet exploded, shooting 2500 pixels off
in all directions, the game slowed down. We wanted to speed up the explosion routine. We did not care about the rest
of the code. The solution was to call profile(0) at the beginning of Language War, just after with profile time,
to turn off profiling, and then to call profile(1) at the beginning of the explosion routine and profile(0) at the end

115

CHAPTER 24. DEBUGGING AND PROFILING 24.5. SOME FURTHER NOTES ON TIME PROFILING

of the routine. In this way we could run the game, creating numerous explosions, and logging a lot of samples, just for
the explosion effect. If samples were charged against other lower-level routines, we knew that those samples occurred
during an explosion. If we had simply profiled the whole program, the picture would not have been clear, as the lower-level
routines would also have been used for moving ships, drawing phasors etc. profile can help in the same way when you
do execution-count profiling.

24.5 Some Further Notes on Time Profiling

With each click of the system clock, an interrupt is generated. When you specify with profile time Euphoria will
sample your program to see which statement is being executed at the exact moment that each interrupt occurs.

Each sample requires four bytes of memory and buffer space is normally reserved for 25000 samples. If you need more
than 25000 samples you can request it:

with profile_time 100000

will reserve space for 100000 samples (for example). If the buffer overflows you’ll see a warning at the top of ex.pro. At
100 samples per second your program can run for 250 seconds before using up the default 25000 samples. It’s not feasible
for Euphoria to dynamically enlarge the sample buffer during the handling of an interrupt. That’s why you might have
to specify it in your program. After completing each top-level executable statement, Euphoria will process the samples
accumulated so far, and free up the buffer for more samples. In this way the profile can be based on more samples than
you have actually reserved space for.

The percentages shown in the left margin of ex.pro, are calculated by dividing the number of times that a particular
statement was sampled, by the total number of samples taken. e.g. if a statement were sampled 50 times out of a total
of 500 samples, then a value of 10.0 (10 per cent) would appear in the margin beside that statement. When profiling
is disabled with profile(0), interrupts are ignored, no samples are taken and the total number of samples does not
increase.

By taking more samples you can get more accurate results. However, one situation to watch out for is the case where
a program synchronizes itself to the clock interrupt, by waiting for time to advance. The statements executed just after
the point where the clock advances might never be sampled, which could give you a very distorted picture. e.g.

while time() < LIMIT do

end while

x += 1 -- This statement will never be sampled

Sometimes you will see a significant percentage beside a return statement. This is usually due to time spent
deallocating storage for temporary and private variables used within the routine. Significant storage deallocation time can
also occur when you assign a new value to a large sequence.

If disk swapping starts to happen, you may see large times attributed to statements that need to access the swap file,
such as statements that access elements of a large swapped-out sequence.

116

Chapter 25
Shrouding and Binding

25.1 The eushroud Command

25.1.1 Synopsis

eushroud [-full_debug] [-list] [-quiet] [-out shrouded_file] filename.ex[w/u]

The eushroud command converts a Euphoria program, typically consisting of a main file plus many include files, into
a single, compact file. A single file is easier to distribute, and it allows you to distribute your program to others without
releasing your source code.

A shrouded file does not contain any Euphoria source code statements. Rather, it contains a low-level Intermediate
Language (IL) that is executed by the back-end of the interpreter. A shrouded file does not require any parsing. It starts
running immediately, and with large programs you will see a quicker start-up time. Shrouded files must be run using the
interpreter back-end:

eubw.exe (Windows) or eub.exe (Unix).
This backend is freely available, and you can give it to any of your users who need it. It is stored in .../euphoria/bin

in the Euphoria interpreter package. You can run your .il file with:
On Windows use:

eub myprog.il

eubw myprog.il

On Unix use:

eub myprog.il

Although it does not contain any source statements, a .il file will generate a useful ex.err dump in case of a run-time
error.

The shrouder will remove any routines and variables that your program doesn’t use. This will give you a smaller .il
file. There are often a great number of unused routines and unused variables. For example, your program might include
several third party include files, plus some standard files from .../euphoria/include, but only use a few items from
each file. The unused items will be deleted.

25.1.2 Options

• -full debug: Make a somewhat larger .il file that contains enough debug information to provide a full ex.err
dump when a crash occurs. Normally, variable names and line-number information is stripped out of the .il file, so
the ex.err will simply have ”no-name” where each variable name should be, and line numbers will only be accurate
to the start of a routine or the start of a file. Only the private variable values are shown, not the global or local
values. In addition to saving space, some people might prefer that the shrouded file, and any ex.err file, not expose
as much information.

117

CHAPTER 25. SHROUDING AND BINDING 25.2. THE BIND COMMAND

• -list: Produce a listing in deleted.txt of the routines and constants that were deleted.

• -quiet: Suppress normal messages and statistics. Only report errors.

• -out shrouded file: Write the output to shrouded file.

The Euphoria interpreter will not perform tracing on a shrouded file. You must trace your original source.
On Unix, the shrouder will make your shrouded file executable, and will add a ! line at the top, that will run eub.exe.

You can override this ! line by specifying your own ! line at the top of your main Euphoria file.
Always keep a copy of your original source. There is no way to recover it from a shrouded file.

25.2 The Bind Command

25.2.1 Synopsis:

eubind [-c config -file] [-con] [-copyright] [-eub path -to-backend]

[-full_debug] [-i dir] [-icon file] [-list] [-quiet]

[-out executable_file] [-shroud_only [filename.ex]

eubind does the same thing as eushroud, and includes the same options. It then combines your shrouded .il file
with the interpreter backend (eub.exe, eubw.exe or eub) to make a single, stand-alone executable file that you can
conveniently use and distribute. Your users need not have Euphoria installed. Each time your executable file is run, a
quick integrity check is performed to detect any tampering or corruption. Your program will start up very quickly since no
parsing is needed.

The Euphoria interpreter will not perform tracing on a bound file since the source statements are not there.

25.2.2 Options:

• -c config-file: A Euphoria config file to use when binding.

• -con: (Windows only): This option will create a Windows console program instead of a Windows GUI program.
Console programs can access standard input and output, and they work within the current console window, rather
than popping up a new one.

• -eub path-to-backend Allows specification of the backend runner to use instead of the default, installed version.

• -full debug: Same as eushroud above. If Euphoria detects an error, your executable will generate either a partial,
or a full, ex.err dump, according to this option.

• -i dir: A directory to add to the paths to use for searching for included files.

• -icon filename[.ico]: (Windows only) When you bind a program, you can patch in your own customized icon,
overwriting the one in euiw.exe. eui.exe contains a 32x32 icon using 256 colors. It resembles an E) shape.
Windows will display this shape beside euiw.exe, and beside your bound program, in file listings. You can also
load this icon as a resource, using the name ”euiw” (see ...\euphoria\demo\win32\window.exw for an example).
When you bind your program, you can substitute your own 32x32 256-color icon file of size 2238 bytes or less.
Other dimensions may also work as long as the file is 2238 bytes or less. The file must contain a single icon
image (Windows will create a smaller or larger image as necessary). The default euphoria.ico, is included in the
...\euphoria\bin directory.

• -list: Same as shroud above.

• -quiet: Same as shroud above.

• -out executable file: This option lets you choose the name of the executable file created by the binder. Without
this option, eubind will choose a name based on the name of the main Euphoria source file.

118

CHAPTER 25. SHROUDING AND BINDING 25.2. THE BIND COMMAND

A one-line Euphoria program will result in an executable file as large as the back-end you are binding with, but the size
increases very slowly as you add to your program. When bound, the entire Euphoria editor, ed.ex, adds only 27K
to the size of the back-end.

The first two items returned by command line will be slightly different when your program is bound. See the procedure
description for the details.

A bound executable file can handle standard input and output redirection as with this syntax:

myprog.exe < file.in > file.out

If you were to write a small .bat file, say myprog.bat, that contained the line ”eui myprog.ex” you would not be
able to redirect input and output. The following will not work:

myprog.bat < file.in > file.out

You could however use redirection on individual lines within the .bat file.

119

Chapter 26
Euphoria To C Translator

26.1 Introduction

The Euphoria to C Translator (translator) will translate any Euphoria program into equivalent C source code.
There are versions of the translator for Windows and Unix operating Systems. After translating a Euphoria program

to C, you can compile and link using one of the supported C compilers. This will give you an executable file that will
typically run much faster than if you used the Euphoria interpreter.

The translator can translate and then compile itself into an executable file for each platform. The translator is also used
in translating/compiling the front-end portion of the interpreter. The source code for the translator is in euphoria\source.
It is written 100% in Euphoria.

26.2 C Compilers Supported

The Translator currently works with GNU C on Unix OSes, GNU C on Windows from MinGW or Cygwin using the -gcc

option and with Watcom C (the default) on Windows. These are all free compilers.
GNU C will exist already on your Unix system. The others can be downloaded from their respective Web sites.

26.2.1 Notes:

• Warnings are turned off when compiling directly or with makefiles. If you turn them on, you may see some harmless
messages about variables declared but not used, labels defined but not used, function prototypes not declared etc.

• For the -gcc option on Windows you will need a eu.a compiled with MinGW or Cygwin. The official distribution
may only contain eu.lib compiled with Watcom. Also, the -stack and -con options may not produce the expected
result with GCC C.

• Currently, only 32-bit compilers are supported on 64-bit platforms.

26.3 How to Run the Translator

Running the Translator is similar to running the Interpreter:

euc -con allsorts.ex

Note: that on Unix the demos might be installed to /usr/share/euphoria/demo

Instead of running the allsorts.ex program, the Translator will create several C source files in a temporary build
directory, compile them and result in a native executable file. For this to work, you have to have a supporting compiler
installed (mentioned above). The optional parameter used in this example, -con, will be explained in full detail below.

120

http://www.mingw.org
http://en.wikipedia.org/wiki/Cygwin
http://www.openwatcom.org

CHAPTER 26. EUPHORIA TO C TRANSLATOR 26.4. COMMAND-LINE OPTIONS

When the C compiling and linking is finished, you will have a file called allsorts.exe or simply allsorts on *nix
systems. The C source files will have been removed to avoid clutter.

When you run the allsorts executable, it should run the same as if you had typed:

eui allsorts

to run it with the Interpreter, except that it should run faster, showing reduced times for the various sorting algorithms
in euphoria\demo\allsorts.ex.

After creating your executable file, the translator removes all the C files that were created. If you want to look at these
files, you’ll need to run the translator again, using either the -keep or -makefile options.

26.4 Command-Line Options

26.4.1 -arch - Set architecture

The translator generally produces cross platform code. However, the euphoria source code may have different code for
different architectures. The default is to use the architecture of the translator binary that is being used. To target a
different architecture, you can use one of three supported architectures:

• X86

• X86 64

• ARM

26.4.2 -build-dir dir

Use the specified directory to write translated C files and compiled objects. The final executable is still output by default
to the current directory (or however the -o flag specifies). When not specified, euphoria will create a temporary, randomly
named build directory.

The specified directory cannot contain any wildcards (’*’, ’?’) or be an existing file.

$ euc -build -dir temp_dir myapp.ex

26.4.3 -cc-prefix - Compiler prefix

Some compilers, especially MinGW (the Windows version of gcc) may prefix their normal names with platform prefixes.
The -cc-prefix switch allows the developer to specify this special prefix. This can also be useful for having a system with
both the 32bit and 64bit versions installed. Cross compilers generally require this.

For example, on Windows, to build with MinGW installed as i6856-w64-mingw32:

euc -gcc -cc -prefix i686 -w64 -mingw32 - pretend.exw

26.4.4 -cflags FLAGS - Compiler Flags

Specifies the flags to pass to the compiler.

26.4.5 -com DIR - Compiler directory

Tells the translator where to find include/euphoria.h, which is the header file required when translating code.

121

CHAPTER 26. EUPHORIA TO C TRANSLATOR 26.4. COMMAND-LINE OPTIONS

26.4.6 -con - Console based program

To make a Windows console program instead of a Windows GUI program, add -con to the command line. e.g.

euc -con myprog.exw

When creating a Windows GUI program, if the -con option is used, when running your Windows program, you will
have a blank console window appear and remain the duration of your application. By default, a GUI program is assumed.

26.4.7 -debug - Debug mode

To compile your program with debugging information, usable with a debugger compatible with your compiler, use the
-debug option:

euc -debug myapp.ex

26.4.8 -dll / -so - Shared Library

To make a shared dynamically loading library, just add -dll to the command line. e.g.

euc -dll mylib.ew

Note: On *nix systems, you can also use -so. Both will produce a *nix shared library.
Please see Dynamic Link Libraries

26.4.9 -extra-cflags - Extra Compiler Flags

Supply extra compiler flags to suplement the flags used automatically by the translator or supplied via the -cflags option.

26.4.10 -extra-lflags - Extra Linker Flags

Supply extra linker flags to suplement the flags used automatically by the translator or supplied via the -lflags option.

26.4.11 -gcc, -wat

If you happen to have more than one C compiler for a given platform, you can select the one you want to use with a
command-line option:

-wat -- Watcom compiler

-gcc -- GCC compiler (MinGW on Windows)

For example, to compile with GCC (or MinGW on Windows):

euc -gcc pretend.exw

Note: Watcom is the default on Windows and -wat is assumed.

26.4.12 -keep

Normally, after building your .exe file, the translator will delete all C files and object files produced by the Translator. If
you want it to keep these files, add the -keep option to the Translator command-line. e.g.

euc -keep sanity.ex

26.4.13 -lflags FLAGS - Linker Flags

Specifies the flags to pass to the linker.

122

CHAPTER 26. EUPHORIA TO C TRANSLATOR 26.4. COMMAND-LINE OPTIONS

26.4.14 -lib - User defined library

It is sometimes useful to link your translated code to a Euphoria runtime library other than the default supplied library.
This ability is probably mostly useful for testing and debugging the runtime library itself, or to give additional debugging
information when debugging translated Euphoria code. Note that only the default library is supplied. Use the -lib

library option:

euc -lib decu.a myapp.ex

26.4.15 -lib-pic - User defined library for PIC mode

Some platforms and architectures (e.g., x86-64) require that shared libraries be built in Position Independent Code mode,
which requires that the euphoria run time library also be built with PIC. This option is similar to the -lib - User defined
library option, except that it specifies the library to use for PIC code:

euc -lib -pic euso.a myapp.ex

26.4.16 -makefile / -makefile-partial - Using makefiles

You can optionally have the translator create a makefile that you can use to build your program instead of building directly.
Using a makefile like this can be convenient if you want or need to alter the translated C code, or change compiling or
linking options before building your program. To do so:

$ euc -makefile myapp.ex

Translating code , pass: 1 2 3 4 generating

3.c files were created.

To build your project , type make -f myapp.mak

Then, as the message indicates, simply type:

$ make -f myapp.mak

On Windows, when using Watcom, the message will refer to wmake, the Watcom version of make. On BSD platforms,
you may need to use gmake, as the generated makefiles are in GNU format, not BSD.

You can also get a partial makefile using the -makefile-partial switch. This generates a makefile that you can use
to include into another makefile for a larger project. This is useful for including the file dependencies for your code into
the larger project.

26.4.17 -maxsize NUMBER

Specifies the maximum number of C statements to go into a single file before the translated file is split into multiple C
files.

26.4.18 -plat - Set platform

The translator has the capability of translating Euphoria code to C code for a platform other than the host platform. This
can be done with the -plat option. It takes one parameter, the platform code:

• FREEBSD

• LINUX

• OSX

• WINDOWS

• NETBSD

123

CHAPTER 26. EUPHORIA TO C TRANSLATOR 26.5. DYNAMIC LINK LIBRARIES

• OPENBSD

Use one of these options to translate code into C for the specified platform. The default will always be the host
platform of the translator that is executed, so euc.exe will default to Windows, and euc will default to the platform upon
which it was built.

The resulting output can be compiled by the appropriate compiler on the specified platform, or, possibly a cross
platform compiler, if you have one configured.

26.4.19 -rc-file - Resource File

On Windows, euc can automatically compile and link in an application specific resource file. This resource file can contain
product and version information, an application icon or any other valid resource data.

euc -rc -file myapp.rc myapp.ex

The resulting executable will contain all the resources from myapp.rc compiled into the executable. Please see Using
Resource Files.

26.4.20 -silent

Do not display status messages.

26.4.21 -stack - Stack size

To increase or decrease the total amount of stack space reserved for your program, add -stack nnnn to the command
line. e.g.

euc -stack 100000 myprog.ex

The total stack space (in bytes) that you specify will be divided up among all the tasks that you have running (assuming
you have more than one). Each task has it’s own private stack space. If it exceeds its allotment, you’ll get a run-time
error message identifying the task and giving the size of its stack space. Most non-recursive tasks can run with call stacks
as small as 2000 bytes, but to be safe, you should allow more than this. A deeply-recursive task could use a great deal of
space. It all depends on the maximum levels of calls that a task might need. At run-time, as your program creates more
simultaneously-active tasks, the stack space allotted to each task will tend to decrease.

26.5 Dynamic Link Libraries

Simply by adding -dll (or -so) to the command line, the Translator will build a shared dynamically loading library
instead of an executable program.

You can translate and compile a set of useful Euphoria routines, and share them with other people, without giving them
your source. Furthermore, your routines will likely run much faster when translated and compiled. Both translated/compiled
and interpreted programs will be able to use your library.

Only the global Euphoria procedures and functions, i.e. those declared with the ”global”, ”public” or ”export”
keyword, will be exported from the shared dynamically loaded library.

Any Euphoria program, whether translated or compiled or interpreted, can link with a Euphoria shared dynamically
loading library using the same mechanism that lets you link with a shared dynamically loading library written in C. The
program first calls open dll to open the file, then it calls define c func or define c proc for any routines that it wants to
call. It calls these routines using c func and c proc.

The routine names exported from a Euphoria shared dynamically loading library will vary depending on which C compiler
you use.

GNU C on Unix exports the names exactly as they appear in the C code produced by the Translator, e.g. a Euphoria
routine

global procedure foo(integer x, integer y)

124

CHAPTER 26. EUPHORIA TO C TRANSLATOR 26.6. USING RESOURCE FILES

would be exported as ” 0foo” or maybe ” 1foo” etc. The underscore and digit are added to prevent naming conflicts.
The digit refers to the Euphoria file where the identifier is defined. The main file is numbered as 0. The include files are
numbered in the order they are encountered by the compiler. You should check the C source to be sure.

For Watcom, the Translator also creates an EXPORT command, added to objfiles.lnk for each exported identifier,
so foo would be exported as ”foo”.

With Watcom, if you specify the -makefile option, you can edit the objfiles.lnk file to rename the exported
identifiers, or remove ones that you don’t want to export. Then build with the generated makefile.

Having nice exported names is not critical, since the name need only appear once in each Euphoria program that
uses the shared dynamically loading library, i.e. in a single define c func or define c proc statement. The author of a
shared dynamically loading library should probably provide his users with a Euphoria include file containing the necessary
define c func and define c proc statements, and he might even provide a set of Euphoria ”wrapper” routines to call the
routines in the shared dynamically loading library.

When you call open dll, any top-level Euphoria statements in the shared dynamically loading library will be executed
automatically, just like a normal program. This gives the library a chance to initialize its data structures prior to the first
call to a library routine. For many libraries no initialization is required.

To pass Euphoria data (atoms and sequences) as arguments, or to receive a Euphoria object as a result, you will need
to use the following constants in euphoria\include\dll.e:

1 -- Euphoria types for shared dynamically loading library arguments

2 -- and return values:

3

4 global constant

5 E_INTEGER = #06000004 ,

6 E_ATOM = #07000004 ,

7 E_SEQUENCE= #08000004 ,

8 E_OBJECT = #09000004

Use these in define c proc and define c func just as you currently use C INT, C UINT etc. to call C shared
dynamically loading libraries.

Currently, file numbers returned by open, and routine id’s returned by routine id, can be passed and returned, but the
library and the main program each have their own separate ideas of what these numbers mean. Instead of passing the
file number of an open file, you could instead pass the file name and let the shared dynamically loading library open it.
Unfortunately there is no simple solution for passing routine id’s. This might be fixed in the future.

A Euphoria shared dynamically loading library currently may not execute any multitasking operations. The Translator
will give you an error message about this.

Euphoria shared dynamically loading library can also be used by C programs as long as only 31-bit integer values are
exchanged. If a 32-bit pointer or integer must be passed, and you have the source to the C program, you could pass
the value in two separate 16-bit integer arguments (upper 16 bits and lower 16 bits), and then combine the values in the
Euphoria routine into the desired 32-bit atom.

26.6 Using Resource Files

When creating an executable file to deliver to your users on Windows, its best to link in a resource file that at minimum
sets your application icon but better if it sets product and version information.

When the resource compiler is launched by euc, a single macro is defined named SRCDIR. This can be used in your
resource files to reference your application source path for including other resource files, icon files, etc...

A simple resource file to attach an icon to your executable file is as simple as:

myapp ICON SRCDIR\myapp.ico

Remember that SRCDIR will be expanded to your application source path.
A more complex resource file containing an icon and product/version information may look like:

1 VERSIONINFO

FILEVERSION 4,0,0,9

125

CHAPTER 26. EUPHORIA TO C TRANSLATOR 26.6. USING RESOURCE FILES

PRODUCTVERSION 4,0,0,9

FILEFLAGSMASK 0x3fL

FILEFLAGS 0x0L

FILEOS 0x4L

FILETYPE 0x1L

FILESUBTYPE 0x0L

BEGIN

BLOCK "StringFileInfo"

BEGIN

BLOCK "040904 B0"

BEGIN

VALUE "Comments", "http :// myapplication.com\0"

VALUE "CompanyName", "John Doe Computing \0"

VALUE "FileDescription", "Cool App\0

VALUE "FileVersion", "4.0.0\0"

VALUE "InternalName", "coolapp.exe\0"

VALUE "LegalCopyright", "Copyright (c) 2022 by John Doe Computing \0"

VALUE "LegalTrademarks1", "Trademark Pending \0"

VALUE "LegalTrademarks2", "\0"

VALUE "OriginalFilename", "coolapp.exe\0"

VALUE "ProductName", "Cool Application \0"

VALUE "ProductVersion", "4.0.0\0"

END

END

BLOCK "VarFileInfo"

BEGIN

VALUE "Translation", 0x409 , 1200

END

END

coolapp ICON SRCDIR\coolapp.ico

One other item you may wish to include is a manifest file which lets Windows know that controls should use the new
theming engines available in >= Windows XP. Simply append:

1 24 "coolapp.manifest"

to the end of your resource file. The coolapp.manifest file is:

<?xml version ="1.0" encoding ="UTF -8" standalone ="yes"?>

<assembly xmlns ="urn:schemas -microsoft -com:asm.v1" manifestVersion ="1.0" >

<assemblyIdentity

version ="0.64.1.0"

processorArchitecture ="x86"

name=" euphoria"

type="win32"

/>

<dependency >

<dependentAssembly >

<assemblyIdentity

type=" win32"

name=" Microsoft.Windows.Common -Controls"

version ="6.0.0.0"

processorArchitecture ="X86"

publicKeyToken ="6595 b64144ccf1df"

language ="*"

/>

</dependentAssembly >

126

CHAPTER 26. EUPHORIA TO C TRANSLATOR 26.7. EXECUTABLE SIZE AND COMPRESSION

</dependency >

</assembly >

Version, Product and Manfiest information may change with new releases of Microsoft Windows. You should consult
MSDN for up to date information about using resource files with your application. MSDN About Resource Files.

26.7 Executable Size and Compression

The translator does not compress your executable file. If you want to do this we suggest you try the free UPX compressor.
Large Win32Lib-based .exe’s produced by the Translator can be compressed by UPX to about 15% of their original

size, and you won’t notice any difference in start-up time.
The Translator deletes routines that are not used, including those from the standard Euphoria include files. After

deleting unused routines, it checks again for more routines that have now become unused, and so on. This can make a
big difference, especially with Win32Lib-based programs where a large file is included, but many of the included routines
are not used in a given program.

Nevertheless, your compiled executable file will likely be larger than the same Euphoria program bound with the
interpreter back-end. This is partly due to the back-end being a compressed executable. Also, Euphoria statements are
extremely compact when stored in a bound file. They need more space after being translated to C, and compiled into
machine code. Future versions of the Translator will produce faster and smaller executables.

26.8 Interpreter vs. Translator

All Euphoria programs can be translated to C, and with just a few exceptions noted below, will run the same as with the
Interpreter (but hopefully faster).

The Interpreter and Translator share the same parser, so you will get the same syntax errors, variable not declared
errors etc. with either one.

The Interpreter automatically expands the call stack (until memory is exhausted), so you can have a huge number
of levels of nested calls. Most C compilers, on most systems, have a pre-set limit on the size of the stack. Consult your
compiler or linker manual if you want to increase the limit, for example if you have a recursive routine that might need
thousands of levels of recursion. Modify the link command in your makefile, or use the -lflags option when calling the
translator. For Watcom C, use OPTION STACK=nnnn, where nnnn is the number of bytes of stack space.

26.8.1 Note:

The Translator assumes that your program has no run-time errors in it that would be caught by the Interpreter. The
Translator does not check for: subscript out of bounds, variable not initialized, assigning the wrong type of data to a
variable, etc.

You should debug your program with the Interpreter. The Translator checks for certain run-time errors, but in the
interest of speed, most are not checked. When translated C code crashes you’ll typically get a very cryptic machine
exception. In most cases, the first thing you should do is run your program with the Interpreter, using the same inputs,
and preferably with type check turned on. If the error only shows up in translated code, you can use with trace

and trace(3) to get a ctrace.out file showing a circular buffer of the last 500 Euphoria statements executed. If a
translator-detected error message is displayed (and stored in ex.err), you will also see the offending line of Euphoria
source whenever with trace is in effect. with trace will slow your program down, and the slowdown can be extreme
when trace(3) is also in effect.

26.9 Legal Restrictions

As far as RDS is concerned, any executable programs or shared dynamically loading libraries that you create with this
Translator without modifying an RDS translator library file, may be distributed royalty-free. You are free to incorporate
any Euphoria files provided by RDS into your application.

In general, if you wish to use Euphoria code written by 3rd parties, please honor any restrictions that apply. If in doubt,
you should ask for permission.

127

http://msdn.microsoft.com/en-us/library/aa380599(VS.85).aspx
http://upx.sourceforge.net

CHAPTER 26. EUPHORIA TO C TRANSLATOR 26.10. DISCLAIMER:

On Linux, FreeBSD, the GNU Library licence will normally not affect programs created with this Translator. Simply
compiling with GNU C does not give the Free Software Foundation any jurisdiction over your program. If you statically
link their libraries you will be subject to their Library licence, but the standard compile/link procedure does not statically
link any FSF libraries, so there should be no problem.

26.10 Disclaimer:

This is what we believe to be the case. We are not lawyers. If it’s important to you, you should read all licences and the
legal comments in them, to form your own judgment. You may need to get professional legal opinion as well.

26.11 Frequently Asked Questions

26.11.1 How much of a speed-up should I expect?

It all depends on what your program spends its time doing. Programs that use mainly integer calculations, don’t call
run-time routines very often, and don’t do much I/O will see the greatest improvement, currently up to about 5x faster.
Other programs may see only a few percent improvement.

The various C compilers are not equal in optimization ability.

26.11.2 What if I want to change the compile or link options in my generated makefile?

Feel free to do so, that’s one reason for producing a makefile.

26.11.3 How can I make my program run even faster?

It’s important to declare variables as integer where possible. In general, it helps if you choose the most restrictive type
possible when declaring a variable.

Typical user-defined types will not slow you down. Since your program is supposed to be free of type check errors,
types are ignored by the Translator, unless you call them directly with normal function calls. The one exception is when
a user-defined type routine has side-effects (i.e. it sets a global variable, performs pokes into memory, I/O etc.). In that
case, if with type check is in effect, the Translator will issue code to call the type routine and report any type check
failure that results.

On Windows we have left out the /ol loop optimization for Watcom’s wcc386. We found in a couple of rare cases
that this option led to incorrect machine code being emitted by the Watcom C compiler. If you add it back in to your
own makefile you might get a slight improvement in speed, with a slight risk of buggy code.

On Linux or FreeBSD you could try the -O3 option of gcc instead of -O2. It will ”in-line” small routines, improving
speed slightly, but creating a larger executable. You could also try the Intel C++ Compiler for Linux. It’s compatible with
GNU C, but some adjustments to your makefile might be required.

26.12 Common Problems

Many large programs have been successfully translated and compiled using each of the supported C compilers, and the
Translator is now quite stable.

26.12.1 Note:

On Windows, if you call a C routine that uses the cdecl calling convention (instead of stdcall), you must specify a ’+’
character at the start of the routine’s name in define c proc and define c func. If you don’t, the call may not work when
running the eui Interpreter.

In some cases a huge Euphoria routine is translated to C, and it proves to be too large for the C compiler to process.
If you run into this problem, make your Euphoria routine smaller and simpler. You can also try turning off C optimization
in your makefile for just the .c file that fails. Breaking up a single constant declaration of many variables into separate
constant declarations of a single variable each, may also help. Euphoria has no limits on the size of a routine, or the size

128

http://www.intel.com/cd/software/products/asmo-na/eng/compilers/clin/index.htm

CHAPTER 26. EUPHORIA TO C TRANSLATOR 26.12. COMMON PROBLEMS

of a file, but most C compilers do. The Translator will automatically produce multiple small .c files from a large Euphoria
file to avoid stressing the C compiler. It won’t however, break a large routine into smaller routines.

129

Chapter 27
Indirect routine calling

Euphoria does not have function pointers. However, it enables you to call any routine, including some internal to the
interpreter, in an indirect way, using two different sets of identifiers.

27.1 Indirect calling a routine coded in Euphoria

The following applies to any routine coded in Euphoria that your program uses, whether it is defined in the standard library,
any third party library or your own code. It does not apply to routines implemented in the backend.

27.1.1 Getting a routine identifier

Whenever a routine is in scope, you can supply its name to the builtin routine id function, which returns a small integer:

include get.e

constant value_id = routine_id("value")

Because value is defined as public, that routine is in scope. This ensures the call succeeds. A failed call returns -1,
else a small nonnegative integer.

You can then feed this integer to call func or call proc as appropriate. It does not matter whether the routine is
still in scope at the time you make that call. Once the id is gotten, it’s valid.

27.1.2 Calling Euphoria routines by id

This is very similar to using c func or c proc to interface with external code.

Calling a function

This is done as follows:

result = call_func(id_of_the_routine ,argument_sequence)

where

• id of the routine is an id you obtained from routine id.

• argument sequence is the list of the parameters to pass, enclosed into curly braces

1 include get.e

2

3 constant value_id = routine_id("value")

4 result = call_func(value_id , {"Model 36A", 6, GET_LONG_ANSWER })

5 -- result is {GET_SUCCESS , 36, 4, 1}

130

CHAPTER 27. INDIRECT ROUTINE CALLING 27.1. INDIRECT CALLING A ROUTINE CODED IN EUPHORIA

This is equivalent to

result = value("Model 36A", 6, GET_LONG_ANSWER)

Calling a procedure

The same formalism applies, but using call proc instead. The differences are almost the same as between c func and
c proc.

1 include std/pretty.e

2

3 constant pretty_id = routine_id("pretty_print")

4

5 call_proc(pretty_id ,{1, some_object , some_options })

This does the same as a straightforward

include std/pretty.e

pretty_print (1, some_object , some_options)

The difference with c proc is that you can call an external function using c proc and thus ignore its return value, like
in C. Note that you cannot use call proc to invoke a Euphoria function, only C functions.

27.1.3 Why call indirectly?

Calling functions and procedures indirectly can seem more complicated and slower than just calling the routine directly,
but indirect calls can be used when the name of the routine you want to call might not be known until run-time.

1 integer foo_id

2

3 function bar(integer x)

4 return call_func(foo_id ,{x})

5 end function

6

7 function foo_dev1(integer y)

8 return y + 1

9 end function

10

11 function foo_dev2(integer y)

12 return y - 1

13 end function

14

15 function foo_dev3(integer y)

16 return y * y - 3

17 end function

18

19 function user_opt(object x)

20 ...

21 end function

22

23 -- Initialize foo ID

24 switch user_opt("dev") do

25 case 1 then

26 foo_id = routine_id("foo_dev1")

27 case 2 then

28 foo_id = routine_id("foo_dev2")

29 case else

30 foo_id = routine_id("foo_dev3")

31 end switch

131

CHAPTER 27. INDIRECT ROUTINE CALLING 27.2. CALLING EUPHORIA’S INTERNALS

One last word: when calling a routine indirectly, its full parameter list must be passed, even if some of its parameters
are defaulted. This limitation may be overcome in future versions.

27.2 Calling Euphoria’s internals

A number of Euphoria routines are defined in different ways depending on the platform they will run on. It would be
cumbersome, and at times downright impossible, to put such code in include files or to make the routine fully builtin.

A solution to this is provided by machine func and machine proc. User code normally never needs to use these.
Various examples are to be found in the standard library.

These primitives are called like this:

machine_proc(id, argument)

result = machine_func(id, argument)

argument is either an atom, or a sequence standing for one or more parameters. Since the first parameter does not
need to be a constant, you may use some sort of dynamic calling. The circumstances where it is useful are rare.

The complete list of known values for id is to be found in the file source/execute.h.
Defining new identifiers and overriding machine func or machine proc to handle them is an easy way to extend the

capabilities of the interpreter.

132

Chapter 28
Multitasking in Euphoria

28.1 Introduction

Euphoria allows you to set up multiple, independent tasks. Each task has its own current statement that it is executing,
its own call stack, and its own set of private variables. Tasks run in parallel with each other. That is, before any given task
completes its work, other tasks can be given a chance to execute. Euphoria’s task scheduler decides which task should be
active at any given time.

28.2 Why Multitask?

Most programs do not need to use multitasking and would not benefit from it. However it is very useful in some cases:

• Action games where numerous characters, projectiles etc. need to be displayed in a realistic way, as if they are all
independent of one another. Language War is a good example.

• Situations where your program must sometimes wait for input from a human or other computer. While one task in
your program is waiting, another separate task could be doing some computation, disk search, etc.

• All operating systems today have special API routines that let you initiate some I/O, and then proceed without
waiting for it to finish. A task could check periodically to see if the I/O is finished, while another task is performing
some useful computation, or is perhaps starting another I/O operation.

• Situations where your program might be called upon to serve many users simultaneously. With multiple tasks, it’s
easy to keep track of the state of your interaction with all these separate users.

• Perhaps you can divide your program into two logical processes, and have a task for each. One produces data and
stores it, while the other reads the data and processes it. Maybe the first process is time-critical, since it interacts
with the user, while the second process can be executed during lulls in the action, where the user is thinking or doing
something that doesn’t require quick response.

28.3 Types of Tasks

Euphoria supports two types of tasks: real-time tasks, and time-share tasks.
Real-time tasks are scheduled at intervals, specified by a number of seconds or fractions of a second. You might

schedule one real-time task to be activated every 3 seconds, while another is activated every 0.1 seconds. In Language
War, when the Euphoria ship moves at warp 4, or a torpedo flies across the screen, it’s important that they move at a
steady, timed pace.

Time-share tasks need a share of the CPU but they needn’t be rigidly scheduled according to any clock.
It’s possible to reschedule a task at any time, changing its timing or its slice of the CPU. You can even convert a task

from one type to the other dynamically.

133

CHAPTER 28. MULTITASKING IN EUPHORIA 28.4. A SMALL EXAMPLE

28.4 A Small Example

This example shows the main task (which all Euphoria programs start off with) creating two additional real-time tasks.
We call them real-time because they are scheduled to get control every few seconds.

You should try copy/pasting and running this example. You’ll see that task 1 gets control every 2.5 to 3 seconds, while
task 2 gets control every 5 to 5.1 seconds. In between, the main task (task 0), has control as it checks for a ’q’ character
to abort execution.

1 constant TRUE = 1, FALSE = 0

2

3 type boolean(integer x)

4 return x = 0 or x = 1

5 end type

6

7 boolean t1_running , t2_running

8

9 procedure task1(sequence message)

10 for i = 1 to 10 do

11 printf(1, "task1 (%d) %s\n", {i, message })

12 task_yield ()

13 end for

14 t1_running = FALSE

15 end procedure

16

17 procedure task2(sequence message)

18 for i = 1 to 10 do

19 printf(1, "task2 (%d) %s\n", {i, message })

20 task_yield ()

21 end for

22 t2_running = FALSE

23 end procedure

24

25 puts(1, "main task: start\n")

26

27 atom t1, t2

28

29 t1 = task_create(routine_id("task1"), {"Hello"})

30 t2 = task_create(routine_id("task2"), {"Goodbye"})

31

32 task_schedule(t1 , {2.5, 3})

33 task_schedule(t2 , {5, 5.1})

34

35 t1_running = TRUE

36 t2_running = TRUE

37

38 while t1_running or t2_running do

39 if get_key () = ’q’ then

40 exit

41 end if

42 task_yield ()

43 end while

44

45 puts(1, "main task: stop\n")

46 -- program ends when main task is finished

134

CHAPTER 28. MULTITASKING IN EUPHORIA 28.5. COMPARISON WITH EARLIER MULTITASKING SCHEMES

28.5 Comparison with earlier multitasking schemes

In earlier releases of Euphoria, Language War already had a mechanism for multitasking, and some people submitted to
User Contributions their own multitasking schemes. These were all implemented using plain Euphoria code, whereas this
new multitasking feature is built into the interpreter. Under the old Language War tasking scheme a scheduler would
call a task, which would eventually have to *return* to the scheduler, so it could then dispatch the next task.

In the new system, a task can call the built-in procedure task yield at any point, perhaps many levels deep in
subroutine calls, and the scheduler, which is now part of the interpreter, will be able to transfer control to any other task.
When control comes back to the original task, it will resume execution at the statement after task yield, with its call
stack and all private variables intact. Each task has its own call stack, program counter (i.e. current statement being
executed), and private variables. You might have several tasks all executing a routine at the same time, and each task will
have its own set of private variable values for that routine. Global and local variables are shared between tasks.

It’s fairly easy to take any piece of code and run it as a task. Just insert a few task yield statements so it will not
hog the CPU.

28.6 Comparison with multithreading

When people talk about threads, they are usually referring to a mechanism provided by the operating system. That’s
why we prefer to use the term ”multitasking”. Threads are generally ”preemptive”, whereas Euphoria multitasking is
”cooperative”. With preemptive threads, the operating system can force a switch from one thread to another at virtually
any time. With cooperative multitasking, each task decides when to give up the CPU and let another task get control. If
a task were ”greedy” it could keep the CPU for itself for long intervals. However since a program is written by one person
or group that wants the program to behave well, it would be silly for them to favor one task like that. They will try to
balance things in a way that works well for the user. An operating system might be running many threads, and many
programs, that were written by different people, and it would be useful to enforce a reasonable degree of sharing on these
programs. Preemption makes sense across the whole operating system. It makes far less sense within one program.

Furthermore, threading is notorious for causing subtle bugs. Nasty things can happen when a task loses control at
just the wrong moment. It may have been updating a global variable when it loses control and leaves that variable in an
inconsistent state. Something as trivial as incrementing a variable can go awry if a thread-switch happens at the wrong
moment. e.g. consider two threads. One has:

x = x + 1

and the other also has:

x = x + 1

At the machine level, the first task loads the value of x into a register, then loses control to the second task which
increments x and stores the result back into x in memory. Eventually control goes back to the first task which also
increments x *using the value of x in the register*, and then stores it into x in memory. So x has only been incremented
once instead of twice as was intended. To avoid this problem, each thread would need something like:

lock x

x = x + 1

unlock x

where lock and unlock would be special primitives that are safe for threading. It’s often the case that programmers
forget to lock data, but their program seems to run ok. Then one day, many months after they’ve written the code, the
program crashes mysteriously.

Cooperative multitasking is much safer, and requires far fewer expensive locking operations. Tasks relinquish control
at safe points once they have completed a logical operation.

28.7 Summary

For a complete function reference, refer to the Library Documentation Multitasking.

135

Chapter 29
Euphoria Database System (EDS)

29.1 Introduction

While you can connect Euphoria to most databases (MySQL, SQLite, PostgreSQL, etc.), sometimes you don’t need that
kind of power. The Euphoria Database System (EDS) is a simple, easy-to-use, flexible, Euphoria-oriented database for
storing data that works better for cases where you need more than a text file and don’t quite need or want the power and
complexity of larger database packages.

29.2 Structure of an EDS database

In EDS, a database is a single file with a .edb file extension. An EDS database contains zero or more tables. Each table
has a name, and contains zero or more records. Each record consists of a key part, and a data part. The key can be
any Euphoria object–an atom, a sequence, a deeply-nested sequence, whatever. Similarly the data can be any Euphoria
object. There are no constraints on the size or structure of the key or data. Within a given table, the keys are all unique.
That is, no two records in the same table can have the same key part.

The records of a table are stored in ascending order of key value. An efficient binary search is used when you refer to
a record by key. You can also access a record directly, with no search, if you know its current record number within the
table. Record numbers are integers from one to the length (current number of records) of the table. By incrementing the
record number, you can efficiently step through all the records, in order of key. Note however that a record’s number can
change whenever a new record is inserted, or an existing record is deleted.

The keys and data parts are stored in a compact form, but no accuracy is lost when saving or restoring floating-point
numbers or any other Euphoria data.

std/eds.e will work as is, on all platforms. EDS database files can be copied and shared between programs running
on all platforms as well. When sharing EDS database files, be sure to make an exact byte-for-byte copy using ”binary”
mode copying, rather than ”text” or ”ASCII” mode, which could change the line terminators.

Example:

database: "mydata.edb"

first table: "passwords"

record #1: key: "jones" data: "euphor123"

record #2: key: "smith" data: "billgates"

second table: "parts"

record #1: key: 134525 data: {" hammer", 15.95, 500}

record #2: key: 134526 data: {"saw", 25.95, 100}

record #3: key: 134530 data: {"screw driver", 5.50, 1500}

It’s up to you to interpret the meaning of the key and data. In keeping with the spirit of Euphoria, you have total
flexibility. Unlike most other database systems, an EDS record is not required to have either a fixed number of fields, or
fields with a preset maximum length.

136

CHAPTER 29. EUPHORIA DATABASE SYSTEM (EDS) 29.3. HOW TO ACCESS THE DATA

In many cases there will not be any natural key value for your records. In those cases you should simply create a
meaningless, but unique, integer to be the key. Remember that you can always access the data by record number. It’s
easy to loop through the records looking for a particular field value.

29.3 How to access the data

To reduce the number of parameters that you have to pass, there is a notion of the current database, and current table.

29.3.1 The current database.

Any data operation or table operation assumes there is a current database being defined. You set the current database by
opening, creating or selecting a database. Deleting the current database leaves the current database undefined.

29.3.2 The current table.

All data operations assume there is a current table being defined. You must create, select or rename a table in order to
make it current. Deleting the current table leaves the current table undefined.

29.3.3 Accessing data

Most routines use these current values automatically. You normally start by opening (or creating) a database file, then
selecting the table that you want to work with.

You can map a key to a record number using db find key. It uses an efficient binary search. Most of the other
record-level routines expect the record number as a parameter. You can very quickly access any record, given it’s number.
You can access all the records by starting at record number one and looping through to the record number returned by
db table size.

29.4 How does storage get recycled?

When you delete something, such as a record, the space for that item gets put on a free list, for future use. Adjacent free
areas are combined into larger free areas. When more space is needed, and no suitable space is found on the free list, the
file will grow in size. Currently there is no automatic way that a file will shrink in size, but you can use a db compress to
completely rewrite a database, removing the unused spaces.

29.5 Security / Multi-user Access

This release provides a simple way to lock an entire database to prevent unsafe access by other processes.

29.6 Scalability

Internal pointers are 4 bytes. In theory that limits the size of a database file to 4 Gb. In practice, the limit is 2 Gb because
of limitations in various C file functions used by Euphoria. Given enough user demand, EDS databases could be expanded
well beyond 2 Gb in the future.

The current algorithm allocates four bytes of memory per record in the current table. So you’ll need at least 4 Mb
RAM per million records on disk.

The binary search for keys should work reasonably well for large tables.
Inserts and deletes take slightly longer as a table gets larger.
At the low end of the scale, it’s possible to create extremely small databases without incurring much disk space

overhead.

137

CHAPTER 29. EUPHORIA DATABASE SYSTEM (EDS) 29.7. EDS API

29.7 EDS API

More details on using EDS, including complete coverage of the EDS API, can be found at Euphoria Database (EDS).

29.8 Disclaimer

Do not store valuable data without a backup. RDS will not be responsible for any damage or data loss.

29.9 Warning: Use the right file mode

.edb files are binary files, not text files. You must use BINARY mode when transferring a .edb file via FTP from one
machine to another. You must also avoid loading a .edb file into an editor and saving it. If you open a .edb file directly
using Euphoria’s open, which is not recommended, you must use binary mode, not text mode. Failure to follow these
rules could result in 10 (line-feed) and 13 (carriage-return) bytes being changed, leading to subtle and not-so-subtle forms
of corruption in your database.

138

Chapter 30
The User Defined Pre-Processor

The user defined pre-processor, developed by Jeremy Cowgar, opens a world of possibilities to the Euphoria programmer.
In a sentence, it allows one to create (or use) a translation process that occurs transparently when a program is run. This
mini-guide is going to explore the pre-processor interface by first giving a quick example, then explaining it in detail and
finally by writing a few useful pre-processors that can be put immediately to work.

Any program can be used as a pre-processor. It must, however, adhere to a simple specification:

1. Accept a parameter ”-i filename” which specifies which file to read and process.

2. Accept a parameter ”-o filename” which specifies which file to write the result to.

3. Exit with a zero error code on success or a non-zero error code on failure.

It does not matter what type of program it is. It can be a Euphoria script, an executable written in the C programming
language, a script/batch file or anything else that can read one file and write to another file. As Euphoria programmers,
however, we are going to focus on writing pre-processors in the Euphoria programming language. As a benefit, we will
describe later on how you can easily convert your pre-processor to a shared library that Euphoria can make use of directly
thus improving performance.

30.1 A Quick Example

The problem in this case is that you want the copyright statement and the about screen to show what date the program
was compiled on but you do not want to manually maintain this date. So, we are going to create a simple pre-processor
that will read a source file, replace all instances of @DATE@ with the current date and then write the output back out.

Before we get started, let me say that we will expand on this example later on. Up front, we are going to do almost no
error checking for the purpose of showing off the pre-processor not for the sake of making a production quality application.

We are going to name this file datesub.ex.

1 -- datesub.ex

2 include std/datetime.e -- now() and format ()

3 include std/io.e -- read_file () and write_file ()

4 include std/search.e -- match_replace ()

5

6 sequence cmds = command_line ()

7 sequence inFileName , outFileName

8

9 for i = 3 to length(cmds) do

10 switch cmds[i] do

11 case "-i" then

12 inFileName = cmds[i+1]

13 case "-o" then

139

CHAPTER 30. THE USER DEFINED PRE-PROCESSOR 30.2. PRE-PROCESS DETAILS

14 outFileName = cmds[i+1]

15 end switch

16 end for

17

18 sequence content = read_file(inFileName)

19

20 content = match_replace("@DATE@", content , format(now ()))

21

22 write_file(outFileName , content)

23

24 -- programs automatically exit with ZERO error code , if you want

25 -- non -zero , you exit with abort (1), for example.

So, that is our pre-processor. Now, how do we make use of it? First let’s create a simple test program that we can
watch it work with. Name this file thedate.ex.

-- thedate.ex

puts(1, "The date this was run is @DATE@\n")

Rather simple, but it shows off the pre-processor we have created. Now, let’s run it, but first without a pre-processor
hook defined.

NOTE: Through this document I am going to assume that you are working in Windows. If not, you can make the
appropriate changes to the shell type examples.

C:\ MyProjects\datesub > eui thedate.ex

The date this was run is @DATE@

Not very helpful? Ok, let’s tell Euphoria how to use the pre-processor that we just created and then see what happens.

C:\ MyProjects\datesub > eui -p eui:datesub.ex thedate.ex

The date this was run is 2009 -08 -05 19:36:22

If you got something similar to the above output, good job, it worked! If not, go back up and check your code for
syntax errors or differences from the examples above.

What is this -p paramater? In short, -p tells eui or euc that there is a pre-processor. The definition of the pre-processor
comes next and can be broken into 2 required sections and 1 optional section. Each section is divided by a colon (:).
For example, -p e,ex:datesub.ex

1. e,ex tells Euphoria that when it comes across a file with the extension e or ex that it should run a pre-processor

2. datesub.ex tells Euphoria which pre-processor should be run. This can be a .ex file or any other executable
command.

3. An optional section exists to pass options to the pre-processor but we will go into this later.

That’s it for the quick introduction. I hope that the wheels are turning in your head already as to what can be
accomplished with such a system. If you are interested, please continue reading and see where things will get very
interesting!

30.2 Pre-process Details

Euphoria manages when the pre-processor should be called and with what arguments. The pre-processor does not need
to concern itself as to if it should run, what filename it is reading or what filename it will be writing to. It should simply
do as Euphoria tells it to do. This is because Euphoria monitors what the modification time is on the source file and
what time the last pre-process call was made on the file. If nothing has changed in the source file then the pre-processor
is not called again. Pre-processing does have a slight penalty in speed as the file is processed twice. For example, the
datesub.ex pre-processor read the entire file, searched for @DATE@, wrote the file and then Euphoria picked up from there
reading the output file, parsing it and finally executing it. To minimize the time taken, Euphoria caches the output of the
pre-processor so that the interim process is not normally needed after it has been run once.

140

CHAPTER 30. THE USER DEFINED PRE-PROCESSOR 30.3. COMMAND LINE OPTIONS

30.3 Command Line Options

30.3.1 -p - Define a pre-processor

The primary command line option that you will use is the -p option which defines the pre-processor. It is a two or three
section option. The first section is a comma delimited list of file extensions to associate with the pre-processor, the second
is the actual pre-processor script/command and the optional third is parameters to send to the pre-processor in addition
to the -i and -o parameters.

Let’s go over some examples:

• -p e:datesub.ex - This will be executed for every .e file and the command to call is datesub.ex.

• -p "de,dex,dew:dot4.dll:-verbose -no-dbc" - Files with de, dex, dew extensions will be passed to the
dot4.dll process. dot4.dll will get the optional parameters -verbose -no-dbc passed to it.

Multiple pre-processors can be defined at the same time. For instance,

C:\ MyProjects\datesub > eui -p e,ex:datesub.ex -p de ,dex:dot4.dll \

-p le,lex:literate.ex hello.ex

is a valid command line. It’s possible that hello.ex may include a file named greeter.le and that file may include
a file named person.de. Thus, all three pre-processors will be called upon even though the main file is only processed by
datesub.ex

30.3.2 -pf - Force pre-processing

When writing a pre-processor you may run into the problem that your source file did not change, therefore, Euphoria is not
calling your pre-processor. However, your pre-processor has changed and you want Euphoria to re-process your unchanged
source file. This is where -pf comes into play. -pf causes Euphoria to force the pre-processing, regardless of the cached
state of any file. When used, Euphoria will always call the pre-processor for all files with a matching pre-processor definition.

30.3.3 Use of a configuration file

Ok, so who wants to type these pre-processor definitions in all the time? I don’t either. That’s where the standard Euphoria
configuration file comes into play. You can simply create a file named eu.cfg and place something like this into it.

-p le ,lex:literate.ex

-p e,ex:datesub.ex

... etc ...

Then you can execute any of those files directly without the -p parameters on the command line. This eu.cfg file
can be local to a project, local to a user or global on a system. Please read about the eu.cfg file for more information.

30.4 DLL/Shared Library Interface

A pre-processor may be a Euphoria file, ending with an extension of .ex, a compiled Euphoria program, .exe or even a
compiled Euphoria DLL file, .dll. The only requirements are that it must accept the two command line options, -i and
-o described above and exit with a ZERO status code on success or non-ZERO on failure.

The DLL file (or shared library on Unix) has a real benefit in that with each file that needs to be pre-processed does
not require a new process to be spawned as with an executable or a Euphoria script. Once you have the pre-processor
written and functioning, it’s easy to convert your script to use the more advanced, better performing shared library. Let’s
do that now with our datesub.ex pre-processor. Take a moment to review the code above for the datesub.ex program
before continuing. This will allow you to more easily see the changes that we make here.

141

CHAPTER 30. THE USER DEFINED PRE-PROCESSOR 30.4. DLL/SHARED LIBRARY INTERFACE

1 -- datesub.ex

2 include std/datetime.e -- now() and format ()

3 include std/io.e -- read_file () and write_file ()

4 include std/search.e -- match_replace ()

5

6 public function preprocess(sequence inFileName , sequence outFileName ,

7 sequence options ={})

8

9 sequence content = read_file(inFileName)

10

11 content = match_replace("@DATE@", content , format(now ()))

12

13 write_file(outFileName , content)

14

15 return 0

16 end function

17

18 ifdef not EUC_DLL then

19 sequence cmds = command_line ()

20 sequence inFileName , outFileName

21

22 for i = 3 to length(cmds) do

23 switch cmds[i] do

24 case "-i" then

25 inFileName = cmds[i+1]

26 case "-o" then

27 outFileName = cmds[i+1]

28 end switch

29 end for

30

31 preprocess(inFileName , outFileName)

32 end ifdef

It’s beginning to look a little more like a well structured program. You’ll notice that we took the actual pre-processing
functionality out the the top level program making it into an exported function named preprocess. That function takes
three parameters:

1. inFileName - filename to read from

2. outFileName - filename to write to

3. options - options that the user may wish to pass on verbatim to the pre-processor

It should return 0 on no error and non-zero on an error. This is to keep a standard with the way error levels from
executables function. In that convention, it’s suggested that 0 be OK and 1, 2, 3, etc... indicate different types of error
conditions. Although the function could return a negative number, the main routine cannot exit with a negative number.

To use this new process, we simply translate it through euc,

C:\ MyProjects\datesub > euc -dll datesub.ex

If all went correctly, you now have a datesub.dll file. I’m sure you can guess on how it should be used, but for the sake
of being complete,

C:\ MyProjects\datesub > eui -p e,ex:datesub.dll thedate.ex

On such a simple file and such a simple pre-processor, you probably are not going to notice a speed difference but as
things grow and as the pre-processor gets more complicated, compiling to a shared library is your best option.

142

CHAPTER 30. THE USER DEFINED PRE-PROCESSOR 30.5. ADVANCED EXAMPLES

30.5 Advanced Examples

30.5.1 Finish datesub.ex

Before we move totally away from our datesub.ex example, let’s finish it off by adding some finishing touches and
making use of optional parameters. Again, please go back and look at the Shared Library version of datesub.ex before
continuning so that you can see how we have changed things.

1 -- datesub.ex

2 include std/cmdline.e -- command line parsing

3 include std/datetime.e -- now() and format ()

4 include std/io.e -- read_file () and write_file ()

5 include std/map.e -- map accessor functions (get ())

6 include std/search.e -- match_replace ()

7

8 sequence cmdopts = {

9 { "f", 0, "Date format", { NO_CASE , HAS_PARAMETER , "format" } }

10 }

11

12 public function preprocess(sequence inFileName , sequence outFileName ,

13 sequence options ={})

14 map opts = cmd_parse(cmdopts , options)

15 sequence content = read_file(inFileName)

16

17 content = match_replace("@DATE@", content , format(now(), map:get(opts ,

18 "f")))

19

20 write_file(outFileName , content)

21

22 return 0

23 end function

24

25 ifdef not EUC_DLL then

26 cmdopts = {

27 { "i", 0, "Input filename", { NO_CASE , MANDATORY , HAS_PARAMETER ,

28 "filename"} },

29 { "o", 0, "Output filename", { NO_CASE , MANDATORY , HAS_PARAMETER ,

30 "filename"} }

31 } & cmdopts

32

33 map opts = cmd_parse(cmdopts)

34 preprocess(map:get(opts , "i"), map:get(opts , "o"),

35 "-f " & map:get(opts , "f", "%Y-%m-%d"))

36 end ifdef

Here we simply used cmdline.e to handle the command line parsing for us giving out command line program a nice
interface, such as parameter validation and an automatic help screen. At the same time we also added a parameter for
the date format to use. This is optional and if not supplied, %Y-%m-%d is used.

The final version of datesub.ex and thedate.ex are located in the demo/preproc directory of your Euphoria
installation.

30.5.2 Others

TODO: this needs done still.

Euphoria includes two more demos of pre-processors. They are ETML and literate. Please explore demo/preproc for
these examples and explanations.

143

CHAPTER 30. THE USER DEFINED PRE-PROCESSOR 30.5. ADVANCED EXAMPLES

Other examples of pre-processors include

• eSQL - Allows you to include a .sql file directly. It parses CREATE TABLE and CREATE INDEX statements building
common routines to create, destroy, get by id, find by any index, add, remove and save entities.

• make40 - Will process any 3.x script on the fly making sure that it will run in 4.x. It does this by converting variables,
constants and routine names that are the same as new 4.x keywords into something acceptable to 4.x. Thus, 3.x
programs can run in the 4.x interpreter and translator with out any user intervention.

• dot4 - Adds all sorts of syntax goodies to Euphoria such as structured sequence access, one line if statements, DOT
notation for any function/routine call, design by contract and more.

Other Ideas

• Include a Windows .RC file that defines a dialog layout and generate code that will create the dialog and interact
with it.

• Object Oriented system for Euphoria that translates into pure Euphoria code, thus has the raw speed of Euphoria.

• Include a Yacc, Lex, ANTLR parser definition directly that then generates a Euphoria parser for the given syntax.

• Instead of writing interpreters such as a QBasic clone, simply write a pre-processor that converts QBasic code into
Euphoria code, thus you can run eui -p bas:qbasic.ex hello.bas directly.

• Include a XML specification, which in turn, gives you nice accessory functions for working with XML files matching
that schema.

If you have ideas of helpful pre-processors, please put the idea out on the forum for discussion.

144

Chapter 31
Euphoria Trouble-Shooting Guide

If you get stuck, here are some things you can do:

1. Type: guru followed by some keywords associated with your problem. For example, guru declare global

include

2. Check the list of common problems (Common Problems and Solutions).

3. Read the relevant parts of the documentation, i.e. Euphoria Programming Language v4.0 or API Reference.

4. Try running your program with trace:

with trace

trace (1)

1. The Euphoria Forum has a search facility. You can search the archive of all previous messages. There is a good
chance that your question has already been discussed.

2. Post a message on the forum.

3. Visit the Euphoria IRC channel, irc://irc.freenode.net/#euphoria.

31.1 Common Problems and Solutions

Here are some commonly reported problems and their solutions.

31.1.1 Console window disappeared

I ran my program with euiw. exe and the console window disappeared before I could read the output.
The console window will only appear if required, and will disappear immediately when your program finishes execution.

Perhaps you should code something like:

puts(1, "\nPress Enter\n")

if getc (0) then

end if

at the end of your program.
You may also run your console program with eui.exe.

145

http://openeuphoria.org/forum/index.wc
irc://irc.freenode.net/#euphoria

CHAPTER 31. EUPHORIA TROUBLE-SHOOTING GUIDE 31.1. COMMON PROBLEMS AND SOLUTIONS

31.1.2 Press Enter

At the end of execution of my program, I see ”Press Enter” and I have to hit the Enter key. How do I get rid of that?
Call free console just before your program terminates.

include dll.e

free_console ()

31.1.3 CGI Program Hangs / No Output

My Euphoria CGI program hangs or has no output

1. Make sure that you are using the -batch parameter to eui. This causes Euphoria to not present the normal ”Press
any key to continue...” prompt when a warning or error occurs. The web server will not respond to this prompt and
your application will hang waiting for ENTER to be pressed.

2. Use the -wf parameter to write all warnings to a file instead of the console. The warnings that Euphoria will write
to the console may interfere with the actual output of your web content.

3. Look for an ex.err file in your cgi-bin directory. Turn on with trace / trace(3) to see what statements are
executed (see ctrace.out in your cgi-bin). On Windows you should always use eui.exe to run CGI programs, or
you may have problems with standard output. With Apache Web Server, you can have a first line in your program
of:

4. !.\eui.exe to run your program using eui.exe in the current (cgi-bin) directory. Be careful that your first line ends
with the line breaking characters appropriate for your platform, or the ! won’t be handled correctly. You must also
set the execute permissions on your program correctly, and ex.err and ctrace.out must be writable by the server
process or they won’t be updated.

31.1.4 Read / Write Ports?

How do I read/write ports?
There are collections of machine-level routines from the Euphoria Web Page.

31.1.5 Program has no errors, no output

When I run my program there are no errors but nothing happens.
You probably forgot to call your main procedure. You need a top-level statement that comes after your main procedure

to call the main procedure and start execution.

31.1.6 Routine not declared

I’m trying to call a routine documented in library. doc , but it keeps saying the routine has not been declared.
Did you remember to include the necessary .e file from the euphoria\include directory? If the syntax of the routine

says for example, ”include\std\graphics.e”, then your program must have ”include\std\graphics.e” (without
the quotes) before the place where you first call the routine.

31.1.7 Routine not declared, my file

I have an include file with a routine in it that I want to call, but when I try to call the routine it says the routine has not
been declared. But it has been declared.

Did you remember to define the routine as public, export or possibly global? If not, the routine is not visible
outside of its own file.

146

http://www.rapideuphoria.com

CHAPTER 31. EUPHORIA TROUBLE-SHOOTING GUIDE 31.1. COMMON PROBLEMS AND SOLUTIONS

31.1.8 After user input, left margin problem

After inputting a string from the user with gets , the next line that comes out on the screen does not start at the left
margin.

Your program should output a new-line character e.g.

input = gets()

puts(SCREEN , ’\n’)

31.1.9 Floating-point calculations not exact

Why aren’t my floating-point calculations coming out exact?
Intel CPU’s, and most other CPU’s, use binary numbers to represent fractions. Decimal fractions such as 0.1, 0.01

and similar numbers can’t be represented precisely. For example, 0.1 might be stored internally as 0.0999999999999999
. That means that 10 * 0.1 might come out as 0.999999999999999, and floor(10 * 0.1) might be 0, not 1 as you
would expect. This can be a nuisance when you are dealing with money calculations, but it is not a Euphoria problem.
It’s a general problem that you must face in most programming languages. Always remember: floating-point numbers are
just an approximation to the ”real” numbers in mathematics. Assume that any floating-point calculation might have a
tiny bit of error in the result. Sometimes you can solve the problem by rounding, e.g. x = round(x, 100) would round x
off to the nearest hundredth. Storing money values as an integer number of pennies, rather than a fractional number of
dollars (or similar currency) will help, but some calculations could still cause problems.

31.1.10 Number to a string?

How do I convert a number to a string?
Use sprintf:

string = eu:sprintf("%d", 10) -- string is "10"

or use number:

include std/locale.e as locale

string = locale:number (10)

-- string is probably "10.00" if called in the U.S.

-- It depends on the locale preferences set on your computer.

Number formats according to the locale setting on your computer and strangely, this means to give you two decimal
places whether or not you supply an integer value for the U.S. locale.

Besides %d, you can also try other formats, such as %x (Hex) or %f (floating-point).

31.1.11 String to a number?

How do I convert a string to a number?
Use value.

31.1.12 Redefine my for-loop variable?

It says I’m attempting to redefine my for-loop variable.
For-loop variables are declared automatically. Apparently you already have a declaration with the same name earlier in

your routine or your program. Remove that earlier declaration or change the name of your loop variable.

31.1.13 Unknown Escape Character

I get the message ”unknown escape character” on a line where I am trying to specify a file name.
Do not say "C:\TMP\MYFILE". You need to say "C:\\TMP\\MYFILE" or use back-quotes ‘C:\TMP\MYFILE‘.
Backslash is used for escape characters such as \n or \t. To specify a single backslash in a string you need to type

\\. Therefore, say "C:\\TMP\\MYFILE" instead of "C:\TMP\MYFILE"

147

CHAPTER 31. EUPHORIA TROUBLE-SHOOTING GUIDE 31.1. COMMON PROBLEMS AND SOLUTIONS

31.1.14 Only first character in printf

I’m trying to print a string using but only the first character comes out.
You need to put braces around the parameters sequence to printf. You probably wrote:

printf(1, "Hello , %s!\n", mystring)

but you need:

printf(1, "Hello , %s!\n", {mystring })

31.1.15 Only 10 significant digits during printing

When I print numbers using or only 10 significant digits are displayed.
Euphoria normally only shows about 10 digits. Internally, all calculations are performed using at least 15 significant

digits. To see more digits you have to use printf. For example,

printf(1, "%.15f", 1/3)

This will display 15 digits.

31.1.16 A type is expected here

It complains about my routine declaration, saying, ”a type is expected here.”
When declaring subroutine parameters, Euphoria requires you to provide an explicit type for each individual parameter.

e.g.

procedure foo(integer x, y) -- WRONG

procedure foo(integer x, integer y) -- RIGHT

In all other contexts it is ok to make a list:

atom a, b, c, d, e

31.1.17 Expected to see...

It says: Syntax Error - expected to see possibly ’xxx’, not ’yyy’

At this point in your program you have typed a variable, keyword, number or punctuation symbol, yyy, that does not
fit syntactically with what has come before it. The compiler is offering you one example, xxx, of something that would
be accepted at this point in place of yyy. Note that there may be many other legal (and much better) possibilities at this
point than xxx, but xxx might at least give you a clue as to what the compiler is ”thinking.”

148

Chapter 32
Platform Specific Issues

32.1 Introduction

OpenEuphoria currently supports Euphoria on many different platforms. More platforms will be added in the future.
DOS platform support has been discontinued.
Windows in particular, the 32-bit x86 compatible version ofWindows. The minimum version is Windows 95 Original

Equipment Manufacturer Service Release 2.5. EUPHORIA will work on all old and new versions of Windows written after
Windows 95. However, to use all of the features you must use Windows XP or later. See ”.

Linux. Linux is inspired by the UNIX operating system. It has recently become very popular on PCs. There are many
distributors of Linux, including Red Hat, Debian, Ubuntu, and many more. Linux can be obtained on a CD for a very low
price. Linux is an open-source operating system.

FreeBSD. FreeBSD is also based on the UNIX operating system. It is very popular on Internet server machines. It’s
also open source.

Apple’s OS X. OS X is also based on the UNIX operating system. While it is closed source, it is gaining a wide
following due to it’s ease of use and power.

OpenBSD. Open BSD is also a UNIX-like Operating System and is developed by volunteers.
NetBSD. Net BSD is also a UNIX-like Operating System and is designed to be easily portable to other hardware

platforms.
Euphoria source files use various file extensions. The common extensions are:

extension application
.e Euphoria include file
.ew Euphoria include file for a Windowed (GUI) application

only
.ex Console main program file
or any executable program
.exw Windowed (GUI) main program file
or a Windows specific program
.exu Unix specific program

It is convenient to use these file extensions, but they are not mandatory.
The Euphoria for Windows installation file contains eui.exe. It runs Euphoria programs on the Windows 32bit platform.
The Euphoria for Linux .tar file contains only eui. It runs Euphoria programs on the Linux platform.
Other versions of Euphoria are installed by first installing the Linux version of Euphoria, replacing eui with the version

of eui for that Operating System, then rebuilding the other binaries from the source.
Sometimes you’ll find that the majority of your code will be the same on all platforms, but some small parts will have

to be written differently for each platform. Use the ifdef statement to tell you which platform you are currently running
on.

You can also use the platform and platform name functions:

printf(1, "Our platform number is: %d", {platform ()})

149

CHAPTER 32. PLATFORM SPECIFIC ISSUES 32.1. INTRODUCTION

The evaluation of platform occurs at ’runtime’, you may even use a switch statement with it.

1 switch platform () do

2 case WINDOWS then

3 -- Windows code

4 case LINUX then

5 -- LINUX code

6 case FREEBSD ,NETBSD then

7 -- BSD code

8 ... etc

9 case else

10 crash("Unsupported platform")

11 end switch

Another way is to use parse-time evaluation using ifdefs.

1 ifdef WINDOWS then

2 -- Windows code

3 elsifdef LINUX then

4 -- LINUX code

5 elsifdef FREEBSD or NETBSD then

6 -- BSD code

7 elsedef

8 crash("Unsupported platform")

9 end ifdef

With parse-time evalution you get faster execution, for there is no conditional in the final code. You can put this
deeply inside a loop without penalty. You can test for UNIX to see if the platform has Unix-like properties and thus will
work on new Unix-like platforms without modification. You can even put statements that are top-level, such as constant
and routine defintions. However, since the interpreter skips over the platforms you are not running on, syntax errors can
hide in this construct and if you misspell an OS name you will not get warned.

1 ifdef UNIX then

2 public constant SLASH=’/’

3 public constant SLASHES = "/"

4 public constant EOLSEP = "\n"

5 public constant PATHSEP = ’:’

6 public constant NULLDEVICE = "/dev/null"

7 ifdef OSX then

8 public constant SHARED_LIB_EXT = "dylib"

9 elsedef

10 public constant SHARED_LIB_EXT = "so"

11 end ifdef

12

13 public constant FOO = SLASH == PATHSEP -- this has a hidden syntax error

14

15 elsifdef WINDOWS then

16

17 public constant SLASH=’\\’

18 public constant SLASHES = "\\/:"

19 public constant EOLSEP = "\r\n"

20 public constant PATHSEP = ’;’

21 public constant NULLDEVICE = "NUL:"

22 public constant SHARED_LIB_EXT = "dll"

23

24 elsifdef TRASHOS then -- this symbol is never defined -- no error here either

25

26 end ifdef

150

CHAPTER 32. PLATFORM SPECIFIC ISSUES 32.2. THE DISCONTINUED DOS32 PLATFORM

In this above example, we have constant declarations which are different according to OS such things. The line with
FOO has a syntax error but your interpreter will not catch it if you are running Windows. There is no OS with the name
’TRASHOS’. I simply made it up and this construct will not warn you about mistakes like these.

Run-time evalution provides you something that is always syntax-checked and you can even make expressions using
comparatives to avoid both parse-time and run-time branching all together.

1 add_code = {

2 -- first int argument is at stack offset +4, 2nd int is at +8

3 #8B, #44, #24, #04, -- mov eax , +4[esp]

4 #03, #44, #24, #08, -- add eax , +8[esp]

5 #C2 , #00, #08 * (platform () = WINDOWS) -- ret 8

6 -- pop 8 bytes off the stack

7 }

This is machine code to be put into memory as an example from .../euphoria/demo/callmach.ex. Here if
platform() = WINDOWS is true, then the code will pop 8 bytes off of the stack, if not it will pop 0 bytes off of the stack.
This has to be done because of where the function call conventions are implemented in the various compilers. We use
Watcom C for Windows and GCC for the others. Now if the programmer had put a non-existent symbol, such as ARCH64,
the parser would stop, point out the error, and the programmer would then fix it.

32.2 The Discontinued DOS32 Platform

This platform is no longer supported.

Those interested in writing DOS programs in Euphoria may use version 3.1 downloadable from the original RapidE-
uphoria website: http://www.rapideuphoria.com/v20.htm.

The DOS32 platform was for computers without Windows OS, and though people could still use the Euphoria binaries
built for this platform on Windows, it was slower than and lacked features available on binaries built for the WINDOWS

platform.

The binaries for this platform had support for low-level graphics and though DOS was 16-bit, the Euphoria binaries for
DOS32 used techniques that allowed you to use 32-bit addresses transparently, hence the name of the platform: DOS32.
However, in this platform you could not use dynamically loaded libraries and filenames had to be in a format of: eight
letters, a dot, and three letters when creating a file. You could not use the Windowing system even if your computer had
Windows. You were limited to full-sreen mode graphics and the text console.

32.3 The Windows Platform

With the Windows platform, your programs can still use the text console . Because most library routines work the same
way on each platform most text mode programs can be run using the console interpreter of any platform without any
change.

Since the Euphoria interpreter can work directly with your OS you can also create GUI programs. You can use a
user submitted library from the archive or handle calls directly into the DLLs. There are high-level graphics libraries for
Direct3D and OpenGL available from the Euphoria Web site.

A console window will be created automatically when a Windows Euphoria program first outputs something to the
screen or reads from the keyboard. If your program is displaying a screen, you will also see a console window when you
read standard input or write to standard output, even when these have been redirected to files. The console will disappear
when your program finishes execution, or via a call to free console.

If you don’t want a console to appear, it might help to put the following statements at the top of your Euphoria
program:

-- Now , when there is input or output to the console we will get an error

-- and see in which line number this happens.

close(STDOUT)

close(STDIN)

151

http://www.rapideuphoria.com/v20.htm
http://www.RapidEuphoria.com/archive.htm

CHAPTER 32. PLATFORM SPECIFIC ISSUES 32.4. THE UNIX PLATFORMS

Now with these lines the interpreter is forced to give you a runtime error, report where in the program the standard
input or output is used. It can be hard to find the offending I/O statement in programs that contain many commented
out or debug mode only console I/O statements.

If you actually *want* to use the console, and there is something on the console that you want your user to read,
you should prompt them and wait for his input before terminating. To prevent the console from quickly disappearing you
might include a statement such as:

include std/console.e

any_key("Press any key to close this Window")

which will wait for the user enters something.
If you want to run an interpreted Euphoria program to use the current console use eui.exe but if you want it to create

a new console window use euiw.exe.
Programs translated by the translator for this platform will also pop up a new console whenever input is asked for our

output is sent to the screen unless you specify the -CON option.
When running an interpreter or translator for the Windows platform, platform returns WINDOWS and a parsetime

branch (with ifdef/end ifdef) with WINDOWS will be followed.
In order to use sockets you must have Windows 2000 Professional or later. In order for the the routines has console

and maybe any key to have useful behavior you must have Windows XP or later.

32.3.1 High-Level Windows Programming

Thanks to David Cuny, Derek Parnell, Judith Evans and many others, there’s a package called Win32Lib that you
can use to develop Windows GUI applications in Euphoria. It’s remarkably easy to learn and use, and comes with good
documentation and many small example programs.

If you have a SVN client, you can get a Euphoria version 4.0-compatible Win32lib at:
https://win32libex.svn.sourceforge.net/svnroot/win32libex/trunk.
Get version 68.
There is also an IDE, by Judith Evans for use with Win32lib. https://euvide.svn.sourceforge.net/svnroot/euvide.
Matt Lewis has developed a wrapper for the wxWidgets library for Euphoria: wxEuphoria. It is cross-platform.
You can download WxEuphoria, Win32Lib and Judith’s IDE from the Euphoria Web site.

32.3.2 Low-Level WINDOWS Programming

To allow access to Windows at a lower level, Euphoria provides a mechanism for calling any C function in any Windows
API .dll file, or indeed in any 32-bit Windows .dll file that you create or someone else creates. There is also a call-back
mechanism that lets Windows call your Euphoria routines. Call-backs are necessary when you create a graphical user
interface.

To make full use of the Windows platform, you need documentation on 32-bit Windows programming, in particular
the Windows Application Program Interface (API), including the C structures defined by the API. There is a large
WINDOWS.HLP file (c) Microsoft that is available with many programming tools for Windows. There are numerous
books available on the subject of Windows programming for C/C++. You can adapt most of what you find in those books
to the world of Euphoria programming for Windows. A good book is Programming Windows by Charles Petzold.

A Windows API Windows help file (8 Mb) can be downloaded from ftp://ftp.borland.com/pub/delphi/techpubs/delphi2/win32.zip,
Borland’s Web site.

32.4 The Unix Platforms

As with Windows, you can write text on a console, or xterm window, in multiple colors and at any line or column position.
Just as in Windows, you can call C routines in shared libraries and C code can call back to your Euphoria routines.
You can get a Euphoria interface to high level graphics library OpenGL from the Euphoria Web site. OpenGL also

works with Windows.
Easy X-windows GUI programming is available using either Irv Mullin’s EuGTK interface to the GTK GUI library, or

wxEuphoria developed by Matt Lewis. wxEuphoria also runs on Windows.

152

https://win32libex.svn.sourceforge.net/svnroot/win32libex/trunk
https://euvide.svn.sourceforge.net/svnroot/euvide
http://www.RapidEuphoria.com/archive.htm
ftp://ftp.borland.com/pub/delphi/techpubs/delphi2/win32.zip
http://www.RapidEuphoria.com/archive.htm

CHAPTER 32. PLATFORM SPECIFIC ISSUES 32.5. INTERFACING WITH C CODE

When porting code from Windows to Unix, you’ll notice the following differences:

• Some of the numbers assigned to the 16 main colors in graphics.e are different. If you use the constants defined in
graphics.e you won’t have a problem. If you hard-code your color numbers you will see that blue and red have been
switched etc.

• The key codes for special keys such as Home, End, arrow keys are different, and there are some additional differences
when you run under XTERM.

• The Enter key is code 10 (line-feed) on Linux, where on Windows it was 13 (carriage-return).

• Other OSes use ’/’ (slash) on file paths. Windows use ’\’ (backslash). If you use the SLASH constant from
std/filesys.e you don’t have to worry about this however.

• Calls to system and system exec that contain Windows commands will obviously have to be changed to the
corresponding Linux or FreeBSD command. e.g. ”DEL” becomes ”rm”, and ”MOVE” becomes ”mv”. Often
you can use a standard library call instead and it will be portable across platforms. For example you can use
filesys:create directory or filesys:delete file.

When running an interpreter or translator for a Unix platform, platform will return one of the several symbols for
UNIX and a parsetime branch (with ifdef/end ifdef) with UNIX and the symbol that is that of the specific OS will be
followed.

We assume that the environment is always run from some kind of CLI in two routines: The routine has console always
returns 0, and maybe any key never waits for key input.

32.5 Interfacing with C Code

On Windows and Unix it is possible to interface Euphoria code with C code. Your Euphoria program can call C routines
and read and write C variables. C routines can even call (”callback”) your Euphoria routines. The C code must reside
in a dynamic link or shared library. By interfacing with dynamic link libraries and shared libraries, you can access the full
programming interface on these systems.

Using the Euphoria to C Translator, you can translate Euphoria routines to C, and compile them into a shared library
file. You can pass Euphoria atoms and sequences to these compiled Euphoria routines, and receive Euphoria data as a
result. Translated/compiled routines typically run much faster than interpreted routines. For more information, see the
Translator.

32.5.1 Calling C Functions

To call a C function in a shared library file you must perform the following steps:

1. Open the shared library file that contains the C function by calling open dll.

2. Define the C function, by calling define c func or define c proc. This tells Euphoria the number and type of the
arguments as well as the type of value returned.
Euphoria currently supports all C integer and pointer types as arguments and return values. It also supports floating-
point arguments and return values (C double type). It is currently not possible to pass C structures by value or
receive a structure as a function result, although you can certainly pass a pointer to a structure and get a pointer
to a structure as a return value. Passing C structures by value is rarely required for operating system calls.
Euphoria also supports all forms of Euphoria data - atoms and arbitrarily-complex sequences, as arguments to
translated/compiled Euphoria routines.

3. Call the C function by calling c func or c proc

1 include dll.e

2

3 atom user32

4 integer LoadIcon , icon

153

CHAPTER 32. PLATFORM SPECIFIC ISSUES 32.5. INTERFACING WITH C CODE

5

6 user32 = open_dll("user32.dll")

7

8 -- The name of the routine in user32.dll is "LoadIconA ".

9 -- It takes a pointer and an 32-bit integers as arguments ,

10 -- and it returns a 32-bit integer.

11 LoadIcon = define_c_func(user32 , "LoadIconA", {C_POINTER , C_INT}, C_INT)

12

13 icon = c_func(LoadIcon , {NULL , IDI_APPLICATION })

See c func, c proc, define c func, define c proc, open dll
See demo\win32 or demo/linux for example programs.
On Windows there is more than one C calling convention. The Windows API routines all use the stdcall convention.

Most C compilers however have cdecl as their default. cdecl allows for variable numbers of arguments to be passed.
Euphoria assumes stdcall, but if you need to call a C routine that uses cdecl, you can put a ’+’ sign at the start of
the routine name in define c proc and define c func. In the example above, you would have ”+LoadIconA”, instead
of ”LoadIconA”.

You can examine a dll file by right-clicking on it, and choosing ”QuickView” (if it’s on your system). You will see a
list of all the C routines that the dll exports.

To find out which .dll file contains a particular Windows C function, run Euphoria\demo\win32\dsearch.exw

32.5.2 Accessing C Variables

You can get the address of a C variable using define c var. You can then use poke and peek to access the value of the
variable.

32.5.3 Accessing C Structures

Many C routines require that you pass pointers to structures. You can simulate C structures using allocated blocks of
memory. The address returned by allocate can be passed as if it were a C pointer.

You can read and write members of C structures using peek and poke, or peek4u, peek4s, and poke4. You can allocate
space for structures using allocate.
You must calculate the offset of a member of a C structure. This is usually easy, because anything in C that needs 4 bytes
will be assigned 4 bytes in the structure. Thus C int’s, char’s, unsigned int’s, pointers to anything, etc. will all take 4
bytes. If the C declaration looks like:

// Warning C code ahead!

struct example {

int a; // offset 0

char *b; // offset 4

char c; // offset 8

long d; // offset 12

};

To allocate space for ”struct example” you would need:

atom p = allocate (16) -- size of "struct example"

The address that you get from allocate is always at least 4-byte aligned. This is useful, since Windows structures are
supposed to start on a 4-byte boundary. Fields within a C structure that are 4-bytes or more in size must start on a 4-byte
boundary in memory. 2-byte fields must start on a 2-byte boundary. To achieve this you may have to leave small gaps
within the structure. In practice it is not hard to align most structures since 90% of the fields are 4-byte pointers or 4-byte
integers.

You can set the fields using something like:

poke4(p + 0, a)

poke4(p + 4, b)

154

CHAPTER 32. PLATFORM SPECIFIC ISSUES 32.5. INTERFACING WITH C CODE

poke4(p + 8, c)

poke4(p +12, d)

You can read a field with something like:

d = peek4(p+12)

Tip:
For readability, make up Euphoria constants for the field offsets. See Example below.

1 constant RECT_LEFT = 0,

2 RECT_TOP = 4,

3 RECT_RIGHT = 8,

4 RECT_BOTTOM = 12,

5 RECT_SIZEOF = 16

6

7 atom rect = allocate(RECT_SIZEOF)

8

9 poke4(rect + RECT_LEFT , 10)

10 poke4(rect + RECT_TOP , 20)

11 poke4(rect + RECT_RIGHT , 90)

12 poke4(rect + RECT_BOTTOM , 100)

13

14 -- pass rect as a pointer to a C structure

15 -- hWnd is a "handle" to the window

16 if not c_func(InvalidateRect , {hWnd , rect , 1}) then

17 puts(2, "InvalidateRect failed\n")

18 end if

The Euphoria code that accesses C routines and data structures may look a bit ugly, but it will typically form just a
small part of your program, especially if you use Win32Lib, EuWinGUI, or Irv Mullin’s X Windows library. Most of your
program will be written in pure Euphoria, which will give you a big advantage over those forced to code in C.

32.5.4 Call-backs to your Euphoria routines

When you create a window, the Windows operating system will need to call your Euphoria routine. To set this up, you must
get a 32-bit ”call-back” address for your routine and give it to Windows. For example (taken from demo\win32\window.exw):

1 integer id

2 atom WndProcAddress

3

4 id = routine_id("WndProc")

5

6 WndProcAddress = call_back(id)

routine id uniquely identifies a Euphoria procedure or function by returning an integer value. This value can be used
later to call the routine. You can also use it as an argument to the call back function.

In the example above, The 32-bit call-back address, WndProcAddress, can be stored in a C structure and passed to
Windows via the RegisterClass() C API function.
This gives Windows the ability to call the Euphoria routine, WndProc(), whenever the user performs an action
on a certain class of window. Actions include clicking the mouse, typing a key, resizing the window etc.
See the window.exw demo program for the whole story.

Note:
It is possible to get a call-back address for any Euphoria routine that meets the following conditions: * the routine
must be a function, not a procedure * it must have from 0 to 9 parameters * the parameters should all be of type
atom (or integer etc.), not sequence * the return value should be an integer value up to 32-bits in size

155

CHAPTER 32. PLATFORM SPECIFIC ISSUES 32.5. INTERFACING WITH C CODE

You can create as many call-back addresses as you like, but you should not call call back for the same Euphoria routine
multiple times - each call-back address that you create requires a small block of memory.

The values that are passed to your Euphoria routine can be any 32-bit unsigned atoms, i.e. non-negative. Your
routine could choose to interpret large positive numbers as negative if that is desirable. For instance, if a C routine tried
to pass you -1, it would appear as hex FFFFFFFF. If a value is passed that does not fit the type you have chosen for a
given parameter, a Euphoria type-check error may occur (depending on type check)
No error will occur if you declare all parameters as atom.

Normally, as in the case of WndProc() above, Windows initiates these call-backs to your routines. It is also possible
for a C routine in any .dll to call one of your Euphoria routines. You just have to declare the C routine properly, and
pass it the call-back address.

Here’s an example of a WATCOM C routine that takes your call-back address as its only parameter, and then calls
your 3-parameter Euphoria routine:

/* 1-parameter C routine that you call from Euphoria */

unsigned EXPORT APIENTRY test1(

LRESULT CALLBACK (* eu_callback)(unsigned a,

unsigned b,

unsigned c))

{

/* Your 3-parameter Euphoria routine is called here

via eu_callback pointer */

return (* eu_callback)(111, 222, 333);

}

The C declaration above declares test1 as an externally-callable C routine that takes a single parameter. The single
parameter is a pointer to a routine that takes 3 unsigned parameters - i.e. your Euphoria routine.

In WATCOM C, ”CALLBACK” is the same as ” stdcall”. This is the calling convention that’s used to call Windows
API routines, and the C pointer to your Euphoria routine should be declared this way too, or you’ll get an error when your
Euphoria routine tries to return to your .DLL.

If you need your Euphoria routine to be called using the cdecl convention, you must code the call to call back as:

myroutineaddr = call_back ({’+’, id})

The plus sign and braces indicate the cdecl convention. The simple case, with no braces, is stdcall.
In the example above, your Euphoria routine will be passed the three values 111, 222 and 333 as arguments. Your

routine will return a value to test1. That value will then be immediately returned to the caller of test1 (which could be at
some other place in your Euphoria program).

A call-back address can be passed to the UNIX signal() function to specify a Euphoria routine to handle various signals
(e.g. SIGTERM). It can also be passed to C routines such as qsort, to specify a Euphoria comparison function.

156

Chapter 33
Performance Tips

33.1 General Tips

• If your program is fast enough, forget about speeding it up. Just make it simple and readable.

• If your program is way too slow, the tips below will probably not solve your problem. You should find a better overall
algorithm.

• The easiest way to gain a bit of speed is to turn off run-time type-checking. Insert the line:

without type_check

at the top of your main .ex file, ahead of any include statements. You’ll typically gain between 0 and 20 percent
depending on the types you have defined, and the files that you are including. Most of the standard include files do some
user-defined type-checking. A program that is completely without user-defined type-checking might still be speeded up
slightly.
Also, be sure to remove, or comment-out, any

with trace

with profile

with profile_time

statements. with trace (even without any calls to trace), and with profile can easily slow you down by 10% or more.
with profile time might slow you down by 1%. Each of these options will consume extra memory as well.

• Calculations using integer values are faster than calculations using floating-point numbers

• Declare variables as integer rather than atom where possible, and as sequence rather than object where possible.
This usually gains you a few percent in speed.

• In an expression involving floating-point calculations, it’s usually faster to write constant numbers in floating point
form, e.g. when x has a floating-point value, say, x = 9.9

change:

x = x * 5

to:

x = x * 5.0

This saves the interpreter from having to convert integer 5 to floating-point 5.0 each time.

157

CHAPTER 33. PERFORMANCE TIPS 33.2. MEASURING PERFORMANCE

• Euphoria does short-circuit evaluation of if, elsif, and while conditions involving and and or. Euphoria will stop
evaluating any condition once it determines if the condition is true or not. For instance in the if-statement:

if x > 20 and y = 0 then

...

end if

The ”y = 0” test will only be made when ”x > 20” is true.
For maximum speed, you can order your tests. Do ”x > 20” first if it is more likely to be false than ”y = 0”.
In general, with a condition ”A and B”, Euphoria will not evaluate the expression B, when A is false (zero). Similarly, with
a condition like ”A or B”, B will not be evaluated when A is true (non-zero).
Simple if-statements are highly optimized. With the current version of the interpreter, nested simple if’s that compare
integers are usually a bit faster than a single short-circuit if-statement e.g.:

1 if x > 20 then

2 if y = 0 then

3 ...

4 end if

5 end if

• The speed of access to private variables, local variables and global variables is the same.

• There is no performance penalty for defining constants versus plugging in hard-coded literal numbers. The speed of:

y = x * MAX

is exactly the same as:

y = x * 1000

where you’ve previously defined:

constant MAX = 1000

• There is no performance penalty for having lots of comments in your program. Comments are completely ignored.
They are not executed in any way. It might take a few milliseconds longer for the initial load of your program,
but that’s a very small price to pay for future maintainability, and when you bind your program, or translate your
program to C, all comments are stripped out, so the cost becomes absolute zero.

33.2 Measuring Performance

In any programming language, and especially in Euphoria, you really have to make measurements before drawing
conclusions about performance.

Euphoria provides both execution-count profiling, as well as time profiling. You will often be surprised by the results
of these profiles. Concentrate your efforts on the places in your program that are using a high percentage of the total time
(or at least are executed a large number of times.) There’s no point to rewriting a section of code that uses 0.01% of the
total time. Usually there will be one place, or just a few places where code tweaking will make a significant difference.

You can also measure the speed of code by using the time() function. e.g.

1 atom t = time()

2 for i = 1 to 10000 do

3 -- small chunk of code here

4 end for

5 ? time() - t

You might rewrite the small chunk of code in different ways to see which way is faster.

158

CHAPTER 33. PERFORMANCE TIPS 33.3. HOW TO SPEED-UP LOOPS

33.3 How to Speed-Up Loops

Profiling will show you the hot spots in your program. These are usually inside loops. Look at each calculation inside the
loop and ask yourself if it really needs to happen every time through the loop, or could it be done just once, prior to the
loop.

33.4 Converting Multiplies to Adds in a Loop

Addition is faster than multiplication. Sometimes you can replace a multiplication by the loop variable, with an addition.
Something like:

for i = 0 to 199 do

poke(screen_memory+i*320, 0)

end for

becomes:

1 x = screen_memory

2 for i = 0 to 199 do

3 poke(x, 0)

4 x = x + 320

5 end for

33.5 Saving Results in Variables

• It’s faster to save the result of a calculation in a variable, than it is to recalculate it later. Even something as simple
as a subscript operation, or adding 1 to a variable is worth saving.

• When you have a sequence with multiple levels of subscripting, it is faster to change code like:

for i = 1 to 1000 do

y[a][i] = y[a][i]+1

end for

to:

1 ya = y[a]

2 for i = 1 to 1000 do

3 ya[i] = ya[i] + 1

4 end for

5 y[a] = ya

So you are doing two subscript operations per iteration of the loop, rather than four. The operations, ya = y[a] and
y[a] = ya are very cheap. They just copy a pointer. They don’t copy a whole sequence.

• There is a slight cost when you create a new sequence using a,b,c. If possible, move this operation out of a critical
loop by storing it in a variable before the loop, and referencing the variable inside the loop.

33.6 In-lining of Routine Calls

If you have a routine that is rather small, the interpreter and translator will in-line it for you. Your code will remain as
readable as before.

159

CHAPTER 33. PERFORMANCE TIPS 33.7. OPERATIONS ON SEQUENCES

33.7 Operations on Sequences

Euphoria lets you operate on a large sequence of data using a single statement. This saves you from writing a loop where
you process one element at-a-time. e.g.

x = {1,3,5,7,9}

y = {2,4,6,8,10}

z = x + y

versus:

z = repeat(0, 5) -- if necessary

for i = 1 to 5 do

z[i] = x[i] + y[i]

end for

In most interpreted languages, it is much faster to process a whole sequence (array) in one statement, than it is to
perform scalar operations in a loop. This is because the interpreter has a large amount of overhead for each statement it
executes.

Euphoria is different. Euphoria is very lean, with little interpretive overhead, so operations on sequences don’t always
win. The only solution is to time it both ways. The per-element cost is usually lower when you process a sequence in one
statement, but there are overheads associated with allocation and deallocation of sequences that may tip the scale the
other way.

33.8 Some Special Case Optimizations

Euphoria automatically optimizes certain special cases. x and y below could be variables or arbitrary expressions.

1 x + 1 -- faster than general x + y

2 1 + x -- faster than general y + x

3 x * 2 -- faster than general x * y

4 2 * x -- faster than general y * x

5 x / 2 -- faster than general x / y

6 floor(x/y) -- where x and y are integers , is faster than x/y

7 floor(x/2) -- faster than floor(x/y)

x below is a simple variable, y is any variable or expression:

1 x = append(x, y) -- faster than general z = append(x, y)

2 x = prepend(x, y) -- faster than general z = prepend(x, y)

3

4 x = x & y -- where x is much larger than y,

5 -- is faster than general z = x & y

When you write a loop that ”grows” a sequence, by appending or concatenating data onto it, the time will, in general,
grow in proportion to the square of the number (N) of elements you are adding. However, if you can use one of the special
optimized forms of append, prepend or concatenation listed above, the time will grow in proportion to just N (roughly).
This could save you a huge amount of time when creating an extremely long sequence.

(You could also use repeat to establish the maximum size of the sequence, and then fill in the elements in a loop, as
discussed below.)

33.9 Assignment with Operators

For greater speed, convert:

**left -hand -side = left -hand -side op expression **

to:

160

CHAPTER 33. PERFORMANCE TIPS 33.10. LIBRARY / BUILT-IN ROUTINES

**left -hand -side op= expression **

For example:

-- Instead of ...

some_val = some_val * 3

-- Use ...

some_val *= 3

whenever left-hand-side contains at least two subscripts, or at least one subscript and a slice. In all simpler cases the
two forms run at the same speed (or very close to the same).

33.10 Library / Built-In Routines

Some common routines are extremely fast. You probably couldn’t do the job faster any other way, even if you used C or
assembly language. Some of these are:

33.10.1 Low Level Memory Manipulation

• mem copy

• mem set

33.10.2 Sequence Manipulation

• append

• head

• insert

• remove

• repeat

• replace

• splice

• tail

Other routines are reasonably fast, but you might be able to do the job faster in some cases if speed was crucial.

x = repeat (0 ,100) -- Pre -allocate all the elements first.

for i = 1 to 100 do

x[i] = i

end for

is somewhat faster than:

x = {}

for i = 1 to 100 do

x = append(x, i)

end for

because append has to allocate and reallocate space as x grows in size. With repeat(), the space for x is allocated
once at the beginning. (append is smart enough not to allocate space with every append to x. It will allocate somewhat
more than it needs, to reduce the number of reallocations.)

These built-in operations are also optimize to make changes in place (where possible), rather than creating copies of
sequences via slices.

161

CHAPTER 33. PERFORMANCE TIPS 33.11. SEARCHING

33.10.3 Bitwise operations vs Arithmetic

You can replace:

remainder(x, p)

with:

and_bits(x, p-1)

for greater speed when p is a positive power of 2. x must be a non-negative integer that fits in 32-bits.

arctan is faster than arccos or arcsin.

33.11 Searching

Euphoria’s find is the fastest way to search for a value in a sequence up to about 50 elements. Beyond that, you might
consider a map or other implementation of a hash table (demo\hash.ex) or a binary tree (demo\tree.ex).

33.12 Sorting

In most cases you can just use the shell sort routine in sort.e.

If you have a huge amount of data to sort, you might try one of the sorts in demo\allsorts.e (e.g. great sort). If
your data is too big to fit in memory, don’t rely on Euphoria’s automatic memory swapping capability. Instead, sort a few
thousand records at a time, and write them out to a series of temporary files. Then merge all the sorted temporary files
into one big sorted file.

If your data consists of integers only, and they are all in a fairly narrow range, try the bucket sort in demo\allsorts.e.

33.13 Taking Advantage of Cache Memory

As CPU speeds increase, the gap between the speed of the on-chip cache memory and the speed of the main memory or
DRAM (dynamic random access memory) becomes ever greater. You might have 256 Mb of DRAM on your computer, but
the on-chip cache is likely to be only 8K (data) plus 8K (instructions) on a Pentium, or 16K (data) plus 16K (instructions)
on a Pentium with MMX or a Pentium II/III. Most machines will also have a ”level-2” cache of 256K or 512K.

An algorithm that steps through a long sequence of a couple of thousand elements or more, many times, from beginning
to end, performing one small operation on each element, will not make good use of the on-chip data cache. It might be
better to go through once, applying several operations to each element, before moving on to the next element. The same
argument holds when your program starts swapping, and the least-recently-used data is moved out to disk.

These cache effects aren’t as noticeable in Euphoria as they are in lower-level compiled languages, but they are
measurable.

33.14 Using Machine Code and C

Euphoria lets you call routines written in machine code. You can call C routines in dynamically loaded library files, and
these C routines can call your Euphoria routines. You might need to call C or machine code because of something that
can not be done directly in Euphoria, or you might do it for improved speed.

To boost speed, the machine code or C routine needs to do a significant amount of work on each call, otherwise the
overhead of setting up the arguments and making the call will dominate the time, and it might not gain you much.

Many programs have some inner core operation that consumes most of the CPU time. If you can code this in C or
machine code, while leaving the bulk of the program in Euphoria, you might achieve a speed comparable to C, without
sacrificing Euphoria’s safety and flexibility.

162

CHAPTER 33. PERFORMANCE TIPS 33.15. USING THE EUPHORIA TO C TRANSLATOR

33.15 Using The Euphoria To C Translator

The Euphoria To C Translator is included in the installation package. It will translate any Euphoria program into a set of
C source files that you can compile using a C compiler.

The executable file that you get using the Translator should run the same, but faster than when you use the interpreter.
The speed-up can be anywhere from a few percent to a factor of 5 or more.

163

Part VII

Included Tools

164

Chapter 34
EuTEST - Unit Testing

34.1 Introduction

The testing system gives you the ability to check if the library, interpreter and translator works properly by use of unit
tests. The unit tests are Euphoria include files that include unittest.e at the top, several test-routines for comparison
between expected value and true value and at the end of the program a call to test report. There are error control files
for when we expect the interpreter to fail but we want it to fail with a particular error message. You may use this section
as an outline for testing your own code.

34.2 The eutest Program

34.2.1 Synopsis for running the tests

eutest [-D NO_INET] [-D NO_INET_TESTS]

[-verbose] [-log] [-i include path] [-cc wat|gcc] [-exe interpreter]

[-ec translator] [-lib binary library path]

[optional list of unit test files]

34.2.2 Synopsis for creating report from the log

eutest -process -log [-html]

34.2.3 General behavior

If you want to test translation of your tests as well as interpreted tests, you can specify it with -ec.
If you don’t specify unit tests on the command line eutest will scan the directory for unit test files using the pattern

t *.e. If you specify a pattern it will interpret the pattern, as some shells do not do this for programs.

34.2.4 Options detail

• -D REC: Is for creating control files, use only when on tests that work already on an interpreter that correctly works
or correctly *fails* with them. This option must come before the eutest.ex program itself in the command line
and is the option with that requirement.

• -log: Is for creating a log file for later processing

• -verbose: Is for eutest.ex to give you detail of what it is doing

165

CHAPTER 34. EUTEST - UNIT TESTING 34.3. THE UNIT TEST FILES

• -i: is for specify the include path which will be passed to both the interpreter and the translator when interpreting
and translating the test.

• -cc: is for specifying the compiler. This can be any one of -wat, djg, or gcc. Each of these represent the kind of
compiler we will request the translator to use.

• -process-log: Is for processing a log created by a previous invocation of eutest.ex output is sent to standard output
as a report of how the tests went. By default this is in ASCII format. Use -html to make it HTML format.

• -html: Is for making the report creation to be in HTML format

• -D NO INET: This is for keeping tests from trying to use the Internet. The tests have to be written to support them
by using ifdef/end ifdef statements. Since in some Euphoria unit tests ”-D NO INET TESTS” is used in its place,
you must use both options to prevent them from trying to connect through the Internet.

• -D NO INET TESTS: See NO INET

34.3 The Unit Test Files

Unit test files must match a pattern t *.e. If the unit test file matches t c *.e the test program will expect the program
to fail, if there is an error control file in a directory with its same name and ’d’ extension it will also expect it to fail
according to the control file’s contents found in the said directory. Such a failure is marked as a successful test run.
However, if there is no such directory or file the counter test will be marked as a failed test run.

34.3.1 A trivial example

The following is a minimal unit test file:

include std/unittest.e

test_report ()

Please see the Unit Testing Framework, for information on how to construct these files.

34.4 The Error Control Files

There are times when we expect something to fail. We want good EUPHORIA code to do the correct thing and there is a
correct thing to do also for *bad* code. The interpreter must return with an error message of why it failed and the error
must be correct and it must get written to ex.err. We must thus check the ex.err file to see if it has the correct error
message.

If the unit test is t foo.e then the location for its control file can be in the following locations:

• t foo.d/interpreter/OSNAME/ control.err

• t foo.d/OSNAME/ control.err

• t foo.d/control.err

The OSNAME is the name of the operating system. Which is either UNIX or Win32.
Now, if t foo.d/Win32/control.err exists, then the testing program eutest.ex expects t foo.e to fail when run with

the Windows interpreter. However, this is not necessarily true for other platforms. In Windows eutest runs it, watches
it fail, then compares the ex.err file to t foo.d/Win32/control.err. If they ex.err is different from control.err an
error message is written to the log. Now on, say NetBSD, t file.e is tested with the expectation it will return 0 and the
tests will all pass unless t foo.d/UNIX/control.err or t foo.d/control.err also exist. Thus you can have different
expectations for differing platforms. Some feature that is not possible to implement under Windows can be put into a
unit test and the resulting ex.err file can be put into a control file for Windows. This means we do not need to have all

166

CHAPTER 34. EUTEST - UNIT TESTING 34.5. TEST COVERAGE

of these errors that we expect to get drawing our attention away from errors that need our attention. On the other hand,
if an unexpected error message not like t foo.d/Win32/control.err gets generated in the Windows case then eutest

will tell us that.
How do we construct these control files? You don’t really need to, you can take an ex.err file that results from

running a stable interpreter on a test and rename it and move it to the appropriate place.

34.5 Test Coverage

When writing and evaluating the results of unit tests, it is important to understand which parts of your code are and are
not being tested. The Euphoria interpreter has a built in capability to instrument your code to analyze how many times
each line of your code is executed during your suite of tests. The data is output into an EDS database. Euphoria also
comes with a coverage data post-processor that generates html reports to make analysis of your coverage easy.

The coverage capabilities can be used manually, with arguments supplied on the command line, or passed to eutest.
Indeed, eutest simply passes these along to the interpreter. The Euphoria suite of unit tests can be run via the makefiles,
and there is a special target to run a coverage analysis of the standard library:

Windows:

> wmake coverage

Unix:

$ make coverage

Then, in your build directory, eutest will run the tests to create the coverage database unit-test.edb, and will
post-process the results, placing the HTML reports into a unit-test subdirectory from your build directory.

34.5.1 Coverage Command Line Switches

• -coverage [file|dir] This specifies what files to gather stats for. If you supply a directory, it recurses on child
directories. Only files that are obviously Euphoria are included (.e, .ew, .eu, .ex, .exw, .exu).

• -coverage-db <file> This one allows you to specify a specific location and name for the database where coverage
information is stored. It’s an EDS database. By default, the DB is eui-cvg.edb.

• -coverage-erase Tells the interpreter to start over. By default, multiple runs accumulate coverage in the DB to
allow coverage analysis based on a suite of unit test files.

• -coverage-exclude <pattern> Specifies a regular expression that is used to exclude files from coverage analysis.

• -coverage-pp <post-processor> Supported by eutest only (i.e., not the interpreter itself). Tells eutest how to
post process the coverage data. <post-processor> must be the path to a the post processing application. After
running the suite of tests, eutest will execute this program with the path to the coverage db as an argument.

34.5.2 Coverage Post-Processing

Once you have run tests to generate a coverage database, the data is not easily viewed. Euphoria comes with a post-
processor called eucoverage.ex, which is installed in the bin directory. On a Unix packaged install, you should be able
to simply use eucoverage, which is configured to run eucoverage.ex.

The post-processor generates an index page, with coverage stats for each file, and individual html files, linked from
the index page, for each file analyzed for test coverage. At the file level, statistics are presented for total and executed
routines and lines of code. The files are sorted in descending order of lines that were never executed, in order to highlight
the parts of your code that are less tested. The page for each file shows this information, as well as a similar breakdown
by routine, displaying the number of lines in each routine that was executed. The routines are also sorted in descending
order by the most unexecuted lines.

Additionally, the source of the file is displayed below the statistics. The routines are linked to their place in the code.
Each line is colored either green red or white. White lines are those that are not executed. These are typically blank,

167

CHAPTER 34. EUTEST - UNIT TESTING 34.5. TEST COVERAGE

comments, declarations or ”end” clauses of code blocks that do not create any executable code. Red lines are those that
were never executed, and lines that were executed are colored green. The line number is displayed in the left margin, and
the number of times each line was executed is displayed just to the left of where the source code begins.

Command Line Switches

• -o <dir> Specify the output directory. The default is to create a subdirectory, from the same directory as the
coverage database, with the name of the base filename (without extension) of the coverage database.

• -v Verbose output

168

Chapter 35
EuDOC - Source Documentation Tool

Writing and managing documentation for your programs is made easier with the eudoc tool. eudoc, written entirely in
Euphoria, converts text comments embedded in your program, as well as information about routines and identifiers, into
documentation that can be saved in a variety of formats, including plain text and HTML.

Since Euphoria comments do not slow down the execution of programs, documentation written inside source-code
introduces no speed penalty but is very convenient.

eudoc can also incorporate documentation written externally from your source-code.
You write your material using Creole style markup to format documention. This gives you creative control using

elements like headers, fonts, cross-references, tables, etc. The creole program takes the output of eudoc and produces
HTML-formatted documentation.

A third party program like htmldoc or wkhtmltopdf may then be used to convert HTML to PDF. creole will also
output LaTeX files directly that can be used to create professional PDF files for online viewing or publishing.

35.1 Documentation tags

Documentation is embedded in source-code using the Euphoria line (–) comments. Two special tags, --**** and --**

distinguish documentation from comments that will not be extracted.

35.2 Generic documentation

”Generic” documentation starts with the (--****) tag, continues with lines starting with -- in the first column, and
ends with the next blank line. The tags and -- will not appear in the documentation.

1 --****

2 -- generic text , thus tagged , will be extracted by eudoc

3 -- write your documentation here ...

4 --

5

6 -- blank line is a terminator , this line is not included

Produces...

generic text , thus tagged , will be extracted by eudoc

write your documentation here ...

35.3 Source documentation

”Source” documentation starts with the (--**) tag. Locate them before a routine or identifier that you wish to be
described in your documentation. The eudoc program will extract the ”signature” of a routine and combines it with the

169

CHAPTER 35. EUDOC - SOURCE DOCUMENTATION TOOL 35.4. ASSEMBLY FILE

comments that you write after this tag.
Starting with the source-code file favorite.ex:

1 --**

2 -- this is my favorite routine

3

4 public procedure hello(sequence name)

5 printf(1, "Hello %s!", {name})

6 end procedure

Executing eui eudoc -o foo.txt favorite.ex produces:

%% disallow ={ camelcase}

!! CONTEXT:favorite.ex

@[hello |]

==== hello

<eucode >

include favorite.ex

public procedure hello(sequence name)

</eucode >

This is my favorite routine.

Process with eui creole foo.txt:

include favorite.ex

public procedure hello(sequence name)

This is my favorite routine.
If you examine the source-code included with Euphoria you will realize how these steps were used to create the

documentation you are reading now.

35.4 Assembly file

Large projects are managed using an assembly file, which is a list of files (source-code, and external) that will be
incorporated into one output file. Look at euphoria/docs/manual.af for the file used to produce this documentation.

35.5 Creole markup

Creole is a text markup language used in wikis, such as the Euphoria Wiki, and for documenting source-code.

• Common Creole tags are:

= Title

== Section

// italic // **bold** ##fixed ##

* bullet

* lists are

* easy to produce

|| tables || are |

| easy to produce | //with bold headers // |

170

http://openeuphoria.org/wiki/view/home.wc

CHAPTER 35. EUDOC - SOURCE DOCUMENTATION TOOL 35.6. DOCUMENTATION SOFTWARE

<eucode >

-- euphoria code is colorized

for i=1 to 5 do

? i

end for

</eucode >

• The previous tags will produce html that looks like...

• – Title **

– Section **

italic bold fixed

• bullet

• lists are

• easy to produce

tables are
easy to produce with bold headers

-- euphoria code is colorized

for i=1 to 5 do

? i

end for

• More details can be found at the Euphoria Wiki under CreoleHelp.

35.6 Documentation software

The programs required for creating documentation are hosted on our Mercurial SCM server at http://scm.openeuphoria.org.
eudoc: http://scm.openeuphoria.org/hg/eudoc
creole: http://scm.openeuphoria.org/hg/creole
More on using eudoc
More on using Creole markup
The program htmldoc is found at... http://www.htmldoc.org/ and http://htmldoc-binaries.org/.
For LaTeX on Windows, we suggest MiKTeX found at... http://miktex.org/ For those on Linux, you should be able

to install via your package manager.

171

/wiki/view.wc?page=CreoleHelp
http://scm.openeuphoria.org
http://scm.openeuphoria.org/hg/eudoc
http://scm.openeuphoria.org/hg/creole
/wiki/view.wc?page=Documenting40
/wiki/view.wc?page=CreoleHelp
http://www.htmldoc.org/
http://htmldoc-binaries.org/
http://miktex.org/

Chapter 36
Ed - Euphoria Editor

36.1 Introduction

The Euphoria download package includes a handy, text-mode editor, ed, that’s written completely in Euphoria. Many
people find ed convenient for editing Euphoria programs and other files, but there is no requirement that you use it.

36.2 Summary

Usage:

1. ed filename

2. ed

After any error, just type ed, and you’ll be placed in the editor, at the line and column where the error was detected.
The error message will be at the top of your screen.

Euphoria-related files are displayed in color. Other text files are in mono. You’ll know that you have misspelled
something when the color does not change as you expect. Keywords are blue. Names of routines that are built in to
the interpreter appear in magenta. Strings are green, comments are red, most other text is black. Balanced brackets
(on the same line) have the same color. You can change these colors as well as several other parameters of ed. See
”user-modifiable parameters” near the top of ed.ex.

The arrow keys move the cursor left, right, up or down. Most other characters are immediately inserted into the file.

In Windows, you can ”associate” various types of files with ed.bat. You will then be put into ed when you double-click
on these types of files - e.g. .e, .pro, .doc etc. Main Euphoria files ending in .ex, .exd or .exw might better be
associated with eui.exe, euid.exe, or euiw.exe, respectively.

ed is a multi-file/multi-window text-based editor. Esc c will split your screen so you can view and edit up to 10 files
simultaneously, with cutting and pasting between them. You can also use multiple edit windows to view and edit different
parts of a single file.

36.3 Special Keys

Some PC keys do not work in a Linux or FreeBSD or Windows text console, or in Telnet, and some keys do not work in
an xterm under X windows. Alternate keys have been provided. In some cases you might have to edit ed.ex to map the
desired key to the desired function. e.g. you’ll have to use C-t and C-b instead of C-Home and C-End.

172

CHAPTER 36. ED - EUPHORIA EDITOR 36.4. ESCAPE COMMANDS

Delete Delete the current character above the cursor
Backspace Move the cursor to the left and delete a character
C-Delete Delete the current line (not available on all platforms)
C-d Delete the current line (same as C-Delete)
Insert re-insert the preceding series of Deletes before the current

line/character
C-Left Move to the start of the previous word. On Unix use C-l
C-Right Move to the start of the next word. On Unix use C-r
Home Move to the beginning of the current line
End Move to the end of the current line
C-Home Move to the beginning of the file (euid.exe only, others use

C-t
C-End Move to the end of the file (euid.exe only, others use C-b
PgUp Move up one screen. On Unix use C-u
PgDn Move down one screen. On Unix use C-p
F1..F10 Select a new window. The windows are numbered from

top to bottom with the top window on the screen being
F1

F12 User definable key (see CUSTOM KEYSTROKES near top of
ed.ex. Default action is to insert -- for a Euphoria com-
ment

36.4 Escape Commands

Press and release the Esc key, then press one of the following keys:

173

CHAPTER 36. ED - EUPHORIA EDITOR 36.4. ESCAPE COMMANDS

h Get help text for the editor, or Euphoria. The screen is
split so you can view your program and the help text at
the same time.

c ”Clone” the current window, i.e. make a new edit window
that is initially viewing the same file at the same position as
the current window. The sizes of all windows are adjusted
to make room for the new window. You might want to
use Esc l to get more lines on the screen. Each window
that you create can be scrolled independently and each has
its own menu bar. The changes that you make to a file
will initially appear only in the current window. When you
press an F-key to select a new window, any changes will
appear there as well. You can use Esc n to read a new file
into any window.

q Quit (delete) the current window and leave the editor if
there are no more windows. You’ll be warned if this is the
last window used for editing a modified file. Any remaining
windows are given more space.

s Save the file being edited in the current window, then quit
the current window as Esc q above.

w Save the file but do not quit the window.
e Save the file, and then execute it with euid, euiw or eui.

When the program finishes execution you’ll hear a beep.
Hit Enter to return to the editor. This operation may not
work if you are very low on extended memory. You can’t
supply any command-line arguments to the program.

d Run an operating system command. After the beep, hit
Enter to return to the editor. You could also use this
command to edit another file and then return, but Esc c
is probably more convenient.

n Start editing a new file in the current window. Deleted
lines/chars and search strings are available for use in the
new file. You must type in the path to the new file. Al-
ternatively, you can drag a file name from a Windows file
manager window into the console window for ed. This will
type the full path for you.

f Find the next occurrence of a string in the current win-
dow. When you type in a new string there is an option to
”match case” or not. Press y if you require upper/lower
case to match. Keep hitting Enter to find subsequent
occurrences. Any other key stops the search. To search
from the beginning, press C-Home before Esc f. The de-
fault string to search for, if you don’t type anything, is
shown in double quotes.

r Globally replace one string by another. Operates like Esc f
command. Keep hitting Enter to continue replacing. Be
careful - there is no way to skip over a possible replace-
ment.

l Change the number of lines displayed on the screen. Only
certain values are allowed, depending on your video card.
Many cards will allow 25, 28, 43 and 50 lines. In a Lin-
ux/FreeBSD text console you’re stuck with the number
of lines available (usually 25). In a Linux/FreeBSD xterm
window, ed will use the number of lines initially available
when ed is started up. Changing the size of the window
will have no effect after ed is started.

m Show the modifications that you’ve made so far. The cur-
rent edit buffer is saved as editbuff.tmp, and is com-
pared with the file on disk using the Windows fc com-
mand, or the Linux/FreeBSD diff command. Esc m is
very useful when you want to quit the editor, but you can’t
remember what changes you made, or whether it’s ok to
save them. It’s also useful when you make an editing mis-
take and you want to see what the original text looked
like.

ddd Move to line number ddd. e.g. Esc 1023 Enter would
move to line 1023 in the file.

CR Esc Carriage-Return, i.e. Esc Enter, will tell you the name
of the current file, as well as the line and character position
you are on, and whether the file has been modified since
the last save. If you press Esc and then change your mind,
it is harmless to just hit Enter so you can go back to
editing.

174

CHAPTER 36. ED - EUPHORIA EDITOR 36.5. RECALLING PREVIOUS STRINGS

36.5 Recalling Previous Strings

The Esc n, Esc d, Esc r and Esc f commands prompt you to enter a string. You can recall and edit these strings just as
you would at the command line. Type up-arrow or down-arrow to cycle through strings that you previously entered for a
given command, then use left-arrow, right-arrow and the delete key to edit the strings. Press Enter to submit the string.

36.6 Cutting and Pasting

When you C-Delete (or C-d) a series of consecutive lines, or Delete a series of consecutive characters, you create a
”kill-buffer” containing what you just deleted. This kill-buffer can be re-inserted by moving the cursor and then pressing
Insert.

A new kill-buffer is started, and the old buffer is lost, each time you move away and start deleting somewhere else.
For example, cut a series of lines with C-Delete. Then move the cursor to where you want to paste the lines and press
Insert. If you want to copy the lines, without destroying the original text, first C-Delete them, then immediately press
Insert to re-insert them. Then move somewhere else and press Insert to insert them again, as many times as you like. You
can also Delete a series of individual characters, move the cursor, and then paste the deleted characters somewhere else.
Immediately press Insert after deleting if you want to copy without removing the original characters.

Once you have a kill-buffer, you can type Esc n to read in a new file, or you can press an F-key to select a new edit
window. You can then insert your kill-buffer.

36.7 Use of Tabs

The standard tab width is 8 spaces. The editor assumes tab=8 for most files. However, it is more convenient when editing
a program for a tab to equal the amount of space that you like to indent. Therefore you will find that tabs are set to
4 when you edit Euphoria files (or .c, or .h or .bas files). The editor converts from tab=8 to tab=4 when reading your
program file, and converts back to tab=8 when you save the file. Thus your file remains compatible with the tab=8 world.
If you would like to choose a different number of spaces to indent, change the line at the top of ed.ex that says
”constant PROG INDENT = 4”.

36.8 Long Lines

Lines that extend beyond the right edge of the screen are marked with an inverse video character in the 80th column.
This warns you that there is more text ”out there” that you can’t see. You can move the cursor beyond the 80th column.
The screen will scroll left or right so the cursor position is always visible.

36.9 Maximum File Size

Like any Euphoria program, ed can access all the memory on your machine. It can edit huge files, and unless disk swapping
occurs, most operations will be very fast.

36.10 Non-text Files

ed is designed for editing pure text files, although you can use it to view other files. As ed reads in a file, it replaces
certain non-printable characters (less than ASCII 14) with ASCII 254 - small square. If you try to save a non-text file you
will be warned about this. Since ed opens all files as ”text” files, a control-z character (26) embedded in a file will appear
to ed to be the end of the file.

175

CHAPTER 36. ED - EUPHORIA EDITOR 36.11. LINE TERMINATOR

36.11 Line Terminator

The end-of-line terminator on Linux/FreeBSD/OSX/OPENBSD/NETBSD is simply \n. On Windows, text files have lines
ending with \r\n. If you copy a Windows file to Linux/FreeBSD and try to modify it, ed will give you a choice of either
keeping the \r\n terminators, or saving the file with \n terminators.

36.12 Source Code

The complete source code to this editor is in bin\ed.ex and bin\syncolor.e. You are welcome to make improvements.
There is a section at the top of ed.ex containing ”user-modifiable” configuration parameters that you can adjust. The
colors and the cursor size may need adjusting for some operating environments.

176

Chapter 37
EuDis - Disassembling Euphoria code

37.1 Introduction

In the Euphoria source directory is a program named dis.ex, which can be used for parsing Euphoria code and outputting
detailed disassembly of the intermediate language (i.e., byte code) used by Euphoria, as well as the symbol table. The
purpose of this tool is for low level debugging, especially for developing Euphoria itself, or for understanding why certain
code performs the way it does.

It uses the actual Euphoria front end to parse your code. When Euphoria is installed, there should be a shell script
or batch file (depending on your operating system) called eudis or eudis.bat, respectively, that can be used to analyze
your code:

$ eudis myapp.ex

saved to [/path/to/myapp.ex.dis]

When run, eudis will say where its output was saved. The file name, including extension, is used as the base for its
output. By default, it outputs four files:

• .dis The main disassembly file. This shows the IL code representation both raw and symbolically.

• .sym The symbol table. This shows details for the entire symbol table for your code.

• .hash Details about symbol hashing.

• .line Line table information. Unless tracing is enabled, this will be blank.

• .fwd Counts, by name, of the number of forward references by symbol, along with the number of references by file.

37.2 HTML Output

eudis can output html documentation of your program somewhat similar to the output from Doxygen. This documentation
is different than eudoc. It is meant to document the structure of your program, and to help developers understand code
dependencies. It can generate graphs showing how files include each other, as well as which routines call which others.
Note that generating graphs requires that you have Graphviz installed. Note that generating call graphs can be quite time
consuming for a large program.

By default, eudis will create a subdirectory in the current directory called eudox. This may be changed using the
--dir option.

177

http://www.graphviz.org

CHAPTER 37. EUDIS - DISASSEMBLING EUPHORIA CODE 37.2. HTML OUTPUT

37.2.1 Command Line Switches

You can use the standard -i and -c switches with eudis. There are additional options:

• -b parse the code as though it were being bound

• --dir <dir> Specify the output directory for the html files

• -f include a particular file in the html output

• output the list of files included in the .dis file at the top of the listing

• -g suppress call graphs in html output

• --html generate html documentation of your program

• Suppress dependencies. Will not generate file and routine dependency graphs.

• --std show standard library information, by default this is not shown

• -t parse the code as though it were being translated

178

Chapter 38
EuDist - Distributing Programs

38.1 Introduction

EuDist is a tool that makes distributing your program easier. It’s designed to gather all of the Euphoria files that your
program uses and put them into a directory. This can also be useful for sending example code for bug reports.

38.2 Command Line Switches

You can use the standard -i and -c switches with eudist. There are additional options:

• --clear Clear the output directory before copying files

• -d <dir> Specify the output directory for the files

• -e <file> --exclude-file <file> Exclude a file from being copied

• -ed <dir> --exclude-directory <file> Exclude a directory from being copied

• -edr <dir> --exclude-directory-recursively <file> Exclude a directory and all subdirectories from being
copied

179

Part VIII

API Reference

180

Chapter 39
Built-in Routines

These built-in routines do not require an include file:
? abort and bits append

arctan atom c func c proc

call call func call proc clear screen

close command line compare cos

date delete delete routine equal

find floor get key getc

getenv gets hash head

include paths insert integer length

log machine func machine proc match

mem copy mem set not bits object

open option switches or bits peek

peek2s peek2u peek4s peek4u

peek8s peek8u peek longs peek longu

peek pointer peeks peek string pixel (??)
platform poke poke2 poke4

poke8 poke long poke pointer position

power prepend print printf

puts rand remainder remove

repeat replace routine id sequence

sin splice sprintf sqrt

system system exec tail tan

task clock start task clock stop task create task list

task schedule task self task status task suspend

task yield time trace xor bits

A built-in routine has global scope and belongs to the eu namespace.
An identifier for a built-in is not reserved; it is possible to override a built-in identifier with a new declaration.

181

Chapter 40
Command Line Handling

40.1 Constants

40.1.1 NO PARAMETER

include std/cmdline.e

namespace cmdline

public constant NO_PARAMETER

This option switch does not have a parameter. See cmd parse

40.1.2 HAS PARAMETER

include std/cmdline.e

namespace cmdline

public constant HAS_PARAMETER

This option switch does have a parameter. See cmd parse

40.1.3 NO CASE

include std/cmdline.e

namespace cmdline

public constant NO_CASE

This option switch is not case sensitive. See cmd parse

40.1.4 HAS CASE

include std/cmdline.e

namespace cmdline

public constant HAS_CASE

This option switch is case sensitive. See cmd parse

182

CHAPTER 40. COMMAND LINE HANDLING 40.1. CONSTANTS

40.1.5 MANDATORY

include std/cmdline.e

namespace cmdline

public constant MANDATORY

This option switch must be supplied on command line. See cmd parse

40.1.6 OPTIONAL

include std/cmdline.e

namespace cmdline

public constant OPTIONAL

This option switch does not have to be on command line. See cmd parse

40.1.7 ONCE

include std/cmdline.e

namespace cmdline

public constant ONCE

This option switch must only occur once on the command line. See cmd parse

40.1.8 MULTIPLE

include std/cmdline.e

namespace cmdline

public constant MULTIPLE

This option switch may occur multiple times on a command line. See cmd parse

40.1.9 HELP

include std/cmdline.e

namespace cmdline

public constant HELP

This option switch triggers the ’help’ display. See cmd parse

40.1.10 HEADER

include std/cmdline.e

namespace cmdline

public constant HEADER

This option switch is simply a help display header to group like options together. See cmd parse

40.1.11 VERSIONING

include std/cmdline.e

namespace cmdline

public constant VERSIONING

This option switch sets the program version information. If this option is chosen by the user cmd parse will display
the program version information and then end the program with a zero error code.

183

CHAPTER 40. COMMAND LINE HANDLING 40.1. CONSTANTS

40.1.12 enum

include std/cmdline.e

namespace cmdline

public enum

40.1.13 HELP RID

include std/cmdline.e

namespace cmdline

HELP_RID

Additional help routine id. See cmd parse

40.1.14 VALIDATE ALL

include std/cmdline.e

namespace cmdline

VALIDATE_ALL

Validate all parameters (default). See cmd parse

40.1.15 NO VALIDATION

include std/cmdline.e

namespace cmdline

NO_VALIDATION

Do not cause an error for an invalid parameter. See cmd parse

40.1.16 NO VALIDATION AFTER FIRST EXTRA

include std/cmdline.e

namespace cmdline

NO_VALIDATION_AFTER_FIRST_EXTRA

Do not cause an error for an invalid parameter after the first extra item has been found. This can be helpful for
processes such as the Interpreter itself that must deal with command line parameters that it is not meant to handle. At
expansions after the first extra are also disabled.

For instance:
eui -D TEST greet.ex -name John -greeting Bye

-D TEST is meant for eui, but -name and -greeting options are meant for greet.ex. See cmd parse
eui @euopts.txt greet.ex @hotmail.com

here ’hotmail.com’ is not expanded into the command line but ’euopts.txt’ is.

40.1.17 SHOW ONLY OPTIONS

include std/cmdline.e

namespace cmdline

SHOW_ONLY_OPTIONS

Only display the option list in show help. Do not display other information (such as program name, options, and so
on) See cmd parse

184

CHAPTER 40. COMMAND LINE HANDLING 40.1. CONSTANTS

40.1.18 AT EXPANSION

include std/cmdline.e

namespace cmdline

AT_EXPANSION

Expand arguments that begin with ’@’ into the command line. (default) For example, @filename will expand the
contents of file named ’filename’ as if the file’s contents were passed in on the command line. Arguments that come after
the first extra will not be expanded when NO VALIDATION AFTER FIRST EXTRA is specified.

40.1.19 NO AT EXPANSION

include std/cmdline.e

namespace cmdline

NO_AT_EXPANSION

Do not expand arguments that begin with ’@’ into the command line. Normally @filename will expand the file names
contents as if the file’s contents were passed in on the command line. This option supresses this behavior.

40.1.20 PAUSE MSG

include std/cmdline.e

namespace cmdline

PAUSE_MSG

Supply a message to display and pause just prior to abort being called.

40.1.21 NO HELP

include std/cmdline.e

namespace cmdline

NO_HELP

Disable the automatic inclusion of -h, -?, and --help as help switches.

40.1.22 NO HELP ON ERROR

include std/cmdline.e

namespace cmdline

NO_HELP_ON_ERROR

Disable the automatic display of all of the possible options on error.

40.1.23 enum

include std/cmdline.e

namespace cmdline

public enum

40.1.24 OPT IDX

include std/cmdline.e

namespace cmdline

OPT_IDX

An index into the opts list. See cmd parse

185

CHAPTER 40. COMMAND LINE HANDLING 40.2. ROUTINES

40.1.25 OPT CNT

include std/cmdline.e

namespace cmdline

OPT_CNT

The number of times that the routine has been called by cmd parse for this option. See cmd parse

40.1.26 OPT VAL

include std/cmdline.e

namespace cmdline

OPT_VAL

The option’s value as found on the command line. See cmd parse

40.1.27 OPT REV

include std/cmdline.e

namespace cmdline

OPT_REV

The value 1 if the command line indicates that this option is to remove any earlier occurrences of it. See cmd parse

40.1.28 EXTRAS

include std/cmdline.e

namespace cmdline

public constant EXTRAS

The extra parameters on the cmd line, not associated with any specific option. See cmd parse

40.2 Routines

40.2.1 command line

<built -in > function command_line ()

returns sequence of strings containing each word entered at the command-line that started your program.

Returns:

1. The path, to either the Euphoria executable (eui, eui.exe, euid.exe, euiw.exe) or to your bound executable
file.

2. The next word, is either the name of your Euphoria main file or (again) the path to your bound executable file.

3. Any extra words, typed by the user. You can use these words in your program.

There are as many entries as words, plus the two mentioned above.
The Euphoria interpreter itself does not use any command-line options. You are free to use any options for your own

program. The interpreter does have command line switches though.
The user can put quotes around a series of words to make them into a single argument.
If you convert your program into an executable file, either by binding it, or translationg it to C, you will find that all

command-line arguments remain the same, except for the first two, even though your user no longer types ”eui” on the
command-line (see examples below).

186

CHAPTER 40. COMMAND LINE HANDLING 40.2. ROUTINES

Example 1:

1 -- The user types: eui myprog myfile.dat 12345 "the end"

2

3 cmd = command_line ()

4

5 -- cmd will be:

6 {"C:\E"UPHORIA\BIN\EUI.EXE",

7 "myprog",

8 "myfile.dat",

9 "12345",

10 "the end"}

Example 2:

1 -- Your program is bound with the name "myprog.exe"

2 -- and is stored in the directory c:\ myfiles

3 -- The user types: myprog myfile.dat 12345 "the end"

4

5 cmd = command_line ()

6

7 -- cmd will be:

8 {"C:\M"YFILES\MYPROG.EXE",

9 "C:\M"YFILES\MYPROG.EXE", -- place holder

10 "myfile.dat",

11 "12345",

12 "the end"

13 }

14

15 -- Note that all arguments remain the same as in Example 1

16 -- except for the first two. The second argument is always

17 -- the same as the first and is inserted to keep the numbering

18 -- of the subsequent arguments the same , whether your program

19 -- is bound or translated as a .exe , or not.

See Also:

build commandline, option switches, getenv, cmd parse, show help

40.2.2 option switches

<built -in > function option_switches ()

retrieves the list of switches passed to the interpreter on the command line.

Returns:

A sequence, of strings, each containing a word related to switches.

Comments:

All switches are recorded in upper case.

187

CHAPTER 40. COMMAND LINE HANDLING 40.2. ROUTINES

Example 1:

euiw -d helLo

-- will result in

-- option_switches () being {"-D","helLo "}

See Also:

Command line switches

40.2.3 show help

include std/cmdline.e

namespace cmdline

public procedure show_help(sequence opts , object add_help_rid = - 1,

sequence cmds = command_line (), object parse_options = {})

shows the help message for the given opts.

Parameters:

1. opts : a sequence of options. See the cmd parse for details.

2. add help rid : an object. Either a routine id or a set of text strings. The default is -1 meaning that no additional
help text will be used.

3. cmds : a sequence of strings. By default this is the output from command line

4. parse options : An option set of behavior modifiers. See the cmd parse for details.

Comments:

• opts is identical to the one used by cmd parse

• add help rid can be used to provide additional help text. By default, just the option switches and their descriptions
will be displayed. However you can provide additional text by either supplying a routine id of a procedure that accepts
no parameters; this procedure is expected to write text to the stdout device. Or you can supply one or more lines of
text that will be displayed.

Example 1:

1 -- in myfile.ex

2 constant description = {

3 "Creates a file containing an analysis of the weather.",

4 "The analysis includes temperature and rainfall data",

5 "for the past week."

6 }

7

8 show_help ({

9 {"q", "silent", "Suppresses any output to console", NO_PARAMETER , -1},

10 {"r", 0, "Sets how many lines the console should display",

11 {HAS_PARAMETER ,"lines"}, -1}}, description)

Outputs:

188

CHAPTER 40. COMMAND LINE HANDLING 40.2. ROUTINES

myfile.ex options:

-q, --silent Suppresses any output to console

-r lines Sets how many lines the console should display

Creates a file containing an analysis of the weather.

The analysis includes temperature and rainfall data

for the past week.

Example 2:

1 -- in myfile.ex

2 constant description = {

3 "Creates a file containing an analysis of the weather.",

4 "The analysis includes temperature and rainfall data",

5 "for the past week."

6 }

7 procedure sh()

8 for i = 1 to length(description) do

9 printf(1, " >> %s <<\n", {description[i]})

10 end for

11 end procedure

12

13 show_help ({

14 {"q", "silent", "Suppresses any output to console", NO_PARAMETER , -1},

15 {"r", 0, "Sets how many lines the console should display",

16 {HAS_PARAMETER ,"lines"}, -1}}, routine_id("sh"))

Outputs:

myfile.ex options:

-q, --silent Suppresses any output to console

-r lines Sets how many lines the console should display

>> Creates a file containing an analysis of the weather. <<

>> The analysis includes temperature and rainfall data <<

>> for the past week. <<

40.2.4 cmd parse

include std/cmdline.e

namespace cmdline

public function cmd_parse(sequence opts , object parse_options = {},

sequence cmds = command_line ())

parses command line options and optionally calls procedures based on these options.

Parameters:

1. opts : a sequence of records that define the various command line switches and options that are valid for the
application: See Comments: section for details

2. parse options : an optional list of special behavior modifiers: See Parse Options section for details

3. cmds : an optional sequence of command line arguments. If omitted the output from command line is used.

189

CHAPTER 40. COMMAND LINE HANDLING 40.2. ROUTINES

Returns:

A map, containing the set of actual options used in cmds. The returned map has one special key, EXTRAS that are values
passed on the command line that are not part of any of the defined options. This is commonly used to get the list of files
entered on the command line. For instance, if the command line used was myprog -verbose file1.txt file2.txt

then the EXTRAS data value would be "file1.txt", "file2.txt".

When any command item begins with an @ symbol then it is assumed that it prefixes a file name. That file will then
be opened and its contents used to add to the command line, as if the file contents had actually been entered as part of
the original command line.

Parse Options: parse options is used to provide a set of behavior modifiers that change the default rules for parsing
the command line. If used, it is a list of values that will affect the parsing of the command line options.

These modifers can be any combination of:

1. VALIDATE ALL – The default. All options will be validated for all possible errors.

2. NO VALIDATION – Do not validate any parameter.

3. NO VALIDATION AFTER FIRST EXTRA – Do not validate any parameter after the first extra was encountered. This
is helpful for programs such as the Interpreter itself: eui -D TEST greet.ex -name John. -D TEST should be
validated but anything after ”greet.ex” should not as it is meant for greet.ex to handle, not eui.

4. HELP RID – The next Parse Option must either a routine id or a set of text strings. The routine is called or the text
is displayed when a parse error (invalid option given, mandatory option not given, no parameter given for an option
that requires a parameter, etc...) occurs. This can be used to provide additional help text. By default, just the
option switches and their descriptions will be displayed. However you can provide additional text by either supplying
a routine id of a procedure that accepts no parameters, or a sequence containing lines of text (one line per element).
The procedure is expected to write text to the stdout device.

5. NO HELP ON ERROR – Do not show a list of options on a command line error.

6. NO HELP – Do not automatically add the switches ’-h’, ’-?’, and ’–help’ to display the help text (if any).

7. NO AT EXPANSION – Do not expand arguments that begin with ’@.’

8. AT EXPANSION – Expand arguments that begin with ’@’. The name that follows @ will be opened as a file, read,
and each trimmed non-empty line that does not begin with a ’#’ character will be inserted as arguments in the
command line. These lines replace the original ’@’ argument as if they had been entered on the original command line.

• If the name following the ’@’ begins with another ’@’, the extra ’@’ is removed and the remainder is the name
of the file. However, if that file cannot be read, it is simply ignored. This allows optional files to be included
on the command line. Normally, with just a single ’@’, if the file cannot be found the program aborts.

• Lines whose first non-whitespace character is ’#’ are treated as a comment and thus ignored.

• Lines enclosed with double quotes will have the quotes stripped off and the result is used as an argument. This
can be used for arguments that begin with a ’#’ character, for example.

• Lines enclosed with single quotes will have the quotes stripped off and the line is then further split up use
the space character as a delimiter. The resulting ’words’ are then all treated as individual arguments on the
command line.

An example of parse options:

{ HELP_RID , routine_id("my_help"), NO_VALIDATION }

190

CHAPTER 40. COMMAND LINE HANDLING 40.2. ROUTINES

Comments:

Token types recognized on the command line:

1. a single ’-’. Simply added to the ’extras’ list

2. a single ”–”. This signals the end of command line options. What remains of the command line is added to the
’extras’ list, and the parsing terminates.

3. -shortName. The option will be looked up in the short name field of opts.

4. /shortName. Same as -shortName.

5. -!shortName. If the ’shortName’ has already been found the option is removed.

6. /!shortName. Same as -!shortName

7. –longName. The option will be looked up in the long name field of opts.

8. –!longName. If the ’longName’ has already been found the option is removed.

9. anything else. The word is simply added to the ’extras’ list.

For those options that require a parameter to also be supplied, the parameter can be given as either the next command
line argument, or by appending ’=’ or ’:’ to the command option then appending the parameter data.
For example, -path=/usr/local or as -path /usr/local.

On a failed lookup, the program shows the help by calling show help(opts, add help rid, cmds) and terminates with
status code 1.

If you do not explicitly define the switches -h, -?, or --help, these will be automatically added to the list of valid
switches and will be set to call the show help routine.

You can remove any of these as default ’help’ switches simply by explicitly using them for something else.
You can also remove all of these switches as automatic help switches by using the NO HELP parsing option. This just

means that these switches are not automatically used as ’help’ switches, regardless of whether they are used explicitly or
not. So if NO HELP is used, and you want to give the user the ability to display the ’help’ then you must explicitly set up
your own switch to do so. N.B, the ’help’ is still displayed if an invalid command line switch is used at runtime, regardless
of whether NO HELP is used or not.

Option records have the following structure:

1. a sequence representing the (short name) text that will follow the ”-” option format. Use an atom if not relevant

2. a sequence representing the (long name) text that will follow the ”–” option format. Use an atom if not relevant

3. a sequence, text that describes the option’s purpose. Usually short as it is displayed when ”-h”/”–help” is on the
command line. Use an atom if not required.

4. An object ...

• If an atom then it can be either HAS PARAMETER or anything else if there is no parameter for this option. This
format also implies that the option is optional, case-sensitive and can only occur once.

• If a sequence, it can containing zero or more processing flags in any order ...

– MANDATORY to indicate that the option must always be supplied.

– HAS PARAMETER to indicate that the option must have a parameter following it. You can optionally have a
name for the parameter immediately follow the HAS PARAMETER flag. If one isn’t there, the help text will
show ”x” otherwise it shows the supplied name.

– NO CASE to indicate that the case of the supplied option is not significant.

– ONCE to indicate that the option must only occur once on the command line.

– MULTIPLE to indicate that the option can occur any number of times on the command line.

191

CHAPTER 40. COMMAND LINE HANDLING 40.2. ROUTINES

• If both ONCE and MULTIPLE are omitted then switches that also have HAS PARAMETER are only allowed once
but switches without HAS PARAMETER can have multuple occurances but only one is recorded in the output
map.

5. an integer; a routine id. This function will be called when the option is located on the command line and before it
updates the map.
Use -1 if cmd parse is not to invoke a function for this option.
The user defined function must accept a single sequence parameter containing four values. If the function returns
1 then the command option does not update the map. You can use the predefined index values OPT IDX, OPT CNT,
OPT VAL, OPT REV when referencing the function’s parameter elements.

(a) An index into the opts list.

(b) The number of times that the routine has been called by cmd parse for this option

(c) The option’s value as found on the command line

(d) 1 if the command line indicates that this option is to remove any earlier occurrences of it.

One special circumstance exists and that is an option group header. It should contain only two elements:

1. The header constant: HEADER

2. A sequence to display as the option group header

When assigning a value to the resulting map, the key is the long name if present, otherwise it uses the short name.
For options, you must supply a short name, a long name or both.

If you want cmd parse to call a user routine for the extra command line values, you need to specify an Option Record
that has neither a short name or a long name, in which case only the routine id field is used.

For more details on how the command line is being pre-parsed, see command line.

Example 1:

1 -- simple usage

2

3 map args = cmd_parse ({

4 { "o", 0, "Output directory", { HAS_PARAMETER } },

5 { "v", 0, "Verbose mode" }

6 })

7

8 if map:get(args , "v") then

9 printf(1, "Output directory is %s\n", { map:get(args , "o") })

10 end if

Example 2:

1 -- complex usage

2

3 sequence option_definition

4 integer gVerbose = 0

5 sequence gOutFile = {}

6 sequence gInFile = {}

7 function opt_verbose(sequence value)

8 if value[OPT_VAL] = -1 then -- (-!v used on command line)

9 gVerbose = 0

10 else

11 if value[OPT_CNT] = 1 then

12 gVerbose = 1

13 else

192

CHAPTER 40. COMMAND LINE HANDLING 40.2. ROUTINES

14 gVerbose += 1

15 end if

16 end if

17 return 1

18 end function

19

20 function opt_output_filename(sequence value)

21 gOutFile = value[OPT_VAL]

22 return 1

23 end function

24

25 function extras(sequence value)

26 if not file_exists(value[OPT_VAL]) then

27 show_help(option_definition , sprintf("Cannot find ’%s’",

28 {value[OPT_VAL]}))

29 abort (1)

30 end if

31 gInFile = append(gInFile , value[OPT_VAL])

32 return 1

33 end function

34

35 option_definition = {

36 { HEADER , "General options" },

37 { "h", "hash", "Calc hash values", { NO_PARAMETER }, -1 },

38 { HEADER , "Input and output" },

39 { "o", "output", "Output filename", { MANDATORY , HAS_PARAMETER , ONCE } ,

40 routine_id("opt_output_filename") },

41 { "i", "import", "An import path", { HAS_PARAMETER , MULTIPLE}, -1 },

42 { HEADER , "Miscellaneous" },

43 { "v", "verbose", "Verbose output", { NO_PARAMETER }, routine_id("opt_verbose") },

44 { "e", "version", "Display version", { VERSIONING , "myprog v1.0" } },

45 { 0, 0, 0, 0, routine_id("extras")}

46 }

47

48 map:map opts = cmd_parse(option_definition , NO_HELP)

49

50 -- When run as:

51 -- eui myprog.ex -v @output.txt -i /etc/app input1.txt input2.txt

52 -- and the file "output.txt" contains the two lines ...

53 -- --output=john.txt

54 -- ’-i /usr/local ’

55 --

56 -- map:get(opts , "verbose ") --> 1

57 -- map:get(opts , "hash") --> 0 (not supplied on command line)

58 -- map:get(opts , "output ") --> "john.txt"

59 -- map:get(opts , "import ") --> {"/ usr/local", "/etc/app"}

60 -- map:get(opts , EXTRAS) --> {" input1.txt", "input2.txt"}

See Also:

show help, command line

40.2.5 build commandline

include std/cmdline.e

namespace cmdline

public function build_commandline(sequence cmds)

193

CHAPTER 40. COMMAND LINE HANDLING 40.2. ROUTINES

returns a text string based on the set of supplied strings.

Parameters:

1. cmds : A sequence. Contains zero or more strings.

Returns:

A sequence, which is a text string. Each of the strings in cmds is quoted if they contain spaces, and then concatenated
to form a single string.

Comments:

Typically, this is used to ensure that arguments on a command line are properly formed before submitting it to the shell.
Though this function does the quoting for you it is not going to protect your programs from globing *, ? . And it is

not specied here what happens if you pass redirection or piping characters.
When passing a result from with build commandline to system exec, file arguments will benefit from using canoni-

cal path with the TO SHORT (??). On Windows this is required for file arguments to always work. There is a complication
with files that contain spaces. On Unix this call will also return a useable filename.

Alternatively, you can leave out calls to canonical path and use system instead.

Example 1:

s = build_commandline({ "-d", canonical_path("/usr/my docs/",,TO_SHORT)})

-- s now contains a short name equivalent to ’-d "/usr/my docs/"’

Example 2:

You can use this to run things that might be difficult to quote out. Suppose you want to run a program that requires
quotes on its command line? Use this function to pass quotation marks:

s = build_commandline({ "awk", "-e", "’{ print $1"x"$2; }’" })

system(s,0)

See Also:

parse commandline, system, system exec, command line, canonical path, TO SHORT (??)

40.2.6 parse commandline

include std/cmdline.e

namespace cmdline

public function parse_commandline(sequence cmdline)

parses a command line string breaking it into a sequence of command line options.

Parameters:

1. cmdline : Command line sequence (string)

Returns:

A sequence, of command line options

194

CHAPTER 40. COMMAND LINE HANDLING 40.2. ROUTINES

Example 1:

sequence opts = parse_commandline("-v -f ’%Y-%m-%d %H:%M’")

-- opts = { "-v", "-f", "%Y-%m-%d %H:%M" }

See Also:

build commandline

195

Chapter 41
Console

41.1 Information

41.1.1 has console

include std/console.e

namespace console

public function has_console ()

determines if the process has a console (terminal) window.

Returns:

An atom,

• 1 if there is more than one process attached to the current console,

• 0 if a console does not exist or only one process (Euphoria) is attached to the current console.

Comments:

• On Unix systems always returns 1 .

• On Windows client systems earlier than Windows XP the function always returns 0 .

• On Windows server systems earlier than Windows Server 2003 the function always returns 0 .

Example 1:

1 include std/console.e

2

3 if has_console () then

4 printf(1, "Hello Console!")

5 end if

196

CHAPTER 41. CONSOLE 41.2. KEY CODE NAMES

41.1.2 key codes

include std/console.e

namespace console

public function key_codes(object codes = 0)

gets and sets the keyboard codes used internally by Euphoria.

Parameters:

1. codes : Either a sequence of exactly 256 integers or an atom (the default).

Returns:

A sequence, of the current 256 keyboard codes, prior to any changes that this function might make.

Comments:

When codes is a atom then no change to the existing codes is made, otherwise the set of 256 integers in codes completely
replaces the existing codes.

Example 1:

1 include std/console.e

2 sequence kc

3 kc = key_codes () -- Get existing set.

4 kc[KC_LEFT] = 263 -- Change the code for the left -arrow press.

5 key_codes(kc) -- Set the new codes.

41.2 Key Code Names

These are the names of the index values for each of the 256 key code values.

See Also:

key codes

41.2.1 KC LBUTTON

include std/console.e

namespace console

public constant KC_LBUTTON

41.2.2 set keycodes

include std/console.e

namespace console

public function set_keycodes(object kcfile)

changes the default codes returned by the keyboard.

197

CHAPTER 41. CONSOLE 41.3. CURSOR STYLE CONSTANTS

Parameters:

1. kcfile : Either the name of a text file or the handle of an opened (for reading) text file.

Returns:

An integer,

• 0 means no error.

• -1 means that the supplied file could not me loaded in to a map.

• -2 means that a new key value was not an integer.

• -3 means that an unknown key name was found in the file.

Comments:

The text file is expected to contain bindings for one or more keyboard codes.
The format of the files is a set of lines, one line per key binding, in the form KEYNAME = NEWVALUE. The KEYNAME is

the same as the constants but without the ”KC ” prefix. The key bindings can be in any order.

Example 1:

-- doskeys.txt file containing some key bindings

F1 = 260

F2 = 261

INSERT = 456

set_keycodes("doskeys.txt")

See Also:

key codes

41.3 Cursor Style Constants

In cursor constants the second and fourth hex digits (from the left) determine the top and bottom row of pixels in the
cursor. The first digit controls whether the cursor will be visible or not. For example: #0407 turns on the 4th through 7th
rows.

Note: Windows only.

See Also:

cursor

41.3.1 NO CURSOR

include std/console.e

namespace console

public constant NO_CURSOR

198

CHAPTER 41. CONSOLE 41.4. KEYBOARD RELATED ROUTINES

41.3.2 UNDERLINE CURSOR

include std/console.e

namespace console

public constant UNDERLINE_CURSOR

41.3.3 THICK UNDERLINE CURSOR

include std/console.e

namespace console

public constant THICK_UNDERLINE_CURSOR

41.3.4 HALF BLOCK CURSOR

include std/console.e

namespace console

public constant HALF_BLOCK_CURSOR

41.3.5 BLOCK CURSOR

include std/console.e

namespace console

public constant BLOCK_CURSOR

41.4 Keyboard Related Routines

41.4.1 get key

<built -in > function get_key ()

returns the key that was pressed by the user, without waiting. Special codes are returned for the function keys, arrow
keys, and so on.

Returns:

An integer, either -1 if no key waiting, or the code of the next key waiting in keyboard buffer.

Comments:

The operating system can hold a small number of key-hits in its keyboard buffer. get key will return the next one from
the buffer, or -1 if the buffer is empty.

Run the .../euphoria/demo/key.ex program to see what key code is generated for each key on your keyboard.

Example 1:

integer n = get_key ()

if n=-1 then

puts(1, "No key waiting .\n")

end if

199

CHAPTER 41. CONSOLE 41.4. KEYBOARD RELATED ROUTINES

See Also:

wait key

41.4.2 allow break

include std/console.e

namespace console

public procedure allow_break(types :boolean b)

sets the behavior of Control+C and Control+Break keys.

Parameters:

1. b : a boolean, TRUE (!= 0) to enable the trapping of Control+C and Control+Break, FALSE (0) to disable it.

Comments:

When b is 1 (true), Control+C and Control+Break can terminate your program when it tries to read input from the
keyboard. When b is 0 (false) your program will not be terminated by Control+C or Control+Break.

Initially your program can be terminated at any point where it tries to read from the keyboard.
You can find out if the user has pressed Control+C or Control+Break by calling check break.

Example 1:

allow_break (0) -- don ’t let the user kill the program!

See Also:

check break

41.4.3 check break

include std/console.e

namespace console

public function check_break ()

returns the number of Control+C and Control+Break key presses.

Returns:

An integer, the number of times that Control+C or Control+Break have been pressed since the last call to check break,
or since the beginning of the program if this is the first call.

Comments:

This is useful after you have called allow break(0) which prevents Control+C or Control+Break from terminating your
program. You can use check break to find out if the user has pressed one of these keys. You might then perform some
action such as a graceful shutdown of your program.

Neither Control+C nor Control+Break will be returned as input characters when you read the keyboard. You can only
detect them by calling check break.

200

CHAPTER 41. CONSOLE 41.4. KEYBOARD RELATED ROUTINES

Example 1:

1 k = get_key ()

2 if check_break () then -- ^C or ^Break was hit once or more

3 temp = graphics_mode (-1)

4 puts(STDOUT , "Shutting down ...")

5 save_all_user_data ()

6 abort (1)

7 end if

See Also:

allow break

41.4.4 wait key

include std/console.e

namespace console

public function wait_key ()

waits for user to press a key, unless any is pending, and returns key code.

Returns:

An integer, which is a key code. If one is waiting in keyboard buffer, then return it. Otherwise, wait for one to come up.

See Also:

get key, getc

41.4.5 any key

include std/console.e

namespace console

public procedure any_key(sequence prompt = "Press Any Key to continue ...", integer con = 1)

displays a prompt to the user and waits for any key.

Parameters:

1. prompt : Prompt to display, defaults to "Press Any Key to continue..." .

2. con : Either 1 (stdout), or 2 (stderr). Defaults to 1 .

Comments:

This wraps wait key by giving a clue that the user should press a key, and perhaps do some other things as well.

Example 1:

any_key () -- "Press Any Key to continue ..."

201

CHAPTER 41. CONSOLE 41.4. KEYBOARD RELATED ROUTINES

Example 2:

any_key("Press Any Key to quit")

See Also:

wait key

41.4.6 maybe any key

include std/console.e

namespace console

public procedure maybe_any_key(sequence prompt = "Press Any Key to continue ...",

integer con = 1)

displays a prompt to the user and waits for any key. Only if the user is running under a GUI environment.

Parameters:

1. prompt : Prompt to display, defaults to "Press Any Key to continue..."

2. con : Either 1 (stdout), or 2 (stderr). Defaults to 1.

Comments:

This wraps wait key by giving a clue that the user should press a key, and perhaps do some other things as well.
Requires Windows XP or later or Windows 2003 or later to work. Earlier versions of Windows or O/S will always pause

even when not needed.
On Unix systems this will not pause even when needed.

Example 1:

any_key () -- "Press Any Key to continue ..."

Example 2:

any_key("Press Any Key to quit")

See Also:

wait key

41.4.7 prompt number

include std/console.e

namespace console

public function prompt_number(sequence prompt , sequence range)

prompts the user to enter a number and returns only validated input.

202

CHAPTER 41. CONSOLE 41.4. KEYBOARD RELATED ROUTINES

Parameters:

1. st : is a string of text that will be displayed on the screen.

2. s : is a sequence of two values lower, upper which determine the range of values that the user may enter. s can be
empty, , if there are no restrictions.

Returns:

An atom, in the assigned range which the user typed in.

Errors:

If puts cannot display st on standard output, or if the first or second element of s is a sequence, a runtime error will be
raised.

If user tries cancelling the prompt by hitting Control+Z, the program will abort as well, issuing a type check error.

Comments:

As long as the user enters a number that is less than lower or greater than upper, the user will be prompted again.
If this routine is too simple for your needs, feel free to copy it and make your own more specialized version.

Example 1:

age = prompt_number("What is your age? ", {0, 150})

Example 2:

t = prompt_number("Enter a temperature in Celcius :\n", {})

See Also:

puts, prompt string

41.4.8 prompt string

include std/console.e

namespace console

public function prompt_string(sequence prompt)

prompts the user to enter a string of text.

Parameters:

1. st : is a string that will be displayed on the screen.

Returns:

A sequence, the string that the user typed in, stripped of any new-line character.

Comments:

If the user happens to type Control+Z (indicates end-of-file), ”” will be returned.

203

CHAPTER 41. CONSOLE 41.5. CROSS PLATFORM TEXT GRAPHICS

Example 1:

name = prompt_string("What is your name? ")

See Also:

prompt number

41.5 Cross Platform Text Graphics

41.5.1 positive int

include std/console.e

namespace console

public type positive_int(object x)

41.5.2 clear screen

<built -in > procedure clear_screen ()

clears the screen using the current background color.

Comments:

The background color can be set by bk color).

See Also:

bk color

41.5.3 get screen char

include std/console.e

namespace console

public function get_screen_char(positive_atom line , positive_atom column , integer fgbg = 0)

gets the value and attribute of the character at a given screen location.

Parameters:

1. line : the 1-base line number of the location.

2. column : the 1-base column number of the location.

3. fgbg : an integer, if 0 (the default) you get an attribute code returned otherwise you get a foreground and
background color number returned.

Returns:

• If fgbg is zero then a sequence of two elements, character, attribute code for the specified location.

• If fgbg is not zero then a sequence of three elements, characterfg color, bg color.

204

CHAPTER 41. CONSOLE 41.5. CROSS PLATFORM TEXT GRAPHICS

Comments:

• This function inspects a single character on the active page.

• The attribute code is an atom that contains the foreground and background color of the character, and possibly
other operating-system dependant information describing the appearance of the character on the screen.

• With get screen char and put screen char you can save and restore a character on the screen along with its
attribute code.

• The fg color and bg color are integers in the range 0 to 15 which correspond to the values in the table:

Color Table
color number name
0 black
1 dark blue
2 green
3 cyan
4 crimson
5 purple
6 brown
7 light gray
8 dark gray
9 blue
10 bright green
11 light blue
12 red
13 magenta
14 yellow
15 white

Example 1:

1 -- read character and attributes at top left corner

2 s = get_screen_char (1,1)

3 -- s could be {’A’, 92}

4 -- store character and attributes at line 25, column 10

5 put_screen_char (25, 10, s)

Example 2:

-- read character and colors at line 25, column 10.

s = get_screen_char (25,10, 1)

-- s could be {’A’, 12, 5}

See Also:

put screen char, save text image

41.5.4 put screen char

include std/console.e

namespace console

public procedure put_screen_char(positive_atom line , positive_atom column , sequence char_attr)

stores and displays a sequence of characters with attributes at a given location.

205

CHAPTER 41. CONSOLE 41.5. CROSS PLATFORM TEXT GRAPHICS

Parameters:

1. line : the 1-based line at which to start writing.

2. column : the 1-based column at which to start writing.

3. char attr : a sequence of alternated characters and attribute codes.

Comments:

char attr must be in the form character, attribute code, character, attribute code,

Errors:

The length of char attr must be a multiple of two.

Comments:

The attributes atom contains the foreground color, background color, and possibly other platform-dependent information
controlling how the character is displayed on the screen. If char attr has 0 length, nothing will be written to the screen.
The characters are written to the active page. It is faster to write several characters to the screen with a single call to
put screen char than it is to write one character at a time.

Example 1:

-- write AZ to the top left of the screen

-- (attributes are platform -dependent)

put_screen_char (1, 1, {’A’, 152, ’Z’, 131})

See Also:

get screen char, display text image

41.5.5 attr to colors

include std/console.e

namespace console

public function attr_to_colors(integer attr_code)

converts an attribute code to its foreground and background color components.

Parameters:

1. attr code : integer, an attribute code.

Returns:

A sequence, of two elements – fgcolor, bgcolor

Example 1:

? attr_to_colors (92) --> {12, 5}

206

CHAPTER 41. CONSOLE 41.5. CROSS PLATFORM TEXT GRAPHICS

See Also:

get screen char, colors to attr

41.5.6 colors to attr

include std/console.e

namespace console

public function colors_to_attr(object fgbg , integer bg = 0)

converts a foreground and background color set to its attribute code format.

Parameters:

1. fgbg : Either a sequence of fgcolor, bgcolor or just an integer fgcolor.

2. bg : An integer bgcolor. Only used when fgbg is an integer.

Returns:

An integer, an attribute code.

Example 1:

? colors_to_attr ({12, 5}) --> 92

? colors_to_attr (12, 5) --> 92

See Also:

get screen char, put screen char, attr to colors

41.5.7 display text image

include std/console.e

namespace console

public procedure display_text_image(text_point xy, sequence text)

displays a text image in any text mode.

Parameters:

1. xy : a pair of 1-based coordinates representing the point at which to start writing.

2. text : a list of sequences of alternated character and attribute.

Comments:

This routine displays to the active text page, and only works in text modes.
You might use save text image and display text image in a text-mode graphical user interface, to allow ”pop-up” dialog

boxes, and drop-down menus to appear and disappear without losing what was previously on the screen.

207

CHAPTER 41. CONSOLE 41.5. CROSS PLATFORM TEXT GRAPHICS

Example 1:

1 clear_screen ()

2 display_text_image ({1,1}, {{’A’, WHITE , ’B’, GREEN},

3 {’C’, RED +16* WHITE},

4 {’D’, BLUE }})

5 -- displays:

6 -- AB

7 -- C

8 -- D

9 -- at the top left corner of the screen.

10 -- ’A’ will be white with black (0) background color ,

11 -- ’B’ will be green on black ,

12 -- ’C’ will be red on white , and

13 -- ’D’ will be blue on black.

See Also:

save text image, put screen char

41.5.8 save text image

include std/console.e

namespace console

public function save_text_image(text_point top_left , text_point bottom_right)

copies a rectangular block of text out of screen memory.

Parameters:

1. top left : the coordinates, given as a pair, of the upper left corner of the area to save.

2. bottom right : the coordinates, given as a pair, of the lower right corner of the area to save.

Returns:

A sequence, of character, attribute, character, ... lists.

Comments:

The returned value is appropriately handled by display text image.
This routine reads from the active text page, and only works in text modes.
You might use this function in a text-mode graphical user interface to save a portion of the screen before displaying a

drop-down menu, dialog box, alert box, and so on.

Example 1:

-- Top 2 lines are: Hello and World

s = save_text_image ({1,1}, {2,5})

-- s is something like: {"H-e-l-l-o-", "W-o-r-l-d-"}

See Also:

display text image, get screen char

208

CHAPTER 41. CONSOLE 41.5. CROSS PLATFORM TEXT GRAPHICS

41.5.9 text rows

include std/console.e

namespace console

public function text_rows(positive_int rows)

sets the number of lines on a text-mode screen.

Parameters:

1. rows : an integer, the desired number of rows.

Platform:

Windows

Returns:

An integer, the actual number of text lines.

Comments:

Values of 25, 28, 43 and 50 lines are supported by most video cards.

See Also:

graphics mode, video config

41.5.10 cursor

include std/console.e

namespace console

public procedure cursor(integer style)

selects a style of cursor.

Parameters:

1. style : an integer defining the cursor shape.

Platform:

Windows

Comments:

In pixel-graphics modes no cursor is displayed.

209

CHAPTER 41. CONSOLE 41.5. CROSS PLATFORM TEXT GRAPHICS

Example 1:

cursor(BLOCK_CURSOR)

Cursor Type Constants:

• NO CURSOR

• UNDERLINE CURSOR

• THICK UNDERLINE CURSOR

• HALF BLOCK CURSOR

• BLOCK CURSOR

See Also:

graphics mode, text rows

41.5.11 free console

include std/console.e

namespace console

public procedure free_console ()

frees (deletes) any console window associated with your program.

Comments:

Euphoria will create a console text window for your program the first time that your program prints something to the
screen, reads something from the keyboard, or in some way needs a console. On Windows this window will automatically
disappear when your program terminates, but you can call free console to make it disappear sooner. On Unix the text
mode console is always there, but an xterm window will disappear after Euphoria issues a "Press Enter" prompt at the
end of execution.

On Unix free console will set the terminal parameters back to normal, undoing the effect that curses has on the
screen.

In a Unix terminal a call to free console (without any further printing to the screen or reading from the keyboard)
will eliminate the ”Press Enter” prompt that Euphoria normally issues at the end of execution.

After freeing the console window, you can create a new console window by printing something to the screen, calling
clear screen, position, or any other routine that needs a console.

When you use the trace facility, or when your program has an error, Euphoria will automatically create a console
window to display trace information, error messages, and so on.

There is a WINDOWS API routine, FreeConsole() that does something similar to free console. Use the Euphoria
free console because it lets the interpreter know that there is no longer a console to write to or read from.

See Also:

clear screen

41.5.12 display

include std/console.e

namespace console

public procedure display(object data_in , object args = 1, integer finalnl = - 918 _273_645)

displays the supplied data on the console screen at the current cursor position.

210

CHAPTER 41. CONSOLE 41.5. CROSS PLATFORM TEXT GRAPHICS

Parameters:

1. data in : Any object.

2. args : Optional arguments used to format the output. Default is 1 .

3. finalnl : Optional. Determines if a new line is output after the data. Default is to output a new line.

Comments:

• If data in is an atom or integer, it is simply displayed.

• If data in is a simple text string, then args can be used to produce a formatted output with data in providing
the text:format string and args being a sequence containing the data to be formatted.

– If the last character of data in is an underscore character then it is stripped off and finalnl is set to zero.
Thus ensuring that a new line is not output.

– The formatting codes expected in data in are the ones used by text:format. It is not mandatory to use
formatting codes, and if data in does not contain any then it is simply displayed and anything in args is
ignored.

• If data in is a sequence containing floating-point numbers, sub-sequences or integers that are not characters, then
data in is forwarded on to the pretty print to display.

– If args is a non-empty sequence, it is assumed to contain the pretty print formatting options.

– if args is an atom or an empty sequence, the assumed pretty print formatting options are assumed to be 2.

After the data is displayed, the routine will normally output a New Line. If you want to avoid this, ensure that the last
parameter is a zero. Or to put this another way, if the last parameter is zero then a New Line will not be output.

Example 1:

1 display("Some plain text")

2 -- Displays this string on the console plus a new line.

3 display("Your answer:" ,0)

4 -- Displays this string on the console without a new line.

5 display("cat")

6 display("Your answer:" ,,0)

7 -- Displays this string on the console without a new line.

8 display("")

9 display("Your answer:_")

10 -- Displays this string ,

11 -- except the ’_’, on the console without a new line.

12 display("dog")

13 display ({"abc", 3.44554})

14 -- Displays the contents of ’res ’ on the console.

15 display("The answer to [1] was [2]", {"’why ’", 42})

16 -- formats these with a new line.

17 display("" ,2)

18 display ({51 ,362 ,71} , {1})

Output would be:

Some plain text

Your answer:cat

Your answer:

Your answer:dog

{

211

CHAPTER 41. CONSOLE 41.5. CROSS PLATFORM TEXT GRAPHICS

"abc",

3.44554

}

The answer to ’why ’ was 42

""

{51’3’,362,71’G’}

212

Chapter 42
Date and Time

42.1 Localized Variables

42.1.1 month names

include std/datetime.e

namespace datetime

public sequence month_names

Month Names

42.1.2 month abbrs

include std/datetime.e

namespace datetime

public sequence month_abbrs

Abbreviations of Month Names

42.1.3 day names

include std/datetime.e

namespace datetime

public sequence day_names

Day Names

42.1.4 day abbrs

include std/datetime.e

namespace datetime

public sequence day_abbrs

Abbreviations of Day Names

213

CHAPTER 42. DATE AND TIME 42.2. DATE AND TIME TYPE ACCESSORS

42.1.5 ampm

include std/datetime.e

namespace datetime

public sequence ampm

AM and PM

42.2 Date and Time Type Accessors

These accessors can be used with the datetime type.

42.2.1 enum

include std/datetime.e

namespace datetime

public enum

42.2.2 YEAR

include std/datetime.e

namespace datetime

YEAR

Year (full year, i.e. 2010, 1922,)

42.2.3 MONTH

include std/datetime.e

namespace datetime

MONTH

Month (1-12)

42.2.4 DAY

include std/datetime.e

namespace datetime

DAY

Day (1-31)

42.2.5 HOUR

include std/datetime.e

namespace datetime

HOUR

Hour (0-23)

214

CHAPTER 42. DATE AND TIME 42.3. INTERVALS

42.2.6 MINUTE

include std/datetime.e

namespace datetime

MINUTE

Minute (0-59)

42.2.7 SECOND

include std/datetime.e

namespace datetime

SECOND

Second (0-59)

42.3 Intervals

These constant enums are to be used with the add and subtract routines.

42.3.1 enum

include std/datetime.e

namespace datetime

public enum

42.3.2 YEARS

include std/datetime.e

namespace datetime

YEARS

Years

42.3.3 MONTHS

include std/datetime.e

namespace datetime

MONTHS

Months

42.3.4 WEEKS

include std/datetime.e

namespace datetime

WEEKS

Weeks

215

CHAPTER 42. DATE AND TIME 42.4. TYPES

42.3.5 DAYS

include std/datetime.e

namespace datetime

DAYS

Days

42.3.6 HOURS

include std/datetime.e

namespace datetime

HOURS

Hours

42.3.7 MINUTES

include std/datetime.e

namespace datetime

MINUTES

Minutes

42.3.8 SECONDS

include std/datetime.e

namespace datetime

SECONDS

Seconds

42.3.9 DATE

include std/datetime.e

namespace datetime

DATE

Date

42.4 Types

42.4.1 datetime

include std/datetime.e

namespace datetime

public type datetime(object o)

datetime type

Parameters:

1. obj : any object, so no crash takes place.

216

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

Comments:

A datetime type consists of a sequence of length six in the form year, month, day of month, hour, minute, second.
Checks are made to guarantee those values are in range.

Note:

All elements must be integers except for seconds which could either integer or atom values.

42.5 Routines

42.5.1 time

<built -in > function time()

returns the number of seconds since some fixed point in the past.

Returns:

An atom, which represents an absolute number of seconds.

Comments:

Take the difference between two readings of time() to measure, for example, how long a section of code takes to execute.
On some machines, time() can return a negative number. However, you can still use the difference in calls to time()

to measure elapsed time.

Example 1:

1 constant ITERATIONS = 1000000

2 integer p

3 atom t0, loop_overhead

4

5 t0 = time()

6 for i = 1 to ITERATIONS do

7 -- time an empty loop

8 end for

9 loop_overhead = time() - t0

10

11 t0 = time()

12 for i = 1 to ITERATIONS do

13 p = power(2, 20)

14 end for

15 ? (time() - t0 - loop_overhead)/ ITERATIONS

16 -- calculates time (in seconds) for one call to power

See Also:

date, now

42.5.2 date

<built -in > function date()

returns a sequence with information on the current date.

217

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

Returns:

A sequence of length 8, laid out as follows:

1. year – since 1900

2. month – January = 1

3. day – day of month, starting at 1

4. hour – 0 to 23

5. minute – 0 to 59

6. second – 0 to 59

7. day of the week – Sunday = 1

8. day of the year – January 1st = 1

Comments:

The value returned for the year is actually the number of years since 1900 (not the last 2 digits of the year). In the year
2000 this value was 100. In 2001 it was 101, and so on.

Example 1:

now = date()

-- now has: {95,3,24,23,47,38,6,83}

-- i.e. Friday March 24, 1995 at 11:47:38pm, day 83 of the year

See Also:

time, now

42.5.3 from date

include std/datetime.e

namespace datetime

public function from_date(sequence src)

converts a sequence formatted according to the built-in date function to a valid datetime sequence.

Parameters:

1. src : a sequence which date might have returned

Returns:

A sequence, more precisely a datetime corresponding to the same moment in time.

Example 1:

d = from_date(date ())

-- d is the current date and time

218

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

See Also:

date, from unix, now, new

42.5.4 now

include std/datetime.e

namespace datetime

public function now()

creates a new datetime value initialized with the current date and time.

Returns:

A sequence, more precisely a datetime corresponding to the current moment in time.

Example 1:

dt = now()

-- dt is the current date and time

See Also:

from date, from unix, new, new time, now gmt

42.5.5 now gmt

include std/datetime.e

namespace datetime

public function now_gmt ()

create a new datetime value that falls into the Greenwich Mean Time (GMT) timezone.

Comments:

This function will return a datetime that is GMT no matter what timezone the system is running under.

Example 1:

dt = now_gmt ()

-- If local time was July 16th, 2008 at 10:34 pm CST

-- dt would be July 17th, 2008 at 03:34 pm GMT

See Also:

now

42.5.6 new

include std/datetime.e

namespace datetime

public function new(integer year = 0, integer month = 0, integer day = 0, integer hour = 0,

integer minute = 0, atom second = 0)

creates a new datetime value.

219

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

Parameters:

1. year – the full year.

2. month – the month (1-12).

3. day – the day of the month (1-31).

4. hour – the hour (0-23) (defaults to 0)

5. minute – the minute (0-59) (defaults to 0)

6. second – the second (0-59) (defaults to 0)

Example 1:

dt = new (2010, 1, 1, 0, 0, 0)

-- dt is Jan 1st, 2010

See Also:

from date, from unix, now, new time

42.5.7 new time

include std/datetime.e

namespace datetime

public function new_time(integer hour , integer minute , atom second)

creates a new datetime value with a date of zeros.

Parameters:

1. hour : is the hour (0-23)

2. minute : is the minute (0-59)

3. second : is the second (0-59)

Example 1:

dt = new_time (10, 30, 55)

dt is 10:30:55 AM

See Also:

from date, from unix, now, new

42.5.8 weeks day

include std/datetime.e

namespace datetime

public function weeks_day(datetime dt)

gets the day of week of the datetime dt.

220

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

Parameters:

1. dt : a datetime to be queried.

Returns:

An integer, between 1 (Sunday) and 7 (Saturday).

Example 1:

d = new(2008 , 5, 2, 0, 0, 0)

day = weeks_day(d) -- day is 6 because May 2, 2008 is a Friday.

42.5.9 years day

include std/datetime.e

namespace datetime

public function years_day(datetime dt)

gets the Julian day of year of the supplied date.

Parameters:

1. dt : a datetime to be queried.

Returns:

An integer, between 1 and 366.

Comments:

For dates earlier than 1800, this routine may give inaccurate results if the date applies to a country other than United
Kingdom or a former colony thereof. The change from Julian to Gregorian calendar took place much earlier in some other
European countries.

Example 1:

d = new(2008 , 5, 2, 0, 0, 0)

day = years_day(d) -- day is 123

42.5.10 is leap year

include std/datetime.e

namespace datetime

public function is_leap_year(datetime dt)

determines if dt falls within leap year.

Parameters:

1. dt : a datetime to be queried.

221

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

Returns:

An integer, of 1 if leap year, otherwise 0.

Example 1:

d = new(2008 , 1, 1, 0, 0, 0)

? is_leap_year(d) -- prints 1

d = new(2005 , 1, 1, 0, 0, 0)

? is_leap_year(d) -- prints 0

See Also:

days in month

42.5.11 days in month

include std/datetime.e

namespace datetime

public function days_in_month(datetime dt)

returns the number of days in the month of dt.

Comments:

This takes into account leap year.

Parameters:

1. dt : a datetime to be queried.

Example 1:

d = new(2008 , 1, 1, 0, 0, 0)

? days_in_month(d) -- 31

d = new(2008 , 2, 1, 0, 0, 0) -- Leap year

? days_in_month(d) -- 29

See Also:

is leap year

42.5.12 days in year

include std/datetime.e

namespace datetime

public function days_in_year(datetime dt)

returns the number of days in the year of dt.

Comments:

This takes into account leap year.

222

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

Parameters:

1. dt : a datetime to be queried.

Example 1:

d = new(2007 , 1, 1, 0, 0, 0)

? days_in_year(d) -- 365

d = new(2008 , 1, 1, 0, 0, 0) -- leap year

? days_in_year(d) -- 366

See Also:

is leap year, days in month

42.5.13 to unix

include std/datetime.e

namespace datetime

public function to_unix(datetime dt)

converts a datetime value to the Unix numeric format (seconds since EPOCH 1970).

Parameters:

1. dt : a datetime to be queried.

Returns:

An atom, so this will not overflow during the winter 2038-2039.

Example 1:

secs_since_epoch = to_unix(now ())

-- secs_since_epoch is equal to the current seconds since epoch

See Also:

from unix, format

42.5.14 from unix

include std/datetime.e

namespace datetime

public function from_unix(atom unix)

creates a datetime value from the Unix numeric format (seconds since EPOCH).

Parameters:

1. unix : an atom, counting seconds elapsed since EPOCH.

223

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

Returns:

A sequence, more precisely a datetime representing the same moment in time.

Example 1:

d = from_unix (0)

-- d is 1970 -01 -01 00:00:00 (zero seconds since EPOCH)

See Also:

to unix, from date, now, new

42.5.15 format

include std/datetime.e

namespace datetime

public function format(datetime d, sequence pattern = "%Y-%m-%d %H:%M:%S")

formats the date according to the format pattern string.

Parameters:

1. d : a datetime which is to be printed out

2. pattern : a format string, similar to the ones sprintf uses, but with some Unicode encoding. The default is
"%Y-%m-%d %H:%M:%S".

Returns:

A string, with the date d formatted according to the specification in pattern.

Comments:

Pattern string can include the following specifiers:

• %% – a literal %

• %a – locale’s abbreviated weekday name (e.g., Sun)

• %A – locale’s full weekday name (e.g., Sunday)

• %b – locale’s abbreviated month name (e.g., Jan)

• %B – locale’s full month name (e.g., January)

• %C – century; like %Y, except omit last two digits (e.g., 21)

• %d – day of month (e.g, 01)

• %H – hour (00..23)

• %I – hour (01..12)

• %j – day of year (001..366)

• %k – hour (0..23)

• %l – hour (1..12)

224

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

• %m – month (01..12)

• %M – minute (00..59)

• %p – locale’s equivalent of either AM or PM; blank if not known

• %P – like %p, but lower case

• %s – seconds since 1970-01-01 00:00:00 UTC

• %S – second (00..60)

• %u – day of week (1..7); 1 is Monday

• %w – day of week (0..6); 0 is Sunday

• %y – last two digits of year (00..99)

• %Y – year

Example 1:

d = new(2008 , 5, 2, 12, 58, 32)

s = format(d, "%Y-%m-%d %H:%M:%S")

-- s is "2008 -05 -02 12:58:32"

Example 2:

d = new(2008 , 5, 2, 12, 58, 32)

s = format(d, "%A, %B %d ’%y %H:%M%p")

-- s is "Friday , May 2 ’08 12:58 PM"

See Also:

to unix, parse

42.5.16 parse

include std/datetime.e

namespace datetime

public function parse(sequence val , sequence fmt = "%Y-%m-%d %H:%M:%S",

integer yylower = - 80)

parses a datetime string according to the given format.

Parameters:

1. val : string datetime value

2. fmt : datetime format. Default is "%Y-%m-%d %H:%M:%S"

3. yysplit : Set the maximum difference from the current year when parsing a two digit year. Defaults to -80/+20.

Returns:

A datetime, value.

225

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

Comments:

Only a subset of the format specification is currently supported:

• %d – day of month (e.g, 01)

• %H – hour (00..23)

• %m – month (01..12)

• %M – minute (00..59)

• %S – second (00..60)

• %y – 2-digit year (YY)

• %Y – 4-digit year (CCYY)

More format codes will be added in future versions.
All non-format characters in the format string are ignored and are not matched against the input string.
All non-digits in the input string are ignored.
Parsing Two Digit Years:
When parsing a two digit year parse has to make a decision if a given year is in the past or future. For example,

10/18/44. Is that Oct 18, 1944 or Oct 18, 2044. A common rule has come about for this purpose and that is the -80/+20
rule. Based on research it was found that more historical events are recorded than future events, thus it favors history
rather than future. Some other applications may require a different rule, thus the yylower parameter can be supplied.

Assuming today is 12/22/2010 here is an example of the -80/+20 rule:
YY Diff CCYY
18 -92/+8 2018
95 -15/+85 1995
33 -77/+23 1933
29 -81/+19 2029

Another rule in use is the -50/+50 rule. Therefore, if you supply -50 to the yylower to set the lower bounds, some
examples may be (given that today is 12/22/2010):

YY Diff CCYY
18 -92/+8 2018
95 -15/+85 1995
33 -77/+23 2033
29 -81/+19 2029

Note:

• Since 4.0.1 – 2-digit year parsing and yylower parameter.

Example 1:

datetime d = parse("05/01/2009 10:20:30", "%m/%d/%Y %H:%M:%S")

-- d is { 2009, 5, 1, 10, 20, 30 }

Example 2:

datetime d = parse("05/01/44", "%m/%d/%y", -50) -- -50/+50 rule

-- d is { 2044, 5, 14, 0, 0, 0 }

226

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

See Also:

format

42.5.17 add

include std/datetime.e

namespace datetime

public function add(datetime dt, object qty , integer interval)

adds a number of intervals to a datetime.

Parameters:

1. dt : the base datetime

2. qty : the number of intervals to add. It should be positive.

3. interval : which kind of interval to add.

Returns:

A sequence, more precisely a datetime representing the new moment in time.

Comments:

Please see Constants for Date and Time for a reference of valid intervals.
Do not confuse the item access constants (such as YEAR, MONTH, DAY) with the interval constants (YEARS, MONTHS,

DAYS).
When adding MONTHS, it is a calendar based addition. For instance, a date of 5/2/2008 with 5 MONTHS added will

become 10/2/2008. MONTHS does not compute the number of days per each month and the average number of days per
month.

When adding YEARS, leap year is taken into account. Adding 4 YEARS to a date may result in a different day of month
number due to leap year.

Example 1:

d2 = add(d1 , 35, SECONDS) -- add 35 seconds to d1

d2 = add(d1 , 7, WEEKS) -- add 7 weeks to d1

d2 = add(d1 , 19, YEARS) -- add 19 years to d1

See Also:

subtract, diff

42.5.18 subtract

include std/datetime.e

namespace datetime

public function subtract(datetime dt, atom qty , integer interval)

subtracts a number of intervals to a base datetime.

227

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

Parameters:

1. dt : the base datetime

2. qty : the number of intervals to subtract. It should be positive.

3. interval : which kind of interval to subtract.

Returns:

A sequence, more precisely a datetime representing the new moment in time.

Comments:

Please see Constants for Date and Time for a reference of valid intervals.
See the function add for more information on adding and subtracting date intervals

Example 1:

dt2 = subtract(dt1 , 18, MINUTES) -- subtract 18 minutes from dt1

dt2 = subtract(dt1 , 7, MONTHS) -- subtract 7 months from dt1

dt2 = subtract(dt1 , 12, HOURS) -- subtract 12 hours from dt1

See Also:

add, diff

42.5.19 diff

include std/datetime.e

namespace datetime

public function diff(datetime dt1 , datetime dt2)

computes the difference, in seconds, between two dates.

Parameters:

1. dt1 : the end datetime

2. dt2 : the start datetime

Returns:

An atom, the number of seconds elapsed from dt2 to dt1.

Comments:

dt2 is subtracted from dt1, therefore, you can come up with a negative value.

Example 1:

1 d1 = now()

2 sleep (15) -- sleep for 15 seconds

3 d2 = now()

4

5 i = diff(d1, d2) -- i is 15

228

CHAPTER 42. DATE AND TIME 42.5. ROUTINES

See Also:

add, subtract

229

Chapter 43
File System

Cross platform file operations for Euphoria

43.1 Constants

43.1.1 SLASH

public constant SLASH

Current platform’s path separator character

Comments:

When on Windows, ’\\’. When on Unix, ’/’.

43.1.2 SLASHES

public constant SLASHES

Current platform’s possible path separators. This is slightly different in that on Windows the path separators variable
contains \\ as well as : and / as newer Windows versions support / as a path separator. On Unix systems, it only contains
/.

43.1.3 EOLSEP

public constant EOLSEP

Current platform’s newline string: "\n" on Unix, else "\r\n".

43.1.4 EOL

public constant EOL

All platform’s newline character: ’\n’. When text lines are read the native platform’s EOLSEP string is replaced by
a single character EOL.

230

CHAPTER 43. FILE SYSTEM 43.2. DIRECTORY HANDLING

43.1.5 PATHSEP

public constant PATHSEP

Current platform’s path separator character: : on Unix, else ;.

43.1.6 NULLDEVICE

public constant NULLDEVICE

Current platform’s null device path: /dev/null on Unix, else NUL:.

43.1.7 SHARED LIB EXT

public constant SHARED_LIB_EXT

Current platform’s shared library extension. For instance it can be dll, so or dylib depending on the platform.

43.2 Directory Handling

43.2.1 enum

include std/filesys.e

namespace filesys

public enum

43.2.2 W BAD PATH

public constant W_BAD_PATH

Bad path error code. See walk dir

43.2.3 W SKIP DIRECTORY

public constant W_SKIP_DIRECTORY

43.2.4 dir

include std/filesys.e

namespace filesys

public function dir(sequence name)

returns directory information for the specified file or directory.

Parameters:

1. name : a sequence, the name to be looked up in the file system.

Returns:

An object, -1 if no match found, else a sequence of sequence entries

231

CHAPTER 43. FILE SYSTEM 43.2. DIRECTORY HANDLING

Errors:

The length of name should not exceed 1 024 characters.

Comments:

name can also contain * and ? wildcards to select multiple files.
The returned information is similar to what you would get from the DIR command. A sequence is returned where each

element is a sequence that describes one file or subdirectory.
If name refers to a directory you may have entries for ”.” and ”..”, just as with the DIR command. If it refers to an

existing file, and has no wildcards, then the returned sequence will have just one entry (that is its length will be 1). If
name contains wildcards you may have multiple entries.

Each entry contains the name, attributes and file size as well as the time of the last modification.
You can refer to the elements of an entry with the following constants:

1 public constant

2 -- File Attributes

3 D_NAME = 1,

4 D_ATTRIBUTES = 2,

5 D_SIZE = 3,

6 D_YEAR = 4,

7 D_MONTH = 5,

8 D_DAY = 6,

9 D_HOUR = 7,

10 D_MINUTE = 8,

11 D_SECOND = 9,

12 D_MILLISECOND = 10,

13 D_ALTNAME = 11

The attributes element is a string sequence containing characters chosen from:
Attribute Description
’d’ directory
’r’ read only file
’h’ hidden file
’s’ system file
’v’ volume-id entry
’a’ archive file
’c’ compressed file
’e’ encrypted file
’N’ not indexed
’D’ a device name
’O’ offline
’R’ reparse point or symbolic link
’S’ sparse file
’T’ temporary file
’V’ virtual file

A normal file without special attributes would just have an empty string, "", in this field.
The top level directory (therefore c:\ does not have ”.” or ”..” entries).
This function is often used just to test if a file or directory exists.
Under Windows, the argument can have a long file or directory name anywhere in the path.
Under Unix, the only attribute currently available is ’d’ and the milliseconds are always zero.
Windows: The file name returned in [D NAME] will be a long file name. If [D ALTNAME] is not zero, it contains the

’short’ name of the file.

Example 1:

232

CHAPTER 43. FILE SYSTEM 43.2. DIRECTORY HANDLING

1 d = dir(current_dir ())

2

3 -- d might have:

4 -- {

5 -- {".", "d", 0 1994, 1, 18, 9, 30, 02},

6 -- {"..", "d", 0 1994, 1, 18, 9, 20, 14},

7 -- {"fred", "ra", 2350, 1994, 1, 22, 17, 22, 40},

8 -- {"sub", "d" , 0, 1993, 9, 20, 8, 50, 12}

9 -- }

10

11 d[3][D_NAME] would be "fred"

See Also:

walk dir

43.2.5 current dir

include std/filesys.e

namespace filesys

public function current_dir ()

Return the name of the current working directory.

Returns:

A sequence, the name of the current working directory

Comments:

There will be no slash or backslash on the end of the current directory, except under Windows, at the top-level of a drive
(such as C:\).

Example 1:

sequence s

s = current_dir ()

-- s would have "C:\ EUPHORIA\DOC" if you were in that directory

See Also:

dir, chdir

43.2.6 chdir

include std/filesys.e

namespace filesys

public function chdir(sequence newdir)

sets a new value for the current directory.

Parameters:

newdir : a sequence, the name for the new working directory.

233

CHAPTER 43. FILE SYSTEM 43.2. DIRECTORY HANDLING

Returns:

An integer, 0 on failure, 1 on success.

Comments:

By setting the current directory, you can refer to files in that directory using just the file name.
The current dir function will return the name of the current directory.
On Windows the current directory is a public property shared by all the processes running under one shell. On Unix a

subprocess can change the current directory for itself, but this will not affect the current directory of its parent process.

Example 1:

1 if chdir("c:\\ euphoria") then

2 f = open("readme.doc", "r")

3 else

4 puts(STDERR , "Error: No euphoria directory ?\n")

5 end if

See Also:

current dir, dir

43.2.7 my dir

include std/filesys.e

namespace filesys

public integer my_dir

Deprecated, so therefore not documented.

43.2.8 walk dir

1 include std/filesys.e

2 namespace filesys

3 public function walk_dir(sequence path_name , object your_function ,

4 integer scan_subdirs = types :FALSE ,

5 object dir_source = types :NO_ROUTINE_ID)

Generalized Directory Walker

Parameters:

1. path name : a sequence, the name of the directory to walk through

2. your function : the routine id of a function that will receive each path returned from the result of dir source,
one at a time. Optionally, to include extra data for your function, your function can be a 2 element sequence,
with the routine id as the first element and other data as the second element.

3. scan subdirs : an optional integer, 1 to also walk though subfolders, 0 (the default) to skip them all.

4. dir source : an optional integer. A routine id of a user-defined routine that returns the list of paths to pass to
your function. If omitted, the dir() function is used. If your routine requires an extra parameter, dir source

may be a 2 element sequence where the first element is the routine id and the second is the extra data to be passed
as the second parameter to your function.

234

CHAPTER 43. FILE SYSTEM 43.2. DIRECTORY HANDLING

Returns:

An object,

• 0 on success

• W BAD PATH an error occurred

• anything else the custom function returned something to stop walk dir.

Comments:

This routine will ”walk” through a directory named path name. For each entry in the directory, it will call a function,
whose routine id is your function. If scan subdirs is non-zero (TRUE), then the subdirectories in path name will be
walked through recursively in the very same way.

The routine that you supply should accept two sequences, the path name and dir entry for each file and subdirectory.
It should return 0 to keep going, W SKIP DIRECTORY to avoid scan the contents of the supplied path name (if a directory),
or non-zero to stop walk dir. Returning W BAD PATH is taken as denoting some error.

This mechanism allows you to write a simple function that handles one file at a time, while walk dir handles the
process of walking through all the files and subdirectories.

By default, the files and subdirectories will be visited in alphabetical order. To use a different order, use the dir source

to pass the routine id of your own modified dir function that sorts the directory entries differently.
The path that you supply to walk dir must not contain wildcards (* or ?). Only a single directory (and its subdirec-

tories) can be searched at one time.
For Windows systems, any ’/’ characters in path name are replaced with ’\’.
All trailing slash and whitespace characters are removed from path name.

Example 1:

1 function look_at(sequence path_name , sequence item)

2 -- this function accepts two sequences as arguments

3 -- it displays all C/C++ source files and their sizes

4 if find(’d’, item[D_ATTRIBUTES]) then

5 -- Ignore directories

6 if find(’s’, item[D_ATTRIBUTES]) then

7 return W_SKIP_DIRECTORY -- Don ’t recurse a system directory

8 else

9 return 0 -- Keep processing as normal

10 end if

11 end if

12 if not find(fileext(item[D_NAME]), {"c","h","cpp","hpp","cp"}) then

13 return 0 -- ignore non -C/C++ files

14 end if

15 printf(STDOUT , "%s%s%s: %d\n",

16 {path_name , {SLASH}, item[D_NAME], item[D_SIZE]})

17 return 0 -- keep going

18 end function

19

20 function mysort(sequence path)

21 object d

22

23 d = dir(path)

24 if atom(d) then

25 return d

26 end if

27 -- Sort in descending file size.

28 return sort_columns(d, {-D_SIZE })

235

CHAPTER 43. FILE SYSTEM 43.2. DIRECTORY HANDLING

29 end function

30

31 exit_code = walk_dir("C:\\ MYFILES \\", routine_id("look_at"), TRUE ,

32 routine_id("mysort"))

See Also:

dir, sort, sort columns

43.2.9 create directory

include std/filesys.e

namespace filesys

public function create_directory(sequence name , integer mode = 448, integer mkparent = 1)

creates a new directory.

Parameters:

1. name : a sequence, the name of the new directory to create

2. mode : on Unix systems, permissions for the new directory. Default is 448 (all rights for owner, none for others).

3. mkparent : If true (default) the parent directories are also created if needed.

Returns:

An integer, 0 on failure, 1 on success.

Comments:

mode is ignored on Windows platforms.

Example 1:

1 if not create_directory("the_new_folder") then

2 crash("Filesystem problem - could not create the new folder")

3 end if

4

5 -- This example will also create "myapp /" and "myapp/interface /"

6 -- if they don ’t exist.

7 if not create_directory("myapp/interface/letters") then

8 crash("Filesystem problem - could not create the new folder")

9 end if

10

11 -- This example will NOT create "myapp /" and "myapp/interface /"

12 -- if they don ’t exist.

13 if not create_directory("myapp/interface/letters" ,,0) then

14 crash("Filesystem problem - could not create the new folder")

15 end if

See Also:

remove directory, chdir

236

CHAPTER 43. FILE SYSTEM 43.2. DIRECTORY HANDLING

43.2.10 create file

include std/filesys.e

namespace filesys

public function create_file(sequence name)

Create a new file.

Parameters:

1. name : a sequence, the name of the new file to create

Returns:

An integer, 0 on failure, 1 on success.

Comments:

• The created file will be empty, that is it has a length of zero.

• The created file will not be open when this returns.

Example 1:

if not create_file("the_new_file") then

crash("Filesystem problem - could not create the new file")

end if

See Also:

create directory

43.2.11 delete file

include std/filesys.e

namespace filesys

public function delete_file(sequence name)

deletes a file.

Parameters:

1. name : a sequence, the name of the file to delete.

Returns:

An integer, 0 on failure, 1 on success.

43.2.12 curdir

include std/filesys.e

namespace filesys

public function curdir(integer drive_id = 0)

Returns the current directory, with a trailing SLASH

237

CHAPTER 43. FILE SYSTEM 43.2. DIRECTORY HANDLING

Parameters:

1. drive id : For Windows systems only. This is the Drive letter to to get the current directory of. If omitted, the
current drive is used.

Returns:

A sequence, the current directory.

Comments:

Windows maintains a current directory for each disk drive. You would use this routine if you wanted the current directory
for a drive that may not be the current drive.

For Unix systems, this is simply ignored because there is only one current directory at any time on Unix.

Note:

This always ensures that the returned value has a trailing SLASH character.

Example 1:

res = curdir(’D’) -- Find the current directory on the D: drive.

-- res might be "D:\ backup\music \"

res = curdir () -- Find the current directory on the current drive.

-- res might be "C:\myapp\work\"

43.2.13 init curdir

include std/filesys.e

namespace filesys

public function init_curdir ()

returns the original current directory.

Parameters:

1. None.

Returns:

A sequence, the current directory at the time the program started running.

Comments:

You would use this if the program might change the current directory during its processing and you wanted to return to
the original directory.

Note:

This always ensures that the returned value has a trailing SLASH character.

Example 1:

res = init_curdir () -- Find the original current directory.

238

CHAPTER 43. FILE SYSTEM 43.2. DIRECTORY HANDLING

43.2.14 clear directory

include std/filesys.e

namespace filesys

public function clear_directory(sequence path , integer recurse = 1)

clears (deletes) a directory of all files, but retaining sub-directories.

Parameters:

1. name : a sequence, the name of the directory whose files you want to remove.

2. recurse : an integer, whether or not to remove files in the directory’s sub-directories. If 0 then this function is
identical to remove directory. If 1, then we recursively delete the directory and its contents. Defaults to 1 .

Returns:

An integer, 0 on failure, otherwise the number of files plus 1 .

Comments:

This never removes a directory. It only ever removes files. It is used to clear a directory structure of all existing files,
leaving the structure intact.

Example 1:

1 integer cnt = clear_directory("the_old_folder")

2 if cnt = 0 then

3 crash("Filesystem problem - could not remove one or more of the files.")

4 end if

5 printf(1, "Number of files removed: %d\n", cnt - 1)

See Also:

remove directory, delete file

43.2.15 remove directory

include std/filesys.e

namespace filesys

public function remove_directory(sequence dir_name , integer force = 0)

removes a directory.

Parameters:

1. name : a sequence, the name of the directory to remove.

2. force : an integer, if 1 this will also remove files and sub-directories in the directory. The default is 0, which means
that it will only remove the directory if it is already empty.

Returns:

An integer, 0 on failure, 1 on success.

239

CHAPTER 43. FILE SYSTEM 43.3. FILE NAME PARSING

Example 1:

if not remove_directory("the_old_folder") then

crash("Filesystem problem - could not remove the old folder")

end if

See Also:

create directory, chdir, clear directory

43.3 File Name Parsing

43.3.1 enum

include std/filesys.e

namespace filesys

public enum

43.3.2 pathinfo

include std/filesys.e

namespace filesys

public function pathinfo(sequence path , integer std_slash = 0)

parses a fully qualified pathname.

Parameters:

1. path : a sequence, the path to parse

Returns:

A sequence, of length five. Each of these elements is a string:

• The path name. For Windows this excludes the drive id.

• The full unqualified file name

• the file name, without extension

• the file extension

• the drive id

Comments:

The host operating system path separator is used in the parsing.

Example 1:

-- WINDOWS

info = pathinfo("C:\\ euphoria \\docs\\ readme.txt")

-- info is {"C:\\ euphoria \\docs", "readme.txt", "readme", "txt", "C"}

240

CHAPTER 43. FILE SYSTEM 43.3. FILE NAME PARSING

Example 2:

-- Unix variants

info = pathinfo("/opt/euphoria/docs/readme.txt")

-- info is {"/ opt/euphoria/docs", "readme.txt", "readme", "txt", ""}

Example 3:

-- no extension

info = pathinfo("/opt/euphoria/docs/readme")

-- info is {"/ opt/euphoria/docs", "readme", "readme", "", ""}

See Also:

driveid, dirname, filename, fileext, PATH BASENAME (??), PATH DIR (??), PATH DRIVEID (??), PATH FILEEXT
(??), PATH FILENAME (??)

43.3.3 dirname

include std/filesys.e

namespace filesys

public function dirname(sequence path , integer pcd = 0)

returns the directory name of a fully qualified filename.

Parameters:

1. path : the path from which to extract information

2. pcd : If not zero and there is no directory name in path then ”.” is returned. The default (0) will just return any
directory name in path.

Returns:

A sequence, the full file name part of path.

Comments:

The host operating system path separator is used.

Example 1:

fname = dirname("/opt/euphoria/docs/readme.txt")

-- fname is "/opt/euphoria/docs"

See Also:

driveid, filename, pathinfo

241

CHAPTER 43. FILE SYSTEM 43.3. FILE NAME PARSING

43.3.4 pathname

include std/filesys.e

namespace filesys

public function pathname(sequence path)

returns the directory name of a fully qualified filename.

Parameters:

1. path : the path from which to extract information

2. pcd : If not zero and there is no directory name in path then ”.” is returned. The default (0) will just return any
directory name in path.

Returns:

A sequence, the full file name part of path.

Comments:

The host operating system path separator is used.

Example 1:

fname = dirname("/opt/euphoria/docs/readme.txt")

-- fname is "/opt/euphoria/docs"

See Also:

driveid, filename, pathinfo

43.3.5 filename

include std/filesys.e

namespace filesys

public function filename(sequence path)

returns the file name portion of a fully qualified filename.

Parameters:

1. path : the path from which to extract information

Returns:

A sequence, the file name part of path.

Comments:

The host operating system path separator is used.

242

CHAPTER 43. FILE SYSTEM 43.3. FILE NAME PARSING

Example 1:

fname = filename("/opt/euphoria/docs/readme.txt")

-- fname is "readme.txt"

See Also:

pathinfo, filebase, fileext

43.3.6 filebase

include std/filesys.e

namespace filesys

public function filebase(sequence path)

returns the base filename of path.

Parameters:

1. path : the path from which to extract information

Returns:

A sequence, the base file name part of path.
TODO: Test

Example 1:

base = filebase("/opt/euphoria/readme.txt")

-- base is "readme"

See Also:

pathinfo, filename, fileext

43.3.7 fileext

include std/filesys.e

namespace filesys

public function fileext(sequence path)

returns the file extension of a fully qualified filename.

Parameters:

1. path : the path from which to extract information

Returns:

A sequence, the file extension part of path.

243

CHAPTER 43. FILE SYSTEM 43.3. FILE NAME PARSING

Comments:

The host operating system path separator is used.

Example 1:

fname = fileext("/opt/euphoria/docs/readme.txt")

-- fname is "txt"

See Also:

pathinfo, filename, filebase

43.3.8 driveid

include std/filesys.e

namespace filesys

public function driveid(sequence path)

returns the drive letter of the path on Windows platforms.

Parameters:

1. path : the path from which to extract information

Returns:

A sequence, the file extension part of path.
TODO: Test

Example 1:

letter = driveid("C:\\ EUPHORIA \\ Readme.txt")

-- letter is "C"

See Also:

pathinfo, dirname, filename

43.3.9 defaultext

include std/filesys.e

namespace filesys

public function defaultext(sequence path , sequence defext)

returns the supplied filepath with the supplied extension, if the filepath does not have an extension already.

Parameters:

1. path : the path to check for an extension.

2. defext : the extension to add if path does not have one.

244

CHAPTER 43. FILE SYSTEM 43.3. FILE NAME PARSING

Returns:

A sequence, the path with an extension.

Example 1:

-- ensure that the supplied path has an extension ,

-- but if it doesn ’t use "tmp".

theFile = defaultext(UserFileName , "tmp")

See Also:

pathinfo

43.3.10 absolute path

include std/filesys.e

namespace filesys

public function absolute_path(sequence filename)

determines if the supplied string is an absolute path or a relative path.

Parameters:

1. filename : a sequence, the name of the file path

Returns:

An integer, 0 if filename is a relative path or 1 otherwise.

Comments:

A relative path is one which is relative to the current directory and an absolute path is one that doesn’t need to know the
current directory to find the file.

Example 1:

1 ? absolute_path("") -- returns 0

2 ? absolute_path("/usr/bin/abc") -- returns 1

3 ? absolute_path("\\temp\\ somefile.doc") -- returns 1

4 ? absolute_path("../abc") -- returns 0

5 ? absolute_path("local/abc.txt") -- returns 0

6 ? absolute_path("abc.txt") -- returns 0

7 ? absolute_path("c:..\\ abc") -- returns 0

8

9 -- The next two examples return

10 -- 0 on Unix platforms and

11 -- 1 on Microsoft platforms

12 ? absolute_path("c:\\ windows \\ system32 \\abc")

13 ? absolute_path("c:/ windows/system32/abc")

245

CHAPTER 43. FILE SYSTEM 43.3. FILE NAME PARSING

43.3.11 enum

include std/filesys.e

namespace filesys

public enum

43.3.12 case flagset type

include std/filesys.e

namespace filesys

public type case_flagset_type(integer x)

43.3.13 enum

include std/filesys.e

namespace filesys

public enum

43.3.14 canonical path

include std/filesys.e

namespace filesys

public function canonical_path(sequence path_in , integer directory_given = 0,

case_flagset_type case_flags = AS_IS)

returns the full path and file name of the supplied file name.

Parameters:

1. path in : A sequence. This is the file name whose full path you want.

2. directory given : An integer. This is zero if path in is to be interpreted as a file specification otherwise it is
assumed to be a directory specification. The default is zero.

3. case flags : An integer. This is a combination of flags. AS IS = Includes no flags TO LOWER = If passed will
convert the part of the path not affected by other case flags to lowercase. CORRECT = If passed will correct the
parts of the filepath that exist in the current filesystem in parts of the filesystem that is case insensitive. This should
work on Windows or SMB mounted volumes on Unix and all OS X filesystems.

TO LOWER = If passed alone the entire path is converted to lowercase. or bits(TO LOWER,CORRECT) = If these
flags are passed together the the part that exists has the case of that of the filesystem. The part that does not is converted
to lower case. TO SHORT = If passed the elements of the path that exist are also converted to their Windows short
names if avaliable.

Returns:

A sequence, the full path and file name.

246

CHAPTER 43. FILE SYSTEM 43.3. FILE NAME PARSING

Comments:

• The supplied file/directory does not have to actually exist.

• path in can be enclosed in quotes, which will be stripped off.

• If path in begins with a tilde ’ ’ then that is replaced by the contents of $HOME in Unix platforms and %HOMEDRIVE%%HOMEPATH%

in Windows.

• In Windows all ’/’ characters are replaced by ’\’ characters.

• Does not (yet) handle UNC paths or Unix links.

Example 1:

-- Assuming the current directory is "/usr/foo/bar"

res = canonical_path("../ abc.def")

-- res is now "/usr/foo/abc.def"

Example 2:

-- res is "C:\ Program Files" on systems that have that directory.

res = canonical_path("c:\p"RoGrAm FiLeS"," CORRECT)

-- on Windows Vista this would be "c:\ Program Files" for Vista uses lowercase for its drives.

43.3.15 abbreviate path

include std/filesys.e

namespace filesys

public function abbreviate_path(sequence orig_path , sequence base_paths = {})

returns a path string to the supplied file which is shorter than the given path string.

Parameters:

1. orig path : A sequence. This is the path to a file.

2. base paths : A sequence. This is an optional list of paths that may prefix the original path. The default is an
empty list.

Returns:

A sequence, an equivalent path to orig path which is shorter than the supplied path. If a shorter one cannot be formed,
then the original path is returned.

Comments:

• This function is primarily used to get the shortest form of a file path for output to a file or screen.

• It works by first trying to find if the orig path begins with any of the base paths. If so it returns the parameter
minus the base path prefix.

• Next it checks if the orig path begins with the current directory path. If so it returns the parameter minus the
current directory path.

247

CHAPTER 43. FILE SYSTEM 43.3. FILE NAME PARSING

• Next it checks if it can form a relative path from the current directory to the supplied file which is shorter than the
parameter string.

• Failing all of that, it returns the original parameter.

• In Windows the shorter result has all ’/’ characters are replaced by ’\’ characters.

• The supplied path does not have to actually exist.

• orig path can be enclosed in quotes, which will be stripped off.

• If orig path begins with a tilde ’ ’ then that is replaced by the contents of $HOME in Unix platforms and
%HOMEDRIVE%%HOMEPATH% in Windows.

Example 1:

1 -- Assuming the current directory is "/usr/foo/bar"

2 res = abbreviate_path("/usr/foo/abc.def")

3 -- res is now "../ abc.def"

4 res = abbreviate_path("/usr/foo/bar/inc/abc.def")

5 -- res is now "inc/abc.def"

6 res = abbreviate_path("abc.def", {"/usr/foo"})

7 -- res is now "bar/abc.def"

43.3.16 split path

include std/filesys.e

namespace filesys

public function split_path(sequence fname)

split a filename into path segments.

Parameters:

• fname – Filename to split

Returns:

A sequence of strings representing each path element found in fname.

Example 1:

sequence path_elements = split_path("/usr/home/john/hello.txt")

-- path_elements would be { "usr", "home", "john", "hello.txt" }

Versioning:

• Added in 4.0.1

See Also:

join path

248

CHAPTER 43. FILE SYSTEM 43.4. FILE TYPES

43.3.17 join path

include std/filesys.e

namespace filesys

public function join_path(sequence path_elements)

Join multiple path segments into a single path/filename

Parameters:

• path elements – Sequence of path elements

Returns:

A string representing the path elements on the given platform

Example 1:

sequence fname = join_path ({ "usr", "home", "john", "hello.txt" })

-- fname would be "/usr/home/john/hello.txt" on Unix

-- fname would be "\\ usr\\home\\john\\hello.txt" on Windows

Versioning:

• Added in 4.0.1

See Also:

split path

43.4 File Types

43.4.1 enum

include std/filesys.e

namespace filesys

public enum

43.4.2 file type

include std/filesys.e

namespace filesys

public function file_type(sequence filename)

gets the type of a file.

Parameters:

1. filename : the name of the file to query. It must not have wildcards.

249

CHAPTER 43. FILE SYSTEM 43.5. FILE HANDLING

Returns:

An integer,

• FILETYPE UNDEFINED (-1) if file could be multiply defined (i.e., contains any wildcards - ’*’ or ’?’)

• FILETYPE NOT FOUND (0) if filename does not exist

• FILETYPE FILE (1) if filename is a file

• FILETYPE DIRECTORY (2) if filename is a directory

See Also:

dir, FILETYPE DIRECTORY (??), FILETYPE FILE (??), FILETYPE NOT FOUND (??), FILETYPE UNDEFINED (??)

43.5 File Handling

43.5.1 enum

include std/filesys.e

namespace filesys

public enum

43.5.2 enum

include std/filesys.e

namespace filesys

public enum

43.5.3 enum

include std/filesys.e

namespace filesys

public enum

43.5.4 enum

include std/filesys.e

namespace filesys

public enum

43.5.5 file exists

include std/filesys.e

namespace filesys

public function file_exists(object name)

checks to see if a file exists.

250

CHAPTER 43. FILE SYSTEM 43.5. FILE HANDLING

Parameters:

1. name : filename to check existence of

Returns:

An integer, 1 on yes, 0 on no.

Example 1:

if file_exists("abc.e") then

puts(1, "abc.e exists already\n")

end if

43.5.6 file timestamp

include std/filesys.e

namespace filesys

public function file_timestamp(sequence fname)

gets the timestamp of the file.

Parameters:

1. name : the filename to get the date of

Returns:

A valid datetime type, representing the files date and time or -1 if the file’s date and time could not be read.

43.5.7 copy file

include std/filesys.e

namespace filesys

public function copy_file(sequence src , sequence dest , integer overwrite = 0)

copies a file.

Parameters:

1. src : a sequence, the name of the file or directory to copy

2. dest : a sequence, the new name or location of the file

3. overwrite : an integer; 0 (the default) will prevent an existing destination file from being overwritten. Non-zero
will overwrite the destination file.

Returns:

An integer, 0 on failure, 1 on success.

Comments:

If overwrite is true, and if dest file already exists, the function overwrites the existing file and succeeds.

251

CHAPTER 43. FILE SYSTEM 43.5. FILE HANDLING

See Also:

move file, rename file

43.5.8 rename file

include std/filesys.e

namespace filesys

public function rename_file(sequence old_name , sequence new_name , integer overwrite = 0)

rename a file.

Parameters:

1. old name : a sequence, the name of the file or directory to rename.

2. new name : a sequence, the new name for the renamed file

3. overwrite : an integer, 0 (the default) to prevent renaming if destination file exists, 1 to delete existing destination
file first

Returns:

An integer, 0 on failure, 1 on success.

Comments:

• If new name contains a path specification, this is equivalent to moving the file, as well as possibly changing its name.
However, the path must be on the same drive for this to work.

• If overwrite was requested but the rename fails, any existing destination file is preserved.

See Also:

move file, copy file

43.5.9 move file

include std/filesys.e

namespace filesys

public function move_file(sequence src , sequence dest , integer overwrite = 0)

moves a file to another location.

Parameters:

1. src : a sequence, the name of the file or directory to move

2. dest : a sequence, the new location for the file

3. overwrite : an integer, 0 (the default) to prevent overwriting an existing destination file, 1 to overwrite existing
destination file

Returns:

An integer, 0 on failure, 1 on success.

252

CHAPTER 43. FILE SYSTEM 43.5. FILE HANDLING

Comments:

If overwrite was requested but the move fails, any existing destination file is preserved.

See Also:

rename file, copy file

43.5.10 file length

include std/filesys.e

namespace filesys

public function file_length(sequence filename)

returns the size of a file.

Parameters:

1. filename : the name of the queried file

Returns:

An atom, the file size, or -1 if file is not found.

Comments:

This function does not compute the total size for a directory, and returns 0 instead.

See Also:

dir

43.5.11 locate file

include std/filesys.e

namespace filesys

public function locate_file(sequence filename , sequence search_list = {},

sequence subdir = {})

locates a file by looking in a set of directories for it.

Parameters:

1. filename : a sequence, the name of the file to search for.

2. search list : a sequence, the list of directories to look in. By default this is "", meaning that a predefined set of
directories is scanned. See comments below.

3. subdir : a sequence, the sub directory within the search directories to check. This is optional.

Returns:

A sequence, the located file path if found, else the original file name.

253

CHAPTER 43. FILE SYSTEM 43.5. FILE HANDLING

Comments:

If filename is an absolute path, it is just returned and no searching takes place.
If filename is located, the full path of the file is returned.
If search list is supplied, it can be either a sequence of directory names, of a string of directory names delimited by

’:’ in Unix and ’;’ in Windows.
If the search list is omitted or "", this will look in the following places:

• The current directory

• The directory that the program is run from.

• The directory in $HOME ($HOMEDRIVE & $HOMEPATH in Windows)

• The parent directory of the current directory

• The directories returned by include paths

• $EUDIR/bin

• $EUDIR/docs

• $EUDIST/

• $EUDIST/etc

• $EUDIST/data

• The directories listed in $USERPATH

• The directories listed in $PATH

If the subdir is supplied, the function looks in this sub directory for each of the directories in the search list.

Example 1:

1 res = locate_file("abc.def", {"/usr/bin", "/u2/someapp", "/etc"})

2 res = locate_file("abc.def", "/usr/bin:/u2/someapp :/etc")

3 res = locate_file("abc.def")

4 -- Scan default locations.

5 res = locate_file("abc.def", , "app")

6 -- Scan the ’app ’ sub directory in the default locations.

43.5.12 disk metrics

include std/filesys.e

namespace filesys

public function disk_metrics(object disk_path)

returns some information about a disk drive.

Parameters:

1. disk path : A sequence. This is the path that identifies the disk to inquire upon.

Returns:

A sequence, containing SECTORS PER CLUSTER, BYTES PER SECTOR, NUMBER OF FREE CLUSTERS, and TOTAL NUMBER OF CLUSTERS

254

CHAPTER 43. FILE SYSTEM 43.5. FILE HANDLING

Example 1:

res = disk_metrics("C:\\")

min_file_size = res[SECTORS_PER_CLUSTER] * res[BYTES_PER_SECTOR]

43.5.13 disk size

include std/filesys.e

namespace filesys

public function disk_size(object disk_path)

returns the amount of space for a disk drive.

Parameters:

1. disk path : A sequence. This is the path that identifies the disk to inquire upon.

Returns:

A sequence, containing TOTAL BYTES, USED BYTES, FREE BYTES, and a string which represents the filesystem name

Example 1:

res = disk_size("C:\\")

printf(1, "Drive %s has %3.2f%% free space\n", {

"C:", res[FREE_BYTES] / res[TOTAL_BYTES]

})

43.5.14 dir size

include std/filesys.e

namespace filesys

public function dir_size(sequence dir_path , integer count_all = 0)

returns the amount of space used by a directory.

Parameters:

1. dir path : A sequence. This is the path that identifies the directory to inquire upon.

2. count all : An integer. Used by Windows systems. If zero (the default) it will not include system or hidden files
in the count, otherwise they are included.

Returns:

A sequence, containing four elements; the number of sub-directories [COUNT DIRS], the number of files [COUNT FILES],
the total space used by the directory [COUNT SIZE], and breakdown of the file contents by file extension [COUNT TYPES].

255

CHAPTER 43. FILE SYSTEM 43.5. FILE HANDLING

Comments:

• The total space used by the directory does not include space used by any sub-directories.

• The file breakdown is a sequence of three-element sub-sequences. Each sub-sequence contains the extension
[EXT NAME], the number of files of this extension [EXT COUNT], and the space used by these files [EXT SIZE].
The sub-sequences are presented in extension name order. On Windows the extensions are all in lowercase.

Example 1:

1 res = dir_size("/usr/localbin")

2 printf(1, "Directory %s contains %d files\n", {

3 "/usr/localbin", res[COUNT_FILES]

4 })

5 for i = 1 to length(res[COUNT_TYPES]) do

6 printf(1, "Type: %s (%d files %d bytes)\n", {

7 res[COUNT_TYPES][i][EXT_NAME],

8 res[COUNT_TYPES][i][EXT_COUNT],

9 res[COUNT_TYPES][i][EXT_SIZE]

10 })

11 end for

43.5.15 temp file

include std/filesys.e

namespace filesys

public function temp_file(sequence temp_location = "", sequence temp_prefix = "",

sequence temp_extn = "_T_", integer reserve_temp = 0)

returns a file name that can be used as a temporary file.

Parameters:

1. temp location : A sequence. A directory where the temporary file is expected to be created.

• If omitted (the default) the ’temporary’ directory will be used. The temporary directory is defined in the
”TEMP” environment symbol, or failing that the ”TMP” symbol and failing that ”C:\TEMP\” is used on
Windows systems and ”/tmp/” is used on Unix systems.

• If temp location was supplied,

– If it is an existing file, that file’s directory is used.

– If it is an existing directory, it is used.

– If it doesn’t exist, the directory name portion is used.

2. temp prefix : A sequence: The is prepended to the start of the generated file name. The default is "" .

3. temp extn : A sequence: The is a file extention used in the generated file. The default is " T " .

4. reserve temp : An integer: If not zero an empty file is created using the generated name. The default is not to
reserve (create) the file.

Returns:

A sequence, A generated file name.

256

CHAPTER 43. FILE SYSTEM 43.5. FILE HANDLING

Example 1:

temp_file("/usr/space", "myapp", "tmp") --> /usr/space/myapp736321.tmp

temp_file () --> /tmp /277382. _T_

temp_file("/users/me/abc.exw") --> /users/me /992831. _T_

43.5.16 checksum

include std/filesys.e

namespace filesys

public function checksum(sequence filename , integer size = 4, integer usename = 0,

integer return_text = 0)

returns a checksum value for the specified file.

Parameters:

1. filename : A sequence. The name of the file whose checksum you want.

2. size : An integer. The number of atoms to return. Default is 4

3. usename: An integer. If not zero then the actual text of filename will affect the resulting checksum. The default
(0) will not use the name of the file.

4. return text: An integer. If not zero, the check sum is returned as a text string of hexadecimal digits otherwise
(the default) the check sum is returned as a sequence of size atoms.

Returns:

A sequence containing size atoms.

Comments:

• The larger the size value, the more unique will the checksum be. For most files and uses, a single atom will be
sufficient as this gives a 32-bit file signature. However, if you require better proof that the content of two files are
different then use higher values for size. For example, size = 8 gives you 256 bits of file signature.

• If size is zero or negative, an empty sequence is returned.

• All files of zero length will return the same checksum value when usename is zero.

Example 1:

1 -- Example values. The exact values depend on the contents of the file.

2 include std/console.e

3 display(checksum("myfile", 1)) --> {92837498}

4 display(checksum("myfile", 2)) --> {1238176 , 87192873}

5 display(checksum("myfile", 2,,1)) --> "0012 E480 05327529"

6 display(checksum("myfile", 4)) --> {23448 , 239807 , 79283749 , 427370}

7 display(checksum("myfile")) --> {23448 , 239807 , 79283749 , 427370} -- default

257

Chapter 44
I/O

44.1 Constants

44.1.1 STDIN

include std/io.e

namespace io

public constant STDIN

Standard Input

44.1.2 STDOUT

include std/io.e

namespace io

public constant STDOUT

Standard Output

44.1.3 STDERR

include std/io.e

namespace io

public constant STDERR

Standard Error

44.1.4 SCREEN

include std/io.e

namespace io

public constant SCREEN

Screen (Standard Out)

258

CHAPTER 44. I/O 44.2. READ AND WRITE ROUTINES

44.1.5 EOF

include std/io.e

namespace io

public constant EOF

End of file

44.2 Read and Write Routines

44.2.1 ##?##

<built -in > procedure ##?##

displays an object using numbers and braces.

Note:

There are no parenthesis delimiting the single argument to this procedure. This is a unique shortcut in Euphoria syntax.

Comments:

This is a shorthand way of writing pretty print(STDOUT, x,). An object or an expression is printed to the standard
output with braces and indentation to show the structure.

Example 1:

? {1, 2} + {3, 4} -- will display {4, 6}

See Also:

print

44.2.2 print

<built -in > procedure print(integer fn, object x)

displays an object using numbers and braces.

Comments:

All data objects are in binary format within computer hardware; something that is easy to forget. An output routine
must convert these binary values into ”text” to be human readable. The procedures print and ? produce a ”text”
representation of an object that is output to a file or device. The text shows the numerical form of the object. If the
object x is a sequence it uses braces , , , to show the structure.

Parameters:

1. fn : an integer, the handle to a file or device to output to

2. x : the object to print

259

CHAPTER 44. I/O 44.2. READ AND WRITE ROUTINES

Errors:

The target file or device must be open and able to be written to.

Comments:

This is not used to write to ”binary” files as it only outputs text.

Example 1:

1 include std/io.e

2 print(STDOUT , "ABC") -- output is: "{65 ,66 ,67}"

3 puts (STDOUT , "ABC") -- output is: "ABC"

4 print(STDOUT , "65") -- output is: "65"

5 puts (STDOUT , 65) -- output is: "A" (ASCII -65 ==> ’A’)

6 print(STDOUT , 65.1234) -- output is: "65.1234"

7 puts (STDOUT , 65.1234) -- output is: "A" (Converts to integer first)

Example 2:

include std/io.e

print(STDOUT , repeat ({10 ,20} , 3)) -- output is: {{10 ,20} ,{10 ,20} ,{10 ,20}}

See Also:

?, puts

44.2.3 printf

<built -in > procedure printf(integer fn, sequence format , object values)

prints one or more values to a file or device, using a format string to embed them in and define how they should be
represented.

Parameters:

1. fn : an integer, the handle to a file or device to output to

2. format : a sequence, the text to print. This text may contain format specifiers.

3. values : usually, a sequence of values. It should have as many elements as format specifiers in format, as these
values will be substituted to the specifiers.

Errors:

If there are less values to show than format specifiers, a run time error will occur.

The target file or device must be open.

260

CHAPTER 44. I/O 44.2. READ AND WRITE ROUTINES

Comments:

A format specifier is a string of characters starting with a percent sign (%) and ending in a letter. Some extra
information may come in between those.

This procedure writes out the format text to the output file fn, replacing format specifiers with the corresponding
data from the values parameter. Whenever a format specifiers is found in format, the n-th item in values will be turned
into a string according to the format specifier. The resulting string will the format specifier. This means that the first
format specifier uses the first item in values, the second format specifier the second item, and so on.

You must have at least as many items in values as there are format specifiers in format. This means that if there is
only one format specifier then values can be either an atom, integer or a non-empty sequence. And when there are more
than one format specifier in format then values must be a sequence with a length that is greater than or equal to the
number of format specifiers present.

This way, printf always takes exactly three arguments no matter how many values are to be printed.
The basic format specifiers are:

• %d – print an atom as a decimal integer

• %x – print an atom as a hexadecimal integer. Negative numbers are printed in two’s complement, so -1 will print as
FFFFFFFF

• %o – print an atom as an octal integer

• %s – print a sequence as a string of characters, or print an atom as a single character

• %e – print an atom as a floating-point number with exponential notation

• %f – print an atom as a floating-point number with a decimal point but no exponent

• %g – print an atom as a floating-point number using whichever format seems appropriate, given the magnitude of
the number

• %% – print the ’%’ character itself. This is not an actual format specifier.

Field widths can be added to the basic formats (for example: %5d, %8.2f, %10.4s). The number before the
decimal point is the minimum field width to be used. The number after the decimal point is the precision to be used for
numeric values.

If the field width is negative (for example %-5d) then the value will be left-justified within the field. Normally it will
be right-justified, even strings. If the field width starts with a leading 0 (for example %08d) then leading zeros will be
supplied to fill up the field. If the field width starts with a ’+’ (for example %+7d) then a plus sign will be printed for
positive values.

Comments:

Watch out for the following common mistake. The intention is to output all the characters in the third argument but
actually only outputs the first character:

include std/io.e

sequence name="John Smith"

printf(STDOUT , "My name is %s", name)

--> My name is J

The output of this will be My name is J because each format specifier uses exactly one item from the values

parameter. In this case we have only one specifier so it uses the first item in the values parameter, which is the character
’J’. To fix this situation, you must ensure that the first item in the values parameter is the entire text string and not
just a character, so you need code this instead:

include std/io.e

name="John Smith"

printf(STDOUT , "My name is %s", {name})

--> My name is John Smith

261

CHAPTER 44. I/O 44.2. READ AND WRITE ROUTINES

Now, the third argument of printf is a one-element sequence containing all the text to be formatted.

Also note that if there is only one format specifier then values can simply be an atom or integer.

Example 1:

1 include std/io.e

2 atom rate = 7.875

3 printf(STDOUT , "The interest rate is: %8.2f\n", rate)

4

5 -- The interest rate is: 7.88

Example 2:

1 include std/io.e

2 sequence name="John Smith"

3 integer score =97

4 printf(STDOUT , "%15s, %5d\n", {name , score })

5

6 -- " John Smith , 97"

Example 3:

include std/io.e

printf(STDOUT , "%-10.4s $ %s", {"ABCDEFGHIJKLMNOP", "XXX"})

-- ABCD $ XXX

Example 4:

1 include std/io.e

2 printf(STDOUT , "%d %e %f %g", repeat (7.75, 4))

3 -- same value in different formats

4

5 -- 7 7.750000e+000 7.750000 7.75

NOTE that printf cannot use an item in values that contains nested sequences. Thus this is an error ...

include std/io.e

sequence name = {"John", "Smith"}

printf(STDOUT , "%s", {name})

because the item that is used from the values parameter contains two subsequences (strings in this case). To get the
correct output you would need to do this instead ...

include std/io.e

sequence name = {"John", "Smith"}

printf(STDOUT , "%s %s", {name[1], name [2]})

See Also:

sprintf, sprint, print

262

CHAPTER 44. I/O 44.2. READ AND WRITE ROUTINES

44.2.4 puts

<built -in > procedure puts(integer fn, object text)

outputs text characters to a screen or file.

Parameters:

1. fn : an integer, the handle to an opened file or device

2. text : an object, either a single character or a sequence of characters.

Errors:

The target file or device must be open.

Comments:

This procedures outputs, to a file or device, a single byte (atom) or sequence of bytes. The low order 8-bits of each value
is actually sent out. If outputting to the screen you will see text characters displayed.

When you output a sequence of bytes it must not have any sub-sequences within it. It must be a sequence of atoms
only. (Typically a string of ASCII codes).

Avoid outputting 0’s to the screen or to standard output. Your output might get truncated.
Remember that if the output file was opened in text mode, Windows will change \n (10) to \r\n (13 10). Open the

file in binary mode if this is not what you want.

Example 1:

include std/io.e

puts(SCREEN , "Enter your first name: ")

Example 2:

puts(output , ’A’) -- the single byte 65 will be sent to output

See Also:

print

44.2.5 getc

<built -in > function getc(integer fn)

gets the next character (byte) from a file or device fn.

Parameters:

1. fn : an integer, the handle of the file or device to read from.

Returns:

An integer, the character read from the file, in the 0..255 range. If no character is left to read, EOF is returned instead.

263

CHAPTER 44. I/O 44.2. READ AND WRITE ROUTINES

Errors:

The target file or device must be open.

Comments:

File input using getc is buffered, that means getc does not actually go out to the disk for each character. Instead, a
large block of characters will be read in at one time and returned to you one by one from a memory buffer.

When getc reads from the keyboard, it will not see any characters until the user presses Enter. Note that the user
can type Control+Z, which the operating system treats as ”end of file” returning EOF.

See Also:

gets, get key

44.2.6 gets

<built -in > function gets(integer fn)

gets a sequence of characters.

Parameters:

1. fn : an integer, the handle of the file or device to read from.

Returns:

An object, either EOF on end of file, or the next line of text from the file.

Errors:

The file or device must be open.

Comments:

This function gets the next sequence (one line, including ’\n’) of characters from a file or device. The characters will
have values from 0 to 255.

If the line had an end of line marker, a ’\n’ terminates the line. The last line of a file needs not have an end of
line marker.

After reading a line of text from the keyboard, you should normally output a \n character, (for example puts(1,

’\n’)), before printing something. Only on the last line of the screen does the operating system automatically scroll the
screen and advance to the next line.

When your program reads from the keyboard, the user can type Control+Z, which the operating system treats as ”end
of file”. EOF will be returned.

Example 1:

1 sequence buffer

2 object line

3 integer fn

4

5 -- read a text file into a sequence

6 fn = open("my_file.txt", "r")

7 if fn = -1 then

8 puts(1, "Couldn ’t open my_file.txt\n")

264

CHAPTER 44. I/O 44.2. READ AND WRITE ROUTINES

9 abort (1)

10 end if

11

12 buffer = {}

13 while 1 do

14 line = gets(fn)

15 if atom(line) then

16 exit -- EOF is returned at end of file

17 end if

18 buffer = append(buffer , line)

19 end while

Example 2:

1 object line

2

3 puts(1, "What is your name?\n")

4 line = gets (0) -- read standard input (keyboard)

5 line = line [1..$-1] -- get rid of \n character at end

6 puts(1, ’\n’) -- necessary

7 puts(1, line & " is a nice name.\n")

See Also:

getc, read lines

44.2.7 get bytes

include std/io.e

namespace io

public function get_bytes(integer fn, integer n)

reads the next bytes from a file.

Parameters:

1. fn : an integer, the handle to an open file to read from.

2. n : a positive integer, the number of bytes to read.

Returns:

A sequence, of length at most n, made of the bytes that could be read from the file.

Comments:

When n > 0 and the function returns a sequence of length less than n you know you have reached the end of file.
Eventually, an empty sequence will be returned.

This function is normally used with files opened in binary mode, "rb". This avoids the confusing situation in text
mode where Windows will convert CR LF pairs to LF.

265

CHAPTER 44. I/O 44.2. READ AND WRITE ROUTINES

Example 1:

1 integer fn

2 fn = open("temp", "rb") -- an existing file

3

4 sequence whole_file

5 whole_file = {}

6

7 sequence chunk

8

9 while 1 do

10 chunk = get_bytes(fn , 100) -- read 100 bytes at a time

11 whole_file &= chunk -- chunk might be empty , that ’s ok

12 if length(chunk) < 100 then

13 exit

14 end if

15 end while

16

17 close(fn)

18 ? length(whole_file) -- should match DIR size of "temp"

See Also:

getc, gets, get integer32, get dstring

44.2.8 get integer32

include std/io.e

namespace io

public function get_integer32(integer fh)

reads the next four bytes from a file and returns them as a single integer.

Parameters:

1. fh : an integer, the handle to an open file to read from.

Returns:

An atom, between -1 and power(2,32)-1, made of the bytes that could be read from the file. When an end of file is
encountered, it returns -1.

Comments:

• This function is normally used with files opened in binary mode, "rb".

Example 1:

1 integer fn

2 fn = open("temp", "rb") -- an existing file

3

4 atom file_type_code

5 file_type_code = get_integer32(fn)

266

CHAPTER 44. I/O 44.2. READ AND WRITE ROUTINES

See Also:

getc, gets, get bytes, get dstring

44.2.9 get integer16

include std/io.e

namespace io

public function get_integer16(integer fh)

reads the next two bytes from a file and returns them as a single integer.

Parameters:

1. fh : an integer, the handle to an open file to read from.

Returns:

An integer, made of the bytes that could be read from the file. When an end of file is encountered, it returns -1.

Comments:

• This function is normally used with files opened in binary mode, "rb".

Example 1:

1 integer fn

2 fn = open("temp", "rb") -- an existing file

3

4 atom file_type_code

5 file_type_code = get_integer16(fn)

See Also:

getc, gets, get bytes, get dstring

44.2.10 put integer32

include std/io.e

namespace io

public procedure put_integer32(integer fh, atom val)

writes the supplied integer as four bytes to a file.

Parameters:

1. fh : an integer, the handle to an open file to write to.

2. val : an integer

Comments:

• This function is normally used with files opened in binary mode, "wb".

267

CHAPTER 44. I/O 44.2. READ AND WRITE ROUTINES

Example 1:

integer fn

fn = open("temp", "wb")

put_integer32(fn , 1234)

See Also:

getc, gets, get bytes, get dstring

44.2.11 put integer16

include std/io.e

namespace io

public procedure put_integer16(integer fh, atom val)

writes the supplied integer as two bytes to a file.

Parameters:

1. fh : an integer, the handle to an open file to write to.

2. val : an integer

Comments:

• This function is normally used with files opened in binary mode, "wb".

Example 1:

integer fn

fn = open("temp", "wb")

put_integer16(fn , 1234)

See Also:

getc, gets, get bytes, get dstring

44.2.12 get dstring

include std/io.e

namespace io

public function get_dstring(integer fh, integer delim = 0)

read a delimited byte string from an opened file.

Parameters:

1. fh : an integer, the handle to an open file to read from.

2. delim : an integer, the delimiter that marks the end of a byte string. If omitted, a zero is assumed.

268

CHAPTER 44. I/O 44.3. LOW LEVEL FILE AND DEVICE HANDLING

Returns:

An sequence, made of the bytes that could be read from the file.

Comments:

• If the end-of-file is found before the delimiter, the delimiter is appended to the returned string.

Example 1:

1 integer fn

2 fn = open("temp", "rb") -- an existing file

3

4 sequence text

5 text = get_dstring(fn) -- Get a zero -delimited string

6 text = get_dstring(fn, ’$’) -- Get a ’$’-delimited string

See Also:

getc, gets, get bytes, get integer32

44.3 Low Level File and Device Handling

44.3.1 enum

include std/io.e

namespace io

public enum

44.3.2 file number

include std/io.e

namespace io

public type file_number(object f)

File number type

44.3.3 file position

include std/io.e

namespace io

public type file_position(object p)

File position type

44.3.4 lock type

include std/io.e

namespace io

public type lock_type(object t)

Lock Type

269

CHAPTER 44. I/O 44.3. LOW LEVEL FILE AND DEVICE HANDLING

44.3.5 byte range

include std/io.e

namespace io

public type byte_range(object r)

Byte Range Type

44.3.6 open

<built -in > function open(sequence path , sequence mode , integer cleanup = 0)

opens a file or device, to get the file number.

Parameters:

1. path : a string, the path to the file or device to open.

2. mode : a string, the mode being used o open the file.

3. cleanup : an integer, if 0, then the file must be manually closed by the coder. If 1, then the file will be closed when
either the file handle’s references goes to 0, or if called as a parameter to delete.

Returns:

A small integer, -1 on failure, else 0 or more.

Errors:

There is a limit on the number of files that can be simultaneously opened, currently 40. After this limit is reached the
next call to open will produce an error.

The length of path should not exceed 1 024 characters.

Comments:

Possible modes are:

• "r" – open text file for reading

• "rb" – open binary file for reading

• "w" – create text file for writing

• "wb" – create binary file for writing

• "u" – open text file for update (reading and writing)

• "ub" – open binary file for update

• "a" – open text file for appending

• "ab" – open binary file for appending

Files opened for read or update must already exist. Files opened for write or append will be created if necessary. A file
opened for write will be set to 0 bytes. Output to a file opened for append will start at the end of file.

On Windows, output to text files will have carriage-return characters automatically added before linefeed characters.
On input, these carriage-return characters are removed. A Control+Z character (ASCII 26) will signal an immediate end
of file.

I/O to binary files is not modified in any way. Any byte values from 0 to 255 can be read or written. On Unix, all files
are binary files, so "r" mode and "rb" mode are equivalent, as are "w" and "wb", "u" and "ub", and "a" and "ab".

Some typical devices that you can open on Windows are:

270

CHAPTER 44. I/O 44.3. LOW LEVEL FILE AND DEVICE HANDLING

• "CON" – the console (screen)

• "AUX" – the serial auxiliary port

• "COM1" – serial port 1

• "COM2" – serial port 2

• "PRN" – the printer on the parallel port

• "NUL" – a non-existent device that accepts and discards output

Close a file or device when done with it, flushing out any still-buffered characters prior.
Windows and Unix : Long filenames are fully supported for reading and writing and creating.
Windows: Be careful not to use the special device names in a file name, even if you add an extension. For example:

CON.TXT, CON.DAT, CON.JPG all refer to the CON device and not to a file.

Example 1:

1 integer file_num , file_num95

2 sequence first_line

3 constant ERROR = 2

4

5 file_num = open("my_file", "r")

6 if file_num = -1 then

7 puts(ERROR , "couldn ’t open my_file\n")

8 else

9 first_line = gets(file_num)

10 end if

11

12 file_num = open("PRN", "w") -- open printer for output

13

14 -- on Windows 95:

15 file_num95 = open("big_directory_name \\ very_long_file_name.abcdefg",

16 "r")

17 if file_num95 != -1 then

18 puts(STDOUT , "it worked !\n")

19 end if

44.3.7 close

<built -in > procedure close(atom fn)

closes a file or device and flushes out any still-buffered characters.

Parameters:

1. fn : an integer, the handle to the file or device to query.

Errors:

The target file or device must be open.

Comments:

Any still-open files will be closed automatically when your program terminates.

271

CHAPTER 44. I/O 44.3. LOW LEVEL FILE AND DEVICE HANDLING

44.3.8 seek

include std/io.e

namespace io

public function seek(file_number fn, file_position pos)

Seek (move) to any byte position in a file.

Parameters:

1. fn : an integer, the handle to the file or device to seek

2. pos : an atom, either an absolute 0-based position or -1 to seek to end of file.

Returns:

An integer, 0 on success, 1 on failure.

Errors:

The target file or device must be open.

Comments:

For each open file, there is a current byte position that is updated as a result of I/O operations on the file. The initial file
position is 0 for files opened for read, write or update. The initial position is the end of file for files opened for append. It
is possible to seek past the end of a file. If you seek past the end of the file, and write some data, undefined bytes will be
inserted into the gap between the original end of file and your new data.

After seeking and reading (writing) a series of bytes, you may need to call seek explicitly before you switch to writing
(reading) bytes, even though the file position should already be what you want.

This function is normally used with files opened in binary mode. In text mode, Windows converts CR LF to LF on
input, and LF to CR LF on output, which can cause great confusion when you are trying to count bytes because seek

counts the Windows end of line sequences as two bytes, even if the file has been opened in text mode.

Example 1:

1 include std/io.e

2

3 integer fn

4 fn = open("my.data", "rb")

5 -- read and display first line of file 3 times:

6 for i = 1 to 3 do

7 puts(STDOUT , gets(fn))

8 if seek(fn, 0) then

9 puts(STDOUT , "rewind failed !\n")

10 end if

11 end for

See Also:

get bytes, puts, where

272

CHAPTER 44. I/O 44.3. LOW LEVEL FILE AND DEVICE HANDLING

44.3.9 where

include std/io.e

namespace io

public function where(file_number fn)

retrieves the current file position for an opened file or device.

Parameters:

1. fn : an integer, the handle to the file or device to query.

Returns:

An atom, the current byte position in the file.

Errors:

The target file or device must be open.

Comments:

The file position is is the place in the file where the next byte will be read from, or written to. It is updated by reads,
writes and seeks on the file. This procedure always counts Windows end of line sequences (CR LF) as two bytes even
when the file number has been opened in text mode.

44.3.10 flush

include std/io.e

namespace io

public procedure flush(file_number fn)

forces writing any buffered data to an open file or device.

Parameters:

1. fn : an integer, the handle to the file or device to close.

Errors:

The target file or device must be open.

Comments:

When you write data to a file, Euphoria normally stores the data in a memory buffer until a large enough chunk of data
has accumulated. This large chunk can then be written to disk very efficiently. Sometimes you may want to force, or
flush, all data out immediately, even if the memory buffer is not full. To do this you must call flush(fn), where fn is the
file number of a file open for writing or appending.

When a file is closed, (see close), all buffered data is flushed out. When a program terminates, all open files are
flushed and closed automatically. Use flush when another process may need to see all of the data written so far, but
you are not ready to close the file yet. flush is also used in crash routines, where files may not be closed in the cleanest
possible way.

273

CHAPTER 44. I/O 44.3. LOW LEVEL FILE AND DEVICE HANDLING

Example 1:

1 f = open("file.log", "w")

2 puts(f, "Record #1\n")

3 puts(STDOUT , "Press Enter when ready\n")

4

5 flush(f) -- This forces "Record #1" into "file.log" on disk.

6 -- Without this , "file.log" will appear to have

7 -- 0 characters when we stop for keyboard input.

8

9 s = gets (0) -- wait for keyboard input

See Also:

close, crash routine

44.3.11 lock file

include std/io.e

namespace io

public function lock_file(file_number fn, lock_type t, byte_range r = {})

locks a file so access is restricted.

Parameters:

1. fn : an integer, the handle to the file or device to (partially) lock.

2. t : an integer which defines the kind of lock to apply.

3. r : a sequence, defining a section of the file to be locked, or for the whole file (the default).

Returns:

An integer, 0 on failure, 1 on success.

Errors:

The target file or device must be open.

Comments:

When multiple processes can simultaneously access a file, some kind of locking mechanism may be needed to avoid
mangling the contents of the file, or causing erroneous data to be read from the file.

lock file attempts to place a lock on an open file, fn, to stop other processes from using the file while your program
is reading it or writing it.

There are two types of locks that you can request using the t parameter. Ask for a shared lock when you intend
to read a file, and you want to temporarily block other processes from writing it. Ask for an exclusive lock when you
intend to write to a file and you want to temporarily block other processes from reading or writing it. It is ok for many
processes to simultaneously have shared locks on the same file, but only one process can have an exclusive lock, and that
can happen only when no other process has any kind of lock on the file. io.e contains the following declarations:

public enum

LOCK_SHARED ,

LOCK_EXCLUSIVE

274

CHAPTER 44. I/O 44.3. LOW LEVEL FILE AND DEVICE HANDLING

On /Windows you can lock a specified portion of a file using the r parameter. r is a sequence of the form: first byte,

last byte. It indicates the first byte and last byte in the file, that the lock applies to. Specify the empty sequence , if
you want to lock the whole file, or don’t specify it at all, as this is the default. In the current release for Unix, locks always
apply to the whole file, and you should use this default value.

lock file does not wait for other processes to relinquish their locks. You may have to call it repeatedly, before the
lock request is granted.

On Unix, these locks are called advisory locks, which means they are not enforced by the operating system. It is up to
the processes that use a particular file to cooperate with each other. A process can access a file without first obtaining a
lock on it. On Windows locks are enforced by the operating system.

Example 1:

1 include std/io.e

2 integer v

3 atom t

4 v = open("visitor_log", "a") -- open for append

5 t = time()

6 while not lock_file(v, LOCK_EXCLUSIVE , {}) do

7 if time() > t + 60 then

8 puts(STDOUT , "One minute already ... I can ’t wait forever !\n")

9 abort (1)

10 end if

11 sleep (5) -- let other processes run

12 end while

13 puts(v, "Yet another visitor\n")

14 unlock_file(v, {})

15 close(v)

See Also:

unlock file

44.3.12 unlock file

include std/io.e

namespace io

public procedure unlock_file(file_number fn, byte_range r = {})

unlock (a portion of) an open file.

Parameters:

1. fn : an integer, the handle to the file or device to (partially) lock.

2. r : a sequence, defining a section of the file to be locked, or for the whole file (the default).

Errors:

The target file or device must be open.

275

CHAPTER 44. I/O 44.4. FILE READING AND WRITING

Comments:

You must have previously locked the file using lock file. On Windows you can unlock a range of bytes within a file
by specifying the r as first byte, last byte. The same range of bytes must have been locked by a previous call to
lock file. On Unix you can currently only lock or unlock an entire file. r should be when you want to unlock an entire
file. On Unix, r must always be , which is the default.

You should unlock a file as soon as possible so other processes can use it.
Any files that you have locked, will automatically be unlocked when your program terminates.

See Also:

lock file

44.4 File Reading and Writing

44.4.1 read lines

include std/io.e

namespace io

public function read_lines(object file)

reads the contents of a file as a sequence of lines.

Parameters:

file : an object, either a file path or the handle to an open file. If this is an empty string, STDIN (the console) is used.

Returns:

-1 on error or a sequence, made of lines from the file, as gets could read them.

Comments:

If file was a sequence, the file will be closed on completion. Otherwise, it will remain open, but at end of file.

Example 1:

data = read_lines("my_file.txt")

-- data contains the entire contents of ## my_file.txt##, 1 sequence per line:

-- {"Line 1", "Line 2", "Line 3"}

Example 2:

1 fh = open("my_file.txt", "r")

2 data = read_lines(fh)

3 close(fh)

4

5 -- data contains the entire contents of ## my_file.txt##, 1 sequence per line:

6 -- {"Line 1", "Line 2", "Line 3"}

See Also:

gets, write lines, read file

276

CHAPTER 44. I/O 44.4. FILE READING AND WRITING

44.4.2 process lines

include std/io.e

namespace io

public function process_lines(object file , integer proc , object user_data = 0)

processes the contents of a file, one line at a time.

Parameters:

1. file : an object. Either a file path or the handle to an open file. An empty string signifies STDIN – the console
keyboard.

2. proc : an integer. The routine id of a function that will process the line.

3. user data : on object. This is passed untouched to proc for each line.

Returns:

An object. If 0 then all the file was processed successfully. Anything else means that something went wrong and this is
whatever value was returned by proc.

Comments:

• The function proc must accept three parameters:

– A sequence: The line to process. It will not contain an end-of-line character.

– An integer: The line number.

– An object : This is the user data that was passed to process lines.

• If file was a sequence, the file will be closed on completion. Otherwise, it will remain open, and be positioned
where ever reading stopped.

Example 1:

1 -- Format each supplied line according to the format pattern supplied as well.

2 function show(sequence aLine , integer line_no , object data)

3 writefln(data[1], {line_no , aLine })

4 if data [2] > 0 and line_no = data [2] then

5 return 1

6 else

7 return 0

8 end if

9 end function

10 -- Show the first 20 lines.

11 process_lines("sample.txt", routine_id("show"), {"[1z:4] : [2]", 20})

See Also:

gets, read lines, read file

277

CHAPTER 44. I/O 44.4. FILE READING AND WRITING

44.4.3 write lines

include std/io.e

namespace io

public function write_lines(object file , sequence lines)

write a sequence of lines to a file.

Parameters:

1. file : an object, either a file path or the handle to an open file.

2. lines : the sequence of lines to write

Returns:

An integer, 1 on success, -1 on failure.

Errors:

If puts cannot write some line of text, a runtime error will occur.

Comments:

If file was a sequence, the file will be closed on completion. Otherwise, it will remain open, but at end of file.
Whatever integer the lines in lines holds will be truncated to its 8 lowest bits so as to fall in the 0..255 range.

Example 1:

if write_lines("data.txt", {"This is important data", "Goodbye"}) != -1 then

puts(STDERR , "Failed to write data\n")

end if

See Also:

read lines, write file, puts

44.4.4 append lines

include std/io.e

namespace io

public function append_lines(sequence file , sequence lines)

appends a sequence of lines to a file.

Parameters:

1. file : an object, either a file path or the handle to an open file.

2. lines : the sequence of lines to write

Returns:

An integer, 1 on success, -1 on failure.

278

CHAPTER 44. I/O 44.4. FILE READING AND WRITING

Errors:

If puts cannot write some line of text, a runtime error will occur.

Comments:

file is opened, written to and then closed.

Example 1:

if append_lines("data.txt", {"This is important data", "Goodbye"}) != -1 then

puts(STDERR , "Failed to append data\n")

end if

See Also:

write lines, puts

44.4.5 enum

include std/io.e

namespace io

public enum

44.4.6 read file

include std/io.e

namespace io

public function read_file(object file , integer as_text = BINARY_MODE)

reads the contents of a file as a single sequence of bytes.

Parameters:

1. file : an object, either a file path or the handle to an open file.

2. as text : integer, BINARY MODE (the default) assumes binary mode that causes every byte to be read in, and
TEXT MODE assumes text mode that ensures that lines end with just a Control+J (NewLine) character, and the first
byte value of 26 (Control+Z) is interpreted as End-Of-File.

Returns:

A sequence, holding the entire file.
Comments

• When using BINARY MODE, each byte in the file is returned as an element in the return sequence.

• When not using BINARY MODE, the file will be interpreted as a text file. This means that all line endings will be
transformed to a single 0x0A character and the first 0x1A character (Control+Z) will indicate the end of file (all
data after this will not be returned to the caller.)

279

CHAPTER 44. I/O 44.4. FILE READING AND WRITING

Example 1:

data = read_file("my_file.txt")

-- data contains the entire contents of ## my_file.txt##

Example 2:

1 fh = open("my_file.txt", "r")

2 data = read_file(fh)

3 close(fh)

4

5 -- data contains the entire contents of ## my_file.txt##

See Also:

write file, read lines

44.4.7 write file

include std/io.e

namespace io

public function write_file(object file , sequence data , integer as_text = BINARY_MODE)

write a sequence of bytes to a file.

Parameters:

1. file : an object, either a file path or the handle to an open file.

2. data : the sequence of bytes to write

3. as text : integer

• BINARY MODE (the default) assumes binary mode that causes every byte to be written out as is,

• TEXT MODE assumes text mode that causes a NewLine to be written out according to the operating system’s
end of line convention. On Unix this is Control+J and on Windows this is the pair Ctrl-L, Ctrl-J.

• UNIX TEXT ensures that lines are written out with Unix style line endings (Control+J).

• DOS TEXT ensures that lines are written out with Windows style line endings Ctrl-L, Ctrl-J.

Returns:

An integer, 1 on success, -1 on failure.

Errors:

If puts cannot write data, a runtime error will occur.

Comments:

• When file is a file handle, the file is not closed after writing is finished. When file is a file name, it is opened,
written to and then closed.

• Note that when writing the file in ony of the text modes, the file is truncated at the first Control+Z character in
the input data.

280

CHAPTER 44. I/O 44.4. FILE READING AND WRITING

Example 1:

if write_file("data.txt", "This is important data\nGoodbye") = -1 then

puts(STDERR , "Failed to write data\n")

end if

See Also:

read file, write lines

44.4.8 writef

include std/io.e

namespace io

public procedure writef(object fm, object data = {}, object fn = 1, object data_not_string = 0)

writes formatted text to a file.

Parameters:

There are two ways to pass arguments to this function:

1. Traditional way with first arg being a file handle.

(a) : integer, The file handle.

(b) : sequence, The format pattern.

(c) : object, The data that will be formatted.

(d) data not string: object, If not 0 then the data is not a string. By default this is 0 meaning that data could
be a single string.

1. Alternative way with first argument being the format pattern.

(a) : sequence, Format pattern.

(b) : sequence, The data that will be formatted,

(c) : object, The file to receive the formatted output. Default is to the STDOUT device (console).

(d) data not string: object, If not 0 then the data is not a string. By default this is 0 meaning that data could
be a single string.

Comments:

• With the traditional arguments, the first argument must be an integer file handle.

• With the alternative arguments, the thrid argument can be a file name string, in which case it is opened for output,
written to and then closed.

• With the alternative arguments, the third argument can be a two-element sequence containing a file name string
and an output type ("a" for append, "w" for write), in which case it is opened accordingly, written to and then
closed.

• With the alternative arguments, the third argument can a file handle, in which case it is written to only

• The format pattern uses the formatting codes defined in text:format.

• When the data to be formatted is a single text string, it does not have to be enclosed in braces,

281

CHAPTER 44. I/O 44.4. FILE READING AND WRITING

Example 1:

1 -- To console

2 writef("Today is [4], [u2:3] [3:02] , [1:4].",

3 {Year , MonthName , Day , DayName })

4 -- To "sample.txt"

5 writef("Today is [4], [u2:3] [3:02] , [1:4].",

6 {Year , MonthName , Day , DayName}, "sample.txt")

7 -- To "sample.dat"

8 integer dat = open("sample.dat", "w")

9 writef("Today is [4], [u2:3] [3:02] , [1:4].",

10 {Year , MonthName , Day , DayName}, dat)

11 -- Appended to "sample.log"

12 writef("Today is [4], [u2:3] [3:02] , [1:4].",

13 {Year , MonthName , Day , DayName}, {"sample.log", "a"})

14 -- Simple message to console

15 writef("A message")

16 -- Another console message

17 writef(STDERR , "This is a []", "message")

18 -- Outputs two numbers

19 writef(STDERR , "First [], second []", {65, 100}, 1)

20 -- Note that {65, 100} is also "Ad"

See Also:

text:format, writefln, write lines

44.4.9 writefln

include std/io.e

namespace io

public procedure writefln(object fm, object data = {}, object fn = 1,

object data_not_string = 0)

writes formatted text to a file, ensuring that a new line is also output.

Parameters:

1. fm : sequence, Format pattern.

2. data : sequence, The data that will be formatted,

3. fn : object, The file to receive the formatted output. Default is to the STDOUT device (console).

4. data not string: object, If not 0 then the data is not a string. By default this is 0 meaning that data could be
a single string.

Comments:

• This is the same as writef, except that it always adds a New Line to the output.

• When fn is a file name string, it is opened for output, written to and then closed.

• When fn is a two-element sequence containing a file name string and an output type ("a" for append, "w" for
write), it is opened accordingly, written to and then closed.

• When fn is a file handle, it is written to only

• The fm uses the formatting codes defined in text:format.

282

CHAPTER 44. I/O 44.4. FILE READING AND WRITING

Example 1:

1 -- To console

2 writefln("Today is [4], [u2:3] [3:02] , [1:4].",

3 {Year , MonthName , Day , DayName })

4 -- To "sample.txt"

5 writefln("Today is [4], [u2:3] [3:02] , [1:4].",

6 {Year , MonthName , Day , DayName}, "sample.txt")

7 -- Appended to "sample.log"

8 writefln("Today is [4], [u2:3] [3:02] , [1:4].",

9 {Year , MonthName , Day , DayName}, {"sample.log", "a"})

See Also:

text:format, writef, write lines

283

Chapter 45
Operating System Helpers

45.0.10 CMD SWITCHES

include std/os.e

namespace os

public constant CMD_SWITCHES

45.1 Operating System Constants

45.1.1 enum

include std/os.e

namespace os

public enum

These constants are returned by the platform function.

• WIN32 – Host operating system is Windows

• LINUX – Host operating system is Linux

• FREEBSD – Host operating system is FreeBSD

• OSX – Host operating system is Mac OS X

• OPENBSD – Host operating system is OpenBSD

• NETBSD – Host operating system is NetBSD

Note:

In most situations you are better off to test the host platform by using the ifdef statement. It is faster.

45.2 Environment

45.2.1 instance

284

CHAPTER 45. OPERATING SYSTEM HELPERS 45.2. ENVIRONMENT

include std/os.e

namespace os

public function instance ()

returns hInstance on Windows and Process ID (pid) on Unix.

Comments:

On Windows the hInstance can be passed around to various Windows routines.

45.2.2 get pid

include std/os.e

namespace os

public function get_pid ()

returns the ID of the current Process (pid).

Returns:

An atom: The current id for a process.

Example 1:

mypid = get_pid ()

45.2.3 uname

include std/os.e

namespace os

public function uname ()

retrieves the name of the host OS.

Returns:

A sequence, starting with the OS name. If identification fails, returns an OS name of UNKNOWN. Extra information
depends on the OS.

On Unix returns the same information as the uname syscall in the same order as the struct utsname. This information
is:

OS Name/Kernel Name

Local Hostname

Kernel Version/Kernel Release

Kernel Specific Version information (This is usually the date that the

kernel was compiled on and the name of the host that performed the compiling .)

Architecture Name (Usually a string of i386 vs x86_64 vs ARM vs etc)

On Windows returns the following in order:

Windows Platform (out of WinCE , Win9x , WinNT , Win32s , or Unknown Windows)

Name of Windows OS (Windows 3.1, Win95 , WinXP , etc)

Platform Number

Build Number

Minor OS version number

Major OS version number

285

CHAPTER 45. OPERATING SYSTEM HELPERS 45.2. ENVIRONMENT

On UNKNOWN returns an OS name of "UNKNOWN". No other information is returned.
Returns an empty string of ”” if an internal error has occured.

Comments:

On Unix M UNAME is defined as a machine func and this is passed to the C backend. If the M UNAME call fails, the raw
machine func returns -1. On non-Unix platforms, calling the machine func directly returns 0.

45.2.4 is win nt

include std/os.e

namespace os

public function is_win_nt ()

reports whether the host system is a newer Windows version (NT/2K/XP/Vista).

Returns:

An integer, 1 if host system is a newer Windows (NT/2K/XP/Vista), else 0.

45.2.5 getenv

<built -in > function getenv(sequence var_name)

returns the value of an environment variable.

Parameters:

1. var name : a string, the name of the variable being queried.

Returns:

An object, -1 if the variable does not exist, else a sequence holding its value.

Comments:

Both the argument and the return value, may, or may not be, case sensitive. You might need to test this on your own
system.

Example 1:

e = getenv("EUDIR")

-- e will be "C:\ EUPHORIA" -- or perhaps D:, E: etc.

See Also:

setenv, command line

45.2.6 setenv

include std/os.e

namespace os

public function setenv(sequence name , sequence val , integer overwrite = 1)

sets an environment variable.

286

CHAPTER 45. OPERATING SYSTEM HELPERS 45.2. ENVIRONMENT

Parameters:

1. name : a string, the environment variable name

2. val : a string, the value to set to

3. overwrite : an integer, nonzero to overwrite an existing variable, 0 to disallow this.

Example 1:

? setenv("NAME", "John Doe")

? setenv("NAME", "Jane Doe")

? setenv("NAME", "Jim Doe", 0)

See Also:

getenv, unsetenv

45.2.7 unsetenv

include std/os.e

namespace os

public function unsetenv(sequence env)

unsets an environment variable.

Parameters:

1. name : name of environment variable to unset

Example 1:

? unsetenv("NAME")

See Also:

setenv, getenv

45.2.8 platform

<built -in > function platform ()

indicates the platform that the program is being executed on.

Returns:

An integer,

1 public constant

2 WIN32 = WINDOWS ,

3 LINUX ,

4 FREEBSD ,

5 OSX ,

6 OPENBSD ,

7 NETBSD ,

8 FREEBSD

287

CHAPTER 45. OPERATING SYSTEM HELPERS 45.3. INTERACTING WITH THE OS

Comments:

The ifdef statement is much more versatile and in most cases supersedes platform.
platform used to be the way to execute different code depending on which platform the program is running on.

Additional platforms will be added as Euphoria is ported to new machines and operating environments.

Example 1:

1 ifdef WINDOWS then

2 -- call system Beep routine

3 err = c_func(Beep , {0,0})

4 elsedef

5 -- do nothing (Linux/FreeBSD)

6 end if

See Also:

Platform-Specific Issues, ifdef statement

45.3 Interacting with the OS

45.3.1 system

<built -in > procedure system(sequence command , integer mode =0)

passes a command string to the operating system command interpreter.

Parameters:

1. command : a string to be passed to the shell

2. mode : an integer, indicating the manner in which to return from the call.

Errors:

command should not exceed 1 024 characters.

Comments:

Allowable values for mode are:

• 0: the previous graphics mode is restored and the screen is cleared.

• 1: a beep sound will be made and the program will wait for the user to press a key before the previous graphics
mode is restored.

• 2: the graphics mode is not restored and the screen is not cleared.

mode = 2 should only be used when it is known that the command executed by system will not change the graphics
mode.

You can use Euphoria as a sophisticated ”batch” (.bat) language by making calls to system and system exec.
system will start a new command shell.
system allows you to use command-line redirection of standard input and output in command.

288

CHAPTER 45. OPERATING SYSTEM HELPERS 45.3. INTERACTING WITH THE OS

Example 1:

system("copy temp.txt a:\\ temp.bak", 2)

-- note use of double backslash in literal string to get

-- single backslash

Example 2:

system("eui \\test\\ myprog.ex < indata > outdata", 2)

-- executes myprog by redirecting standard input and

-- standard output

See Also:

system exec, command line, current dir, getenv

45.3.2 system exec

<built -in > function system_exec(sequence command , integer mode =0)

tries to run the a shell executable command.

Parameters:

1. command : a string to be passed to the shell, representing an executable command

2. mode : an integer, indicating the manner in which to return from the call.

Returns:

An integer, basically the exit or return code from the called process.

Errors:

command should not exceed 1 024 characters.

Comments:

Allowable values for mode are:

• 0 – the previous graphics mode is restored and the screen is cleared.

• 1 – a beep sound will be made and the program will wait for the user to press a key before the previous graphics
mode is restored.

• 2 – the graphics mode is not restored and the screen is not cleared.

If it is not possible to run the program, system exec will return -1.
On Windows system exec will only run .exe and .com programs. To run .bat files, or built-in shell commands, you

need system. Some commands, such as DEL, are not programs, they are actually built-in to the command interpreter.
On Windows system exec does not allow the use of command-line redirection in command. Nor does it allow you to

quote strings that contain blanks, such as file names.
exit codes from Windows programs are normally in the range 0 to 255, with 0 indicating ”success”.
You can run a Euphoria program using system exec. A Euphoria program can return an exit code using abort.
system exec does not start a new command shell.

289

CHAPTER 45. OPERATING SYSTEM HELPERS 45.4. MISCELLANEOUS

Example 1:

1 integer exit_code

2 exit_code = system_exec("xcopy temp1.dat temp2.dat", 2)

3

4 if exit_code = -1 then

5 puts(2, "\n couldn ’t run xcopy.exe\n")

6 elsif exit_code = 0 then

7 puts(2, "\n xcopy succeeded\n")

8 else

9 printf(2, "\n xcopy failed with code %d\n", exit_code)

10 end if

Example 2:

-- executes myprog with two file names as arguments

if system_exec("eui \\test\\ myprog.ex indata outdata", 2) then

puts(2, "failure !\n")

end if

See Also:

system, abort

45.4 Miscellaneous

45.4.1 sleep

include std/os.e

namespace os

public procedure sleep(atom t)

suspend thread execution for t seconds.

Parameters:

1. t : an atom, the number of seconds for which to sleep.

Comments:

The operating system will suspend your process and schedule other processes.
With multiple tasks, the whole program sleeps, not just the current task. To make just the current task sleep, you can

call task schedule(task self(), i, i) and then execute task yield. Another option is to call task delay.

Example 1:

puts(1, "Waiting 15 seconds and a quarter ...\n")

sleep (15.25)

puts(1, "Done.\n")

See Also:

task schedule, task yield, task delay

290

Chapter 46
Pipe Input and Output

46.1 Notes

Due to a bug, Euphoria does not handle STDERR properly. STDERR cannot captured for Euphoria programs (other programs
will work fully) The IO functions currently work with file handles, a future version might wrap them in streams so that
they can be used directly alongside other file/socket/other-streams with a stream select function.

46.2 Accessor Constants

46.2.1 enum

include std/pipeio.e

namespace pipeio

public enum

46.2.2 STDIN

include std/pipeio.e

namespace pipeio

STDIN

46.2.3 STDOUT

include std/pipeio.e

namespace pipeio

STDOUT

46.2.4 STDERR

include std/pipeio.e

namespace pipeio

STDERR

291

CHAPTER 46. PIPE INPUT AND OUTPUT 46.3. OPENING AND CLOSING

46.2.5 PID

include std/pipeio.e

namespace pipeio

PID

46.2.6 enum

include std/pipeio.e

namespace pipeio

public enum

46.2.7 PARENT

include std/pipeio.e

namespace pipeio

PARENT

46.2.8 CHILD

include std/pipeio.e

namespace pipeio

CHILD

46.3 Opening and Closing

46.3.1 process

include std/pipeio.e

namespace pipeio

public type process(object o)

Process Type

46.3.2 close

include std/pipeio.e

namespace pipeio

public function close(atom fd)

closes handle fd.

Returns:

An integer, 0 on success, -1 on failure

Example 1:

integer status = pipeio:close(p[STDIN])

292

CHAPTER 46. PIPE INPUT AND OUTPUT 46.4. READ AND WRITE PROCESS

46.3.3 kill

include std/pipeio.e

namespace pipeio

public procedure kill(process p, atom signal = 15)

closes pipes and kills process p with signal signal (default 15).

Comments:

Signal is ignored on Windows.

Example 1:

kill(p)

46.4 Read and Write Process

46.4.1 read

include std/pipeio.e

namespace pipeio

public function read(atom fd, integer bytes)

reads bytes bytes from handle fd.

Returns:

A sequence, containing data, an empty sequence on EOF or an error code. Similar to get bytes.

Example 1:

sequence data=read(p[STDOUT] ,256)

46.4.2 write

include std/pipeio.e

namespace pipeio

public function write(atom fd, sequence str)

writes bytes to handle fd.

Returns:

An integer, number of bytes written, or -1 on error

Example 1:

integer bytes_written = write(p[STDIN],"Hello World!")

293

CHAPTER 46. PIPE INPUT AND OUTPUT 46.4. READ AND WRITE PROCESS

46.4.3 error no

include std/pipeio.e

namespace pipeio

public function error_no ()

gets error no from last call to a pipe function.

Comments:

Value returned will be OS-specific, and is not always set on Windows at least

Example 1:

integer error = error_no ()

46.4.4 create

include std/pipeio.e

namespace pipeio

public function create ()

creates pipes for inter-process communication.

Returns:

A handle, process handles parent side pipes,child side pipes

Example 1:

object p = exec("dir", create ())

46.4.5 exec

include std/pipeio.e

namespace pipeio

public function exec(sequence cmd , sequence pipe)

opens process with command line cmd.

Returns:

A handle, process handles PID, STDIN, STDOUT, STDERR

Example 1:

object p = exec("dir", create ())

294

Chapter 47
Pretty Printing

47.0.6 PRETTY DEFAULT

include std/pretty.e

namespace pretty

public constant PRETTY_DEFAULT

47.0.7 enum

include std/pretty.e

namespace pretty

public enum

47.1 Routines

47.1.1 pretty print

include std/pretty.e

namespace pretty

public procedure pretty_print(integer fn, object x, sequence options = PRETTY_DEFAULT)

prints an object to a file or device using braces , , , , indentation, and multiple lines to show the structure.

Parameters:

1. fn : an integer, the file or device number to write to

2. x : the object to display or convert to printable form

3. options : is an (up to) 10-element options sequence.

Comments:

Pass in options to select the defaults, or set options as below:

1. display ASCII characters:

• 0 – never

295

CHAPTER 47. PRETTY PRINTING 47.1. ROUTINES

• 1 – alongside any integers in printable ASCII range (default)

• 2 – display as ”string” when all integers of a sequence are in ASCII range

• 3 – show strings, and quoted characters (only) for any integers in ASCII range as well as the characters: \t \r
\n

2. amount to indent for each level of sequence nesting – default: 2

3. column we are starting at – default: 1

4. approximate column to wrap at – default: 78

5. format to use for integers – default: ”%d”

6. format to use for floating-point numbers – default: ”%.10g”

7. minimum value for printable ASCII – default 32

8. maximum value for printable ASCII – default 127

9. maximum number of lines to output

10. line breaks between elements – default 1 (0 = no line breaks, -1 = line breaks to wrap only)

If the length is less than ten, unspecified options at the end of the sequence will keep the default values. For example:
0, 5 will choose "never display ASCII", plus 5-character indentation, with defaults for everything else.

The default options can be applied using the public constant PRETTY DEFAULT, and the elements may be accessed
using the following public enum:

1. DISPLAY ASCII

2. INDENT

3. START COLUMN

4. WRAP

5. INT FORMAT

6. FP FORMAT

7. MIN ASCII

8. MAX ASCII

9. MAX LINES

10. LINE BREAKS

The display will start at the current cursor position. Normally you will want to call pretty print when the cursor
is in column 1 (after printing a \n character). If you want to start in a different column, you should call position and
specify a value for option [3]. This will ensure that the first and last braces in a sequence line up vertically.

When specifying the format to use for integers and floating-point numbers, you can add some decoration. For example:
"(%d)" or "$ %.2f" .

Example 1:

pretty_print (1, "ABC", {})

{65’A’ ,66’B’ ,67’C’}

296

CHAPTER 47. PRETTY PRINTING 47.1. ROUTINES

Example 2:

1 pretty_print (1, {{1,2,3}, {4,5,6}}, {})

2

3 {

4 {1,2,3},

5 {4,5,6}

6 }

Example 3:

1 pretty_print (1, {"Euphoria", "Programming", "Language"}, {2})

2

3 {

4 "Euphoria",

5 "Programming",

6 "Language"

7 }

Example 4:

1 puts(1, "word_list = ") -- moves cursor to column 13

2 pretty_print (1,

3 {{"Euphoria", 8, 5.3},

4 {"Programming", 11, -2.9},

5 {"Language", 8, 9.8}} ,

6 {2, 4, 13, 78, "%03d", "%.3f"}) -- first 6 of 8 options

7

8 word_list = {

9 {

10 "Euphoria",

11 008,

12 5.300

13 },

14 {

15 "Programming",

16 011,

17 -2.900

18 },

19 {

20 "Language",

21 008,

22 9.800

23 }

24 }

See Also:

print, sprint, printf, sprintf, pretty sprint

47.1.2 pretty sprint

include std/pretty.e

namespace pretty

public function pretty_sprint(object x, sequence options = PRETTY_DEFAULT)

297

CHAPTER 47. PRETTY PRINTING 47.1. ROUTINES

formats an object using braces , , , , indentation, and multiple lines to show the structure.

Parameters:

1. x : the object to display

2. options : is an (up to) 10-element options sequence: Pass to select the defaults, or set options

Returns:

A sequence, of printable characters, representing x in an human-readable form.

Comments:

This function formats objects the same as pretty print but returns the sequence obtained instead of sending it to some
file..

See Also:

pretty print, sprint

298

Chapter 48
Multi-Tasking

48.1 General Notes

For a complete overview of the task system, please see the mini-guide Multitasking in Euphoria.

48.2 Warning

The task system does not yet function in a shared library. Task routine calls that are compiled into a shared library are
emitted as a NOP (no operation) and will therefore have no effect.

It is planned to allow the task system to function in shared libraries in future versions of OpenEuphoria.

48.3 Routines

48.3.1 task delay

include std/task.e

namespace task

public procedure task_delay(atom delaytime)

suspends a task for a short period, allowing other tasks to run in the meantime.

Parameters:

1. delaytime : an atom, the duration of the delay in seconds.

Comments:

This procedure is similar to sleep but allows for other tasks to run by yielding on a regular basis. Like sleep its argument
needs not being an integer.

See Also:

sleep

48.3.2 task clock start

<built -in > procedure task_clock_start ()

restarts the clock used for scheduling real-time tasks.

299

CHAPTER 48. MULTI-TASKING 48.3. ROUTINES

Comments:

Call this routine, some time after calling task clock stop, when you want scheduling of real-time tasks to continue.
task clock stop and task clock start can be used to freeze the scheduling of real-time tasks.
task clock start causes the scheduled times of all real-time tasks to be incremented by the amount of time since

task clock stop was called. This allows a game, simulation, or other program to continue smoothly.
Time-shared tasks are not affected.

Example 1:

1 -- freeze the game while the player answers the phone

2 task_clock_stop ()

3 while get_key () = -1 do

4 end while

5 task_clock_start ()

See Also:

task clock stop, task schedule, task yield, task suspend, task delay

48.3.3 task clock stop

<built -in > procedure task_clock_stop ()

stops the scheduling of real-time tasks.

Comments:

Call task clock stop when you want to take time out from scheduling real-time tasks. For instance, you want to
temporarily suspend a game or simulation for a period of time.

Scheduling will resume when task clock start is called.
Time-shared tasks can continue. The current task can also continue, unless it is a real-time task and it yields.
The time function is not affected by this.

See Also:

task clock start, task schedule, task yield, task suspend, task delay

48.3.4 task create

<built -in > function task_create(integer rid , sequence args)

creates a new task, given a home procedure and the arguments passed to it.

Parameters:

1. rid : an integer, the routine id of a user-defined Euphoria procedure.

2. args : a sequence, the list of arguments that will be passed to this procedure when the task starts executing.

Returns:

An atom, a task identifier, created by the system. It can be used to identify this task to the other Euphoria multitasking
routines.

300

CHAPTER 48. MULTI-TASKING 48.3. ROUTINES

Errors:

There must be at most 12 parameters in args.

Comments:

task create creates a new task, but does not start it executing. You must call task schedule for this purpose.
Each task has its own set of private variables and its own call stack. Global and local variables are shared between all

tasks.
If a run-time error is detected, the traceback will include information on all tasks, with the offending task listed first.
Many tasks can be created that all run the same procedure, possibly with different parameters.
A task cannot be based on a function, since there would be no way of using the function result.
Each task id is unique. task create never returns the same task id as it did before. Task id’s are integer-valued

atoms and can be as large as the largest integer-valued atom (15 digits).

Example 1:

mytask = task_create(routine_id("myproc"), {5, 9, "ABC"})

See Also:

task schedule, task yield, task suspend, task self

48.3.5 task list

<built -in > function task_list ()

gets a sequence containing the task id’s for all active or suspended tasks.

Returns:

A sequence, of atoms, the list of all task that are or may be scheduled.

Comments:

This function lets you find out which tasks currently exist. Tasks that have terminated are not included. You can pass a
task id to task status to find out more about a particular task.

Example 1:

1 sequence tasks

2

3 tasks = task_list ()

4 for i = 1 to length(tasks) do

5 if task_status(tasks[i]) > 0 then

6 printf(1, "task %d is active\n", tasks[i])

7 end if

8 end for

See Also:

task status, task create, task schedule, task yield, task suspend

301

CHAPTER 48. MULTI-TASKING 48.3. ROUTINES

48.3.6 task schedule

<built -in > procedure task_schedule(atom task_id , object schedule)

schedules a task to run using a scheduling parameter.

Parameters:

1. task id : an atom, the identifier of a task that did not terminate yet.

2. schedule : an object, describing when and how often to run the task.

Comments:

task id must have been returned by task create.

The task scheduler, which is built-in to the Euphoria run-time system, will use schedule as a guide when scheduling
this task. It may not always be possible to achieve the desired number of consecutive runs, or the desired time frame. For
instance, a task might take so long before yielding control, that another task misses its desired time window.

schedule is being interpreted as follows:

schedule is an integer:

This defines task id as time shared, and tells the task scheduler how many times it should the task in one burst before
it considers running other tasks. schedule must be greater than zero then.

Increasing this count will increase the percentage of CPU time given to the selected task, while decreasing the percentage
given to other time-shared tasks. Use trial and error to find the optimal trade off. It will also increase the efficiency of the
program, since each actual task switch wastes a bit of time.

schedule is a sequence:

In this case, it must be a pair of positive atoms, the first one not being less than the second one. This defines task id

as a real time task. The pair states the minimum and maximum times, in seconds, to wait before running the task. The
pair also sets the time interval for subsequent runs of the task, until the next call to task schedule or task suspend.

Real-time tasks have a higher priority. Time-shared tasks are run when no real-time task is ready to execute.

A task can switch back and forth between real-time and time-shared. It all depends on the last call to task schedule

for that task. The scheduler never runs a real-time task before the start of its time frame (min value in the min, max

pair), and it tries to avoid missing the task’s deadline (max value).

For precise timing, you can specify the same value for min and max. However, by specifying a range of times, you give
the scheduler some flexibility. This allows it to schedule tasks more efficiently, and avoid non-productive delays. When
the scheduler must delay, it calls sleep, unless the required delay is very short. sleep lets the operating system run other
programs.

The min and max values can be fractional. If the min value is smaller than the resolution of the scheduler’s clock
(currently 0.01 seconds on Windows or Unix) then accurate time scheduling cannot be performed, but the scheduler will
try to run the task several times in a row to approximate what is desired.

For example, if you ask for a min time of 0.002 seconds, then the scheduler will try to run your task 0.01/0.002 =

5 times in a row before waiting for the clock to ”click” ahead by 0.01 . During the next 0.01 seconds it will run your
task (up to) another 5 times etc. provided your task can be completed 5 times in one clock period.

At program start-up there is a single task running. Its task id is 0, and initially it is a time-shared task allowed 1 run
per task yield. No other task can run until task 0 executes a task yield.

If task 0 (top-level) runs off the end of the main file, the whole program terminates, regardless of what other tasks
may still be active.

If the scheduler finds that no task is active, i.e. no task will ever run again (not even task 0), it terminates the program
with a 0 exit code, similar to abort(0).

302

CHAPTER 48. MULTI-TASKING 48.3. ROUTINES

Example 1:

1 -- Task t1 will be executed up to 10 times in a row before

2 -- other time -shared tasks are given control. If a real -time

3 -- task needs control , t1 will lose control to the real -time task.

4 task_schedule(t1 , 10)

5

6 -- Task t2 will be scheduled to run some time between 4 and 5 seconds

7 -- from now. Barring any rescheduling of t2, it will continue to

8 -- execute every 4 to 5 seconds thereafter.

9 task_schedule(t2 , {4, 5})

See Also:

task create, task yield, task suspend

48.3.7 task self

<built -in > function task_self ()

returns the task id of the current task.

Comments:

This value may be needed, if a task wants to schedule or suspend itself.

Example 1:

-- schedule self

task_schedule(task_self(), {5.9, 6.0})

See Also:

task create, task schedule, task yield, task suspend

48.3.8 task status

<built -in > function task_status(atom task_id)

returns the status of a task.

Parameters:

1. task id : an atom, the id of the task being queried.

Returns:

An integer,

• -1 – task does not exist, or terminated

• 0 – task is suspended

• 1 – task is active

303

CHAPTER 48. MULTI-TASKING 48.3. ROUTINES

Comments:

A task might want to know the status of one or more other tasks when deciding whether to proceed with some processing.

Example 1:

1 integer s

2

3 s = task_status(tid)

4 if s = 1 then

5 puts(1, "ACTIVE\n")

6 elsif s = 0 then

7 puts(1, "SUSPENDED\n")

8 else

9 puts(1, "DOESN ’T EXIST\n")

10 end if

See Also:

task list, task create, task schedule, task suspend

48.3.9 task suspend

<built -in > procedure task_suspend(atom task_id)

suspends execution of a task.

Parameters:

1. task id : an atom, the id of the task to suspend.

Comments:

A suspended task will not be executed again unless there is a call to task schedule for the task.
task id is a task id returned from task create. - Any task can suspend any other task. If a task suspends itself, the

suspension will start as soon as the task calls task yield.
Suspending a task and never scheduling it again is how to kill a task. There is no task kill primitives because

undead tasks were creating too much trouble and confusion. As a general fact, nothing that impacts a running task can
be effective as long as the task has not yielded.

Example 1:

1 -- suspend task 15

2 task_suspend (15)

3

4 -- suspend current task

5 task_suspend(task_self ())

See Also:

task create, task schedule, task self, task yield

304

CHAPTER 48. MULTI-TASKING 48.3. ROUTINES

48.3.10 task yield

<built -in > procedure task_yield ()

yields control to the scheduler. The scheduler can then choose another task to run, or perhaps let the current task
continue running.

Comments:

Tasks should call task yield periodically so other tasks will have a chance to run. Only when task yield is called, is
there a way for the scheduler to take back control from a task. This is what is known as cooperative multitasking.

A task can have calls to task yield in many different places in its code, and at any depth of subroutine call.
The scheduler will use the current scheduling parameter (see task schedule), in determining when to return to the

current task.
When control returns, execution will continue with the statement that follows task yield. The call-stack and all

private variables will remain as they were when task yield was called. Global and local variables may have changed, due
to the execution of other tasks.

Tasks should try to call task yield often enough to avoid causing real-time tasks to miss their time window, and to
avoid blocking time-shared tasks for an excessive period of time. On the other hand, there is a bit of overhead in calling
task yield, and this overhead is slightly larger when an actual switch to a different task takes place. A task yield

where the same task continues executing takes less time.
A task should avoid calling task yield when it is in the middle of a delicate operation that requires exclusive access

to some data. Otherwise a race condition could occur, where one task might interfere with an operation being carried out
by another task. In some cases a task might need to mark some data as ”locked” or ”unlocked” in order to prevent this
possibility. With cooperative multitasking, these concurrency issues are much less of a problem than with the preemptive
multitasking that other languages support.

Example 1:

1 -- From Language war game.

2 -- This small task deducts life support energy from either the

3 -- large Euphoria ship or the small shuttle.

4 -- It seems to run "forever" in an infinite loop ,

5 -- but it’s actually a real -time task that is called

6 -- every 1.7 to 1.8 seconds throughout the game.

7 -- It deducts either 3 units or 13 units of life support energy each time.

8

9 procedure task_life ()

10 -- independent task: subtract life support energy

11 while TRUE do

12 if shuttle then

13 p_energy (-3)

14 else

15 p_energy (-13)

16 end if

17 task_yield ()

18 end while

19 end procedure

See Also:

task create, task schedule, task suspend

305

Chapter 49
Types - Extended

49.0.11 OBJ UNASSIGNED

include std/types.e

namespace types

public constant OBJ_UNASSIGNED

Object not assigned

49.0.12 OBJ INTEGER

include std/types.e

namespace types

public constant OBJ_INTEGER

Object is integer

49.0.13 OBJ ATOM

include std/types.e

namespace types

public constant OBJ_ATOM

Object is atom

49.0.14 OBJ SEQUENCE

include std/types.e

namespace types

public constant OBJ_SEQUENCE

Object is sequence

49.0.15 object

<built -in > type object(object x)

returns information about the object type of the supplied argument x.

306

CHAPTER 49. TYPES - EXTENDED

Returns:

1. An integer,

• OBJ UNASSIGNED if x has not been assigned anything yet.

• OBJ INTEGER if x holds an integer value.

• OBJ ATOM if x holds a number that is not an integer.

• OBJ SEQUENCE if x holds a sequence value.

Example 1:

1 ? object (1) --> OBJ_INTEGER

2 ? object (1.1) --> OBJ_ATOM

3 ? object("1") --> OBJ_SEQUENCE

4 object x

5 ? object(x) --> OBJ_UNASSIGNED

See Also:

sequence, integer, atom

49.0.16 integer

<built -in > type integer(object x)

tests the supplied argument x to see if it is an integer or not.

Returns:

1. An integer.

• 1 if x is an integer.

• 0 if x is not an integer.

Example 1:

? integer (1) --> 1

? integer (1.1) --> 0

? integer("1") --> 0

See Also:

sequence, object, atom

49.0.17 atom

<built -in > type atom(object x)

tests the supplied argument x to see if it is an atom or not.

307

CHAPTER 49. TYPES - EXTENDED

Returns:

1. An integer,

• 1 if x is an atom.

• 0 if x is not an atom.

Example 1:

? atom (1) --> 1

? atom (1.1) --> 1

? atom("1") --> 0

See Also:

sequence, object, integer

49.0.18 sequence

<built -in > type sequence(object x)

tests the supplied argument x to see if it is a sequence or not.

Returns:

1. An

• 1 if x is a sequence.

• 0 if x is not an sequence.

Example 1:

? sequence (1) --> 0

? sequence ({1}) --> 1

? sequence("1") --> 1

See Also:

integer, object, atom

49.0.19 FALSE

include std/types.e

namespace types

public constant FALSE

Boolean FALSE value

308

CHAPTER 49. TYPES - EXTENDED 49.1. PREDEFINED CHARACTER SETS

49.0.20 TRUE

include std/types.e

namespace types

public constant TRUE

Boolean TRUE value

49.1 Predefined Character Sets

49.1.1 enum

include std/types.e

namespace types

public enum

49.2 Support Functions

49.2.1 char test

include std/types.e

namespace types

public function char_test(object test_data , sequence char_set)

determines whether one or more characters are in a given character set.

Parameters:

1. test data : an object to test, either a character or a string

2. char set : a sequence, either a list of allowable characters, or a list of pairs representing allowable ranges.

Returns:

An integer, 1 if all characters are allowed, else 0.

Comments:

pCharset is either a simple sequence of characters (such as "qwertyuiop[]\") or a sequence of character pairs, which
represent allowable ranges of characters. For example Alphabetic is defined as .

To add an isolated character to a character set which is defined using ranges, present it as a range of length 1, like in
%,%.

Example 1:

1 char_test("ABCD", {{’A’, ’D’}})

2 -- TRUE , every char is in the range ’A’ to ’D’

3

4 char_test("ABCD", {{’A’, ’C’}})

5 -- FALSE , not every char is in the range ’A’ to ’C’

6

7 char_test("Harry", {{’a’, ’z’}, {’D’, ’J’}})

8 -- TRUE , every char is either in the range ’a’ to ’z’,

309

CHAPTER 49. TYPES - EXTENDED 49.2. SUPPORT FUNCTIONS

9 -- or in the range ’D’ to ’J’

10

11 char_test("Potter", "novel")

12 -- FALSE , not every character is in the set ’n’, ’o’, ’v’, ’e’, ’l’

49.2.2 set default charsets

include std/types.e

namespace types

public procedure set_default_charsets ()

sets all the defined character sets to their default definitions.

Example 1:

set_default_charsets ()

49.2.3 get charsets

include std/types.e

namespace types

public function get_charsets ()

gets the definition for each of the defined character sets.

Returns:

A sequence, of pairs. The first element of each pair is the character set id (such as CS Whitespace) and the second is
the definition of that character set.

Comments:

This is the same format required for the set charsets routine.

Example 1:

sequence sets

sets = get_charsets ()

See Also:

set charsets, set default charsets

49.2.4 set charsets

include std/types.e

namespace types

public procedure set_charsets(sequence charset_list)

sets the definition for one or more defined character sets.

310

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

Parameters:

1. charset list : a sequence of zero or more character set definitions.

Comments:

charset list must be a sequence of pairs. The first element of each pair is the character set id (such as CS Whitespace)
and the second is the definition of that character set.

This is the same format returned by the get charsets routine.
You cannot create new character sets using this routine.

Example 1:

1 set_charsets ({{ CS_Whitespace , " \t"}})

2 t_space(’\n’) --> FALSE

3

4 t_specword(’$’) --> FALSE

5 set_charsets ({{ CS_SpecWord , "_-#$%"}})

6 t_specword(’$’) --> TRUE

See Also:

get charsets

49.3 Types

49.3.1 boolean

include std/types.e

namespace types

public type boolean(object test_data)

test for an integer boolean.

Returns:

Returns TRUE if argument is 1 or 0
Returns FALSE if the argument is anything else other than 1 or 0.

Example 1:

1 boolean (-1) -- FALSE

2 boolean (0) -- TRUE

3 boolean (1) -- TRUE

4 boolean (1.234) -- FALSE

5 boolean(’A’) -- FALSE

6 boolean(’9’) -- FALSE

7 boolean(’?’) -- FALSE

8 boolean("abc") -- FALSE

9 boolean("ab3") -- FALSE

10 boolean ({1,2,"abc"}) -- FALSE

11 boolean ({1, 2, 9.7) -- FALSE

12 boolean ({}) -- FALSE (empty sequence)

311

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

49.3.2 t boolean

include std/types.e

namespace types

public type t_boolean(object test_data)

tests elements for boolean.

Returns:

Returns TRUE if argument is boolean (1 or 0) or if every element of the argument is boolean.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-boolean elements

Example 1:

1 t_boolean (-1) -- FALSE

2 t_boolean (0) -- TRUE

3 t_boolean (1) -- TRUE

4 t_boolean ({1, 1, 0}) -- TRUE

5 t_boolean ({1, 1, 9.7}) -- FALSE

6 t_boolean ({}) -- FALSE (empty sequence)

49.3.3 t alnum

include std/types.e

namespace types

public type t_alnum(object test_data)

tests for alphanumeric character.

Returns:

Returns TRUE if argument is an alphanumeric character or if every element of the argument is an alphanumeric character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-alphanumeric elements

Example 1:

1 t_alnum (-1) -- FALSE

2 t_alnum (0) -- FALSE

3 t_alnum (1) -- FALSE

4 t_alnum (1.234) -- FALSE

5 t_alnum(’A’) -- TRUE

6 t_alnum(’9’) -- TRUE

7 t_alnum(’?’) -- FALSE

8 t_alnum("abc") -- TRUE (every element is alphabetic or a digit)

9 t_alnum("ab3") -- TRUE

10 t_alnum ({1, 2, "abc"}) -- FALSE (contains a sequence)

11 t_alnum ({1, 2, 9.7}) -- FALSE (contains a non -integer)

12 t_alnum ({}) -- FALSE (empty sequence)

312

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

49.3.4 t identifier

include std/types.e

namespace types

public type t_identifier(object test_data)

tests string if it is an valid identifier.

Returns:

Returns TRUE if argument is an alphanumeric character or if every element of the argument is an alphanumeric character
and that the first character is not numeric and the whole group of characters are not all numeric.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-alphanumeric elements

Example 1:

1 t_identifier (-1) -- FALSE

2 t_identifier (0) -- FALSE

3 t_identifier (1) -- FALSE

4 t_identifier (1.234) -- FALSE

5 t_identifier(’A’) -- TRUE

6 t_identifier(’9’) -- FALSE

7 t_identifier(’?’) -- FALSE

8 t_identifier("abc") -- TRUE (every element is alphabetic or a digit)

9 t_identifier("ab3") -- TRUE

10 t_identifier("ab_3") -- TRUE (underscore is allowed)

11 t_identifier("1abc") -- FALSE (identifier cannot start with a number)

12 t_identifier("102") -- FALSE (identifier cannot be all numeric)

13 t_identifier ({1, 2, "abc"}) -- FALSE (contains a sequence)

14 t_identifier ({1, 2, 9.7}) -- FALSE (contains a non -integer)

15 t_identifier ({}) -- FALSE (empty sequence)

49.3.5 t alpha

include std/types.e

namespace types

public type t_alpha(object test_data)

tests for alphabetic characters.

Returns:

Returns TRUE if argument is an alphabetic character or if every element of the argument is an alphabetic character.
Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-alphabetic elements

Example 1:

1 t_alpha (-1) -- FALSE

2 t_alpha (0) -- FALSE

3 t_alpha (1) -- FALSE

4 t_alpha (1.234) -- FALSE

5 t_alpha(’A’) -- TRUE

6 t_alpha(’9’) -- FALSE

7 t_alpha(’?’) -- FALSE

8 t_alpha("abc") -- TRUE (every element is alphabetic)

9 t_alpha("ab3") -- FALSE

313

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

10 t_alpha ({1, 2, "abc"}) -- FALSE (contains a sequence)

11 t_alpha ({1, 2, 9.7}) -- FALSE (contains a non -integer)

12 t_alpha ({}) -- FALSE (empty sequence)

49.3.6 t ascii

include std/types.e

namespace types

public type t_ascii(object test_data)

tests for ASCII characters.

Returns:

Returns TRUE if argument is an ASCII character or if every element of the argument is an ASCII character.
Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-ASCII elements

Example 1:

1 t_ascii (-1) -- FALSE

2 t_ascii (0) -- TRUE

3 t_ascii (1) -- TRUE

4 t_ascii (1.234) -- FALSE

5 t_ascii(’A’) -- TRUE

6 t_ascii(’9’) -- TRUE

7 t_ascii(’?’) -- TRUE

8 t_ascii("abc") -- TRUE (every element is ascii)

9 t_ascii("ab3") -- TRUE

10 t_ascii ({1, 2, "abc"}) -- FALSE (contains a sequence)

11 t_ascii ({1, 2, 9.7}) -- FALSE (contains a non -integer)

12 t_ascii ({}) -- FALSE (empty sequence)

49.3.7 t cntrl

include std/types.e

namespace types

public type t_cntrl(object test_data)

tests for control characters.

Returns:

Returns TRUE if argument is an Control character or if every element of the argument is an Control character.
Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-Control elements

Example 1:

1 t_cntrl (-1) -- FALSE

2 t_cntrl (0) -- TRUE

3 t_cntrl (1) -- TRUE

4 t_cntrl (1.234) -- FALSE

5 t_cntrl(’A’) -- FALSE

6 t_cntrl(’9’) -- FALSE

7 t_cntrl(’?’) -- FALSE

314

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

8 t_cntrl("abc") -- FALSE (every element is ascii)

9 t_cntrl("ab3") -- FALSE

10 t_cntrl ({1, 2, "abc"}) -- FALSE (contains a sequence)

11 t_cntrl ({1, 2, 9.7}) -- FALSE (contains a non -integer)

12 t_cntrl ({1, 2, ’a’}) -- FALSE (contains a non -control)

13 t_cntrl ({}) -- FALSE (empty sequence)

49.3.8 t digit

include std/types.e

namespace types

public type t_digit(object test_data)

tests for digits.

Returns:

Returns TRUE if argument is an digit character or if every element of the argument is an digit character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-digits

Example 1:

1 t_digit (-1) -- FALSE

2 t_digit (0) -- FALSE

3 t_digit (1) -- FALSE

4 t_digit (1.234) -- FALSE

5 t_digit(’A’) -- FALSE

6 t_digit(’9’) -- TRUE

7 t_digit(’?’) -- FALSE

8 t_digit("abc") -- FALSE

9 t_digit("ab3") -- FALSE

10 t_digit("123") -- TRUE

11 t_digit ({1, 2, "abc"}) -- FALSE (contains a sequence)

12 t_digit ({1, 2, 9.7}) -- FALSE (contains a non -integer)

13 t_digit ({1, 2, ’a’}) -- FALSE (contains a non -digit)

14 t_digit ({}) -- FALSE (empty sequence)

49.3.9 t graph

include std/types.e

namespace types

public type t_graph(object test_data)

test for glyphs (printable) characters.

Returns:

Returns TRUE if argument is a glyph character or if every element of the argument is a glyph character. (One that is
visible when displayed)

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-glyph

315

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

Example 1:

1 t_graph (-1) -- FALSE

2 t_graph (0) -- FALSE

3 t_graph (1) -- FALSE

4 t_graph (1.234) -- FALSE

5 t_graph(’A’) -- TRUE

6 t_graph(’9’) -- TRUE

7 t_graph(’?’) -- TRUE

8 t_graph(’ ’) -- FALSE

9 t_graph("abc") -- TRUE

10 t_graph("ab3") -- TRUE

11 t_graph("123") -- TRUE

12 t_graph ({1, 2, "abc"}) -- FALSE (contains a sequence)

13 t_graph ({1, 2, 9.7}) -- FALSE (contains a non -integer)

14 t_graph ({1, 2, ’a’}) -- FALSE (control chars (1,2) don ’t have glyphs)

15 t_graph ({}) -- FALSE (empty sequence)

49.3.10 t specword

include std/types.e

namespace types

public type t_specword(object test_data)

tests for a special word character.

Returns:

Returns TRUE if argument is a special word character or if every element of the argument is a special word character.
Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-special-word characters.

Comments:

A special word character is any character that is not normally part of a word but in certain cases may be considered.
This is most commonly used when looking for words in programming source code which allows an underscore as a word
character.

Example 1:

1 t_specword (-1) -- FALSE

2 t_specword (0) -- FALSE

3 t_specword (1) -- FALSE

4 t_specword (1.234) -- FALSE

5 t_specword(’A’) -- FALSE

6 t_specword(’9’) -- FALSE

7 t_specword(’?’) -- FALSE

8 t_specword(’_’) -- TRUE

9 t_specword("abc") -- FALSE

10 t_specword("ab3") -- FALSE

11 t_specword("123") -- FALSE

12 t_specword ({1, 2, "abc"}) -- FALSE (contains a sequence)

13 t_specword ({1, 2, 9.7}) -- FALSE (contains a non -integer)

14 t_specword ({1, 2, ’a’}) -- FALSE (control chars (1,2) don ’t have glyphs)

15 t_specword ({}) -- FALSE (empty sequence)

316

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

49.3.11 t bytearray

include std/types.e

namespace types

public type t_bytearray(object test_data)

tests for bytes.

Returns:

Returns TRUE if argument is a byte or if every element of the argument is a byte. (Integers from 0 to 255)
Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-byte

Example 1:

1 t_bytearray (-1) -- FALSE (contains value less than zero)

2 t_bytearray (0) -- TRUE

3 t_bytearray (1) -- TRUE

4 t_bytearray (10) -- TRUE

5 t_bytearray (100) -- TRUE

6 t_bytearray (1000) -- FALSE (greater than 255)

7 t_bytearray (1.234) -- FALSE (contains a floating number)

8 t_bytearray(’A’) -- TRUE

9 t_bytearray(’9’) -- TRUE

10 t_bytearray(’?’) -- TRUE

11 t_bytearray(’ ’) -- TRUE

12 t_bytearray("abc") -- TRUE

13 t_bytearray("ab3") -- TRUE

14 t_bytearray("123") -- TRUE

15 t_bytearray ({1, 2, "abc"}) -- FALSE (contains a sequence)

16 t_bytearray ({1, 2, 9.7}) -- FALSE (contains a non -integer)

17 t_bytearray ({1, 2, ’a’}) -- TRUE

18 t_bytearray ({}) -- FALSE (empty sequence)

49.3.12 t lower

include std/types.e

namespace types

public type t_lower(object test_data)

tests for lowercase characters.

Returns:

Returns TRUE if argument is a lowercase character or if every element of the argument is an lowercase character.
Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-lowercase

Example 1:

1 t_lower (-1) -- FALSE

2 t_lower (0) -- FALSE

3 t_lower (1) -- FALSE

4 t_lower (1.234) -- FALSE

5 t_lower(’A’) -- FALSE

6 t_lower(’9’) -- FALSE

7 t_lower(’?’) -- FALSE

317

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

8 t_lower("abc") -- TRUE

9 t_lower("ab3") -- FALSE

10 t_lower("123") -- TRUE

11 t_lower ({1, 2, "abc"}) -- FALSE (contains a sequence)

12 t_lower ({1, 2, 9.7}) -- FALSE (contains a non -integer)

13 t_lower ({1, 2, ’a’}) -- FALSE (contains a non -digit)

14 t_lower ({}) -- FALSE (empty sequence)

49.3.13 t print

include std/types.e

namespace types

public type t_print(object test_data)

tests for ASCII glyph characters.

Returns:

Returns TRUE if argument is a character that has an ASCII glyph or if every element of the argument is a character that
has an ASCII glyph.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains characters that do not have
an ASCII glyph.

Example 1:

1 t_print (-1) -- FALSE

2 t_print (0) -- FALSE

3 t_print (1) -- FALSE

4 t_print (1.234) -- FALSE

5 t_print(’A’) -- TRUE

6 t_print(’9’) -- TRUE

7 t_print(’?’) -- TRUE

8 t_print("abc") -- TRUE

9 t_print("ab3") -- TRUE

10 t_print("123") -- TRUE

11 t_print("123 ") -- FALSE (contains a space)

12 t_print("123\n") -- FALSE (contains a new -line)

13 t_print ({1, 2, "abc"}) -- FALSE (contains a sequence)

14 t_print ({1, 2, 9.7}) -- FALSE (contains a non -integer)

15 t_print ({1, 2, ’a’}) -- FALSE

16 t_print ({}) -- FALSE (empty sequence)

49.3.14 t display

include std/types.e

namespace types

public type t_display(object test_data)

tests for printable characters.

Returns:

Returns TRUE if argument is a character that can be displayed or if every element of the argument is a character that
can be displayed.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains characters that cannot be
displayed.

318

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

Example 1:

1 t_display (-1) -- FALSE

2 t_display (0) -- FALSE

3 t_display (1) -- FALSE

4 t_display (1.234) -- FALSE

5 t_display(’A’) -- TRUE

6 t_display(’9’) -- TRUE

7 t_display(’?’) -- TRUE

8 t_display("abc") -- TRUE

9 t_display("ab3") -- TRUE

10 t_display("123") -- TRUE

11 t_display("123 ") -- TRUE

12 t_display("123\n") -- TRUE

13 t_display ({1, 2, "abc"}) -- FALSE (contains a sequence)

14 t_display ({1, 2, 9.7}) -- FALSE (contains a non -integer)

15 t_display ({1, 2, ’a’}) -- FALSE

16 t_display ({}) -- FALSE (empty sequence)

49.3.15 t punct

include std/types.e

namespace types

public type t_punct(object test_data)

tests for punctuation characters.

Returns:

Returns TRUE if argument is an punctuation character or if every element of the argument is an punctuation character.
Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-punctuation symbols.

Example 1:

1 t_punct (-1) -- FALSE

2 t_punct (0) -- FALSE

3 t_punct (1) -- FALSE

4 t_punct (1.234) -- FALSE

5 t_punct(’A’) -- FALSE

6 t_punct(’9’) -- FALSE

7 t_punct(’?’) -- TRUE

8 t_punct("abc") -- FALSE

9 t_punct("(-)") -- TRUE

10 t_punct("123") -- TRUE

11 t_punct ({1, 2, "abc"}) -- FALSE (contains a sequence)

12 t_punct ({1, 2, 9.7}) -- FALSE (contains a non -integer)

13 t_punct ({1, 2, ’a’}) -- FALSE (contains a non -digit)

14 t_punct ({}) -- FALSE (empty sequence)

49.3.16 t space

include std/types.e

namespace types

public type t_space(object test_data)

tests for whitespace characters.

319

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

Returns:

Returns TRUE if argument is a whitespace character or if every element of the argument is an whitespace character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-whitespace character.

Example 1:

1 t_space (-1) -- FALSE

2 t_space (0) -- FALSE

3 t_space (1) -- FALSE

4 t_space (1.234) -- FALSE

5 t_space(’A’) -- FALSE

6 t_space(’9’) -- FALSE

7 t_space(’\t’) -- TRUE

8 t_space("abc") -- FALSE

9 t_space("123") -- FALSE

10 t_space ({1, 2, "abc"}) -- FALSE (contains a sequence)

11 t_space ({1, 2, 9.7}) -- FALSE (contains a non -integer)

12 t_space ({1, 2, ’a’}) -- FALSE (contains a non -digit)

13 t_space ({}) -- FALSE (empty sequence)

49.3.17 t upper

include std/types.e

namespace types

public type t_upper(object test_data)

tests for uppercase characters.

Returns:

Returns TRUE if argument is an uppercase character or if every element of the argument is an uppercase character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-uppercase characters.

Example 1:

1 t_upper (-1) -- FALSE

2 t_upper (0) -- FALSE

3 t_upper (1) -- FALSE

4 t_upper (1.234) -- FALSE

5 t_upper(’A’) -- TRUE

6 t_upper(’9’) -- FALSE

7 t_upper(’?’) -- FALSE

8 t_upper("abc") -- FALSE

9 t_upper("ABC") -- TRUE

10 t_upper("123") -- FALSE

11 t_upper ({1, 2, "abc"}) -- FALSE (contains a sequence)

12 t_upper ({1, 2, 9.7}) -- FALSE (contains a non -integer)

13 t_upper ({1, 2, ’a’}) -- FALSE (contains a non -digit)

14 t_upper ({}) -- FALSE (empty sequence)

320

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

49.3.18 t xdigit

include std/types.e

namespace types

public type t_xdigit(object test_data)

tests for hexadecimal characters.

Returns:

Returns TRUE if argument is an hexadecimal digit character or if every element of the argument is an hexadecimal digit
character.

Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-hexadecimal character.

Example 1:

1 t_xdigit (-1) -- FALSE

2 t_xdigit (0) -- FALSE

3 t_xdigit (1) -- FALSE

4 t_xdigit (1.234) -- FALSE

5 t_xdigit(’A’) -- TRUE

6 t_xdigit(’9’) -- TRUE

7 t_xdigit(’?’) -- FALSE

8 t_xdigit("abc") -- TRUE

9 t_xdigit("fgh") -- FALSE

10 t_xdigit("123") -- TRUE

11 t_xdigit ({1, 2, "abc"}) -- FALSE (contains a sequence)

12 t_xdigit ({1, 2, 9.7}) -- FALSE (contains a non -integer)

13 t_xdigit ({1, 2, ’a’}) -- FALSE (contains a non -digit)

14 t_xdigit ({}) -- FALSE (empty sequence)

49.3.19 t vowel

include std/types.e

namespace types

public type t_vowel(object test_data)

tests for vowel characters.

Returns:

Returns TRUE if argument is a vowel or if every element of the argument is a vowel character.
Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-vowels

Example 1:

1 t_vowel (-1) -- FALSE

2 t_vowel (0) -- FALSE

3 t_vowel (1) -- FALSE

4 t_vowel (1.234) -- FALSE

5 t_vowel(’A’) -- TRUE

6 t_vowel(’9’) -- FALSE

7 t_vowel(’?’) -- FALSE

8 t_vowel("abc") -- FALSE

9 t_vowel("aiu") -- TRUE

10 t_vowel("123") -- FALSE

321

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

11 t_vowel ({1, 2, "abc"}) -- FALSE (contains a sequence)

12 t_vowel ({1, 2, 9.7}) -- FALSE (contains a non -integer)

13 t_vowel ({1, 2, ’a’}) -- FALSE (contains a non -digit)

14 t_vowel ({}) -- FALSE (empty sequence)

49.3.20 t consonant

include std/types.e

namespace types

public type t_consonant(object test_data)

tests for consonant characters.

Returns:

Returns TRUE if argument is a consonant character or if every element of the argument is an consonant character.
Returns FALSE if the argument is an empty sequence, or contains sequences, or contains non-consonant character.

Example 1:

1 t_consonant (-1) -- FALSE

2 t_consonant (0) -- FALSE

3 t_consonant (1) -- FALSE

4 t_consonant (1.234) -- FALSE

5 t_consonant(’A’) -- FALSE

6 t_consonant(’9’) -- FALSE

7 t_consonant(’?’) -- FALSE

8 t_consonant("abc") -- FALSE

9 t_consonant("rTfM") -- TRUE

10 t_consonant("123") -- FALSE

11 t_consonant ({1, 2, "abc"}) -- FALSE (contains a sequence)

12 t_consonant ({1, 2, 9.7}) -- FALSE (contains a non -integer)

13 t_consonant ({1, 2, ’a’}) -- FALSE (contains a non -digit)

14 t_consonant ({}) -- FALSE (empty sequence)

49.3.21 integer array

include std/types.e

namespace types

public type integer_array(object x)

tests for integer elements.

Returns:

TRUE if argument is a sequence that only contains zero or more integers.

Example 1:

1 integer_array (-1) -- FALSE (not a sequence)

2 integer_array("abc") -- TRUE (all single characters)

3 integer_array ({1, 2, "abc"}) -- FALSE (contains a sequence)

4 integer_array ({1, 2, 9.7}) -- FALSE (contains a non -integer)

5 integer_array ({1, 2, ’a’}) -- TRUE

6 integer_array ({}) -- TRUE

322

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

49.3.22 t text

include std/types.e

namespace types

public type t_text(object x)

tests for text characters.

Returns:

TRUE if argument is a sequence that only contains zero or more characters.

Comments:

A character is defined as a positive integer or zero. This is a broad definition that may be refined once proper UNICODE
support is implemented.

Example 1:

1 t_text (-1) -- FALSE (not a sequence)

2 t_text("abc") -- TRUE (all single characters)

3 t_text ({1, 2, "abc"}) -- FALSE (contains a sequence)

4 t_text ({1, 2, 9.7}) -- FALSE (contains a non -integer)

5 t_text ({1, 2, ’a’}) -- TRUE

6 t_text ({1, -2, ’a’}) -- FALSE (contains a negative integer)

7 t_text ({}) -- TRUE

49.3.23 number array

include std/types.e

namespace types

public type number_array(object x)

tests for atom elements.

Returns:

TRUE if argument is a sequence that only contains zero or more numbers.

Example 1:

1 number_array (-1) -- FALSE (not a sequence)

2 number_array("abc") -- TRUE (all single characters)

3 number_array ({1, 2, "abc"}) -- FALSE (contains a sequence)

4 number_array (1, 2, 9.7}) -- TRUE

5 number_array (1, 2, ’a’}) -- TRUE

6 number_array ({}) -- TRUE

49.3.24 sequence array

include std/types.e

namespace types

public type sequence_array(object x)

tests for sequence with possible nested sequences.

323

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

Returns:

TRUE if argument is a sequence that only contains zero or more sequences.

Example 1:

1 sequence_array (-1) -- FALSE (not a sequence)

2 sequence_array("abc") -- FALSE (all single characters)

3 sequence_array ({1, 2, "abc"}) -- FALSE (contains some atoms)

4 sequence_array ({1, 2, 9.7}) -- FALSE

5 sequence_array ({1, 2, ’a’}) -- FALSE

6 sequence_array ({"abc", {3.4, 99182.78737}}) -- TRUE

7 sequence_array ({}) -- TRUE

49.3.25 ascii string

include std/types.e

namespace types

public type ascii_string(object x)

tests for ASCII elements.

Returns:

TRUE if argument is a sequence that only contains zero or more ASCII characters.

Comments:

An ASCII ’character’ is defined as a integer in the range [0 to 127].

Example 1:

1 ascii_string (-1) -- FALSE (not a sequence)

2 ascii_string("abc") -- TRUE (all single ASCII characters)

3 ascii_string ({1, 2, "abc"}) -- FALSE (contains a sequence)

4 ascii_string ({1, 2, 9.7}) -- FALSE (contains a non -integer)

5 ascii_string ({1, 2, ’a’}) -- TRUE

6 ascii_string ({1, -2, ’a’}) -- FALSE (contains a negative integer)

7 ascii_string ({}) -- TRUE

49.3.26 string

include std/types.e

namespace types

public type string(object x)

tests for a string sequence.

Returns:

TRUE if argument is a sequence that only contains zero or more byte characters.

Comments:

A byte ’character’ is defined as a integer in the range [0 to 255].

324

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

Example 1:

1 string (-1) -- FALSE (not a sequence)

2 string("abc ’6") -- TRUE (all single byte characters)

3 string ({1, 2, "abc ’6"}) -- FALSE (contains a sequence)

4 string ({1, 2, 9.7}) -- FALSE (contains a non -integer)

5 string ({1, 2, ’a’}) -- TRUE

6 string ({1, 2, ’a’, 0}) -- TRUE (even though it contains a null byte)

7 string ({1, -2, ’a’}) -- FALSE (contains a negative integer)

8 string ({}) -- TRUE

49.3.27 cstring

include std/types.e

namespace types

public type cstring(object x)

tests for a string sequence (that has no null character).

Returns:

TRUE if argument is a sequence that only contains zero or more non-null byte characters.

Comments:

A non-null byte ’character’ is defined as a integer in the range [1 to 255].

Example 1:

1 cstring (-1) -- FALSE (not a sequence)

2 cstring("abc ’6") -- TRUE (all single byte characters)

3 cstring ({1, 2, "abc ’6"}) -- FALSE (contains a sequence)

4 cstring ({1, 2, 9.7}) -- FALSE (contains a non -integer)

5 cstring ({1, 2, ’a’}) -- TRUE

6 cstring ({1, 2, ’a’, 0}) -- FALSE (contains a null byte)

7 cstring ({1, -2, ’a’}) -- FALSE (contains a negative integer)

8 cstring ({}) -- TRUE

49.3.28 INVALID ROUTINE ID

include std/types.e

namespace types

public constant INVALID_ROUTINE_ID

Value returned from routine id when the routine does not exist or is out of scope. This is typically seen as -1 in legacy
code.

49.3.29 NO ROUTINE ID

include std/types.e

namespace types

public constant NO_ROUTINE_ID

To be used as a flag for no routine id supplied.

325

CHAPTER 49. TYPES - EXTENDED 49.3. TYPES

49.3.30 t integer32

include std/types.e

namespace types

public type t_integer32(object o)

tests for Euphoria integer.

Returns:

TRUE if the argument is a valid 31-bit Euphoria integer.

Comments:

This function is the same as integer(o) on 32-bit Euphoria, but is portable to 64-bit architectures.

326

Chapter 50
Utilities

50.1 Routines

50.1.1 iif

include std/utils.e

namespace utils

public function iif(atom test , object ifTrue , object ifFalse)

Used to embed an ’if’ test inside an expression. iif stands for inline if or immediate if.

Parameters:

1. test : an atom, the result of a boolean expression

2. ifTrue : an object, returned if test is non-zero

3. ifFalse : an object, returned if test is zero

Returns:

An object. Either ifTrue or ifFalse is returned depending on the value of test.
Warning Note:

You must take care when using this function because just like all other Euphoria routines, this does not do any lazy
evaluation. All parameter expressions are evaluated before the function is called, thus, it cannot be used when one of the
parameters could fail to evaluate correctly. For example, this is an improper use of the iif statement:

first = iif(sequence(var), var[1], var)

The reason for this is that both var[1] and var will be evaluated. Therefore if var happens to be an atom, the
var[1] statement will fail.
In situations like this, it is better to use the long style.

1 if sequence(var) then

2 first = var[1]

3 else

4 first = var

5 end if

327

CHAPTER 50. UTILITIES 50.1. ROUTINES

Example 1:

msg = sprintf("%s: %s", {

iif(ErrType = ’E’, "Fatal error", "Warning"),

errortext

})

328

Chapter 51
Data Type Conversion

51.1 Routines

51.1.1 int to bytes

include std/convert.e

namespace convert

public function int_to_bytes(atom x, integer size = 4)

converts an atom that represents an integer to a sequence of 4 bytes.

Parameters:

1. x : an atom, the value to convert.

Returns:

A sequence, of 4 bytes, lowest significant byte first.

Comments:

If the atom does not fit into a 32-bit integer, things may still work right:

• If there is a fractional part, the first element in the returned value will carry it. If you poke the sequence to RAM,
that fraction will be discarded anyway.

• If x is simply too big, the first three bytes will still be correct, and the 4th element will be floor(x/power(2,24)).
If this is not a byte sized integer, some truncation may occur, but usually no error.

The integer can be negative. Negative byte-values will be returned, but after poking them into memory you will have
the correct (two’s complement) representation for the 386+.

Example 1:

s = int_to_bytes (999)

-- s is {231, 3, 0, 0}

329

CHAPTER 51. DATA TYPE CONVERSION 51.1. ROUTINES

Example 2:

s = int_to_bytes (-999)

-- s is {-231, -4, -1, -1}

See Also:

bytes to int, int to bits, atom to float64, poke4

51.1.2 bytes to int

include std/convert.e

namespace convert

public function bytes_to_int(sequence s)

converts a sequence of at most 4 bytes into an atom.

Parameters:

1. s : the sequence to convert

Returns:

An atom, the value of the concatenated bytes of s.

Comments:

This performs the reverse operation from int to bytes
An atom is being returned, because the converted value may be bigger than what can fit in an Euphoria integer.

Example 1:

atom int32

int32 = bytes_to_int ({37 ,1,0,0})

-- int32 is 37 + 256*1 = 293

See Also:

bits to int, float64 to atom, int to bytes, peek, peek4s, peek4u, poke4

51.1.3 int to bits

include std/convert.e

namespace convert

public function int_to_bits(atom x, integer nbits = 32)

extracts the lower bits from an integer.

Parameters:

1. x : the atom to convert

2. nbits : the number of bits requested. The default is 32.

330

CHAPTER 51. DATA TYPE CONVERSION 51.1. ROUTINES

Returns:

A sequence, of length nbits, made of 1’s and 0’s.

Comments:

x should have no fractional part. If it does, then the first ”bit” will be an atom between 0 and 2.
The bits are returned lowest first.
For negative numbers the two’s complement bit pattern is returned.
You can use operators like subscripting/slicing/and/or/xor/not on entire sequences to manipulate sequences of bits.

Shifting of bits and rotating of bits are easy to perform.

Example 1:

s = int_to_bits (177, 8)

-- s is {1,0,0,0,1,1,0,1} -- "reverse" order

See Also:

bits to int, int to bytes, Relational operators, operations on sequences

51.1.4 bits to int

include std/convert.e

namespace convert

public function bits_to_int(sequence bits)

converts a sequence of bits to an atom that has no fractional part.

Parameters:

1. bits : the sequence to convert.

Returns:

A positive atom, whose machine representation was given by bits.

Comments:

An element in bits can be any atom. If nonzero, it counts for 1, else for 0.
The first elements in bits represent the bits with the least weight in the returned value. Only the 52 last bits will

matter, as the PC hardware cannot hold an integer with more digits than this.
If you print s the bits will appear in ”reverse” order, but it is convenient to have increasing subscripts access bits of

increasing significance.

Example 1:

a = bits_to_int ({1,1,1,0,1})

-- a is 23 (binary 10111)

See Also:

bytes to int, int to bits, operations on sequences

331

CHAPTER 51. DATA TYPE CONVERSION 51.1. ROUTINES

51.1.5 atom to float64

include std/convert.e

namespace convert

public function atom_to_float64(atom a)

converts an atom to a sequence of 8 bytes in IEEE 64-bit format.

Parameters:

1. a : the atom to convert:

Returns:

A sequence, of 8 bytes, which can be poked in memory to represent a.

Comments:

All Euphoria atoms have values which can be represented as 64-bit IEEE floating-point numbers, so you can convert any
atom to 64-bit format without losing any precision.

Integer values will also be converted to 64-bit floating-point format.

Example 1:

fn = open("numbers.dat", "wb")

puts(fn, atom_to_float64 (157.82)) -- write 8 bytes to a file

See Also:

float64 to atom, int to bytes, atom to float32

51.1.6 atom to float80

include std/convert.e

namespace convert

public function atom_to_float80(atom a)

51.1.7 float80 to atom

include std/convert.e

namespace convert

public function float80_to_atom(sequence bytes)

51.1.8 atom to float32

include std/convert.e

namespace convert

public function atom_to_float32(atom a)

converts an atom to a sequence of 4 bytes in IEEE 32-bit format.

332

CHAPTER 51. DATA TYPE CONVERSION 51.1. ROUTINES

Parameters:

1. a : the atom to convert:

Returns:

A sequence, of 4 bytes, which can be poked in memory to represent a.

Comments:

Euphoria atoms can have values which are 64-bit IEEE floating-point numbers, so you may lose precision when you convert
to 32-bits (16 significant digits versus 7). The range of exponents is much larger in 64-bit format (10 to the 308, versus
10 to the 38), so some atoms may be too large or too small to represent in 32-bit format. In this case you will get one of
the special 32-bit values: inf or -inf (infinity or -infinity). To avoid this, you can use atom to float64.

Integer values will also be converted to 32-bit floating-point format.
On modern computers, computations on 64 bit floats are no slower than on 32 bit floats. Internally, the PC stores

them in 80 bit registers anyway. Euphoria does not support these so called long doubles. Not all C compilers do.

Example 1:

fn = open("numbers.dat", "wb")

puts(fn, atom_to_float32 (157.82)) -- write 4 bytes to a file

See Also:

float32 to atom, int to bytes, atom to float64

51.1.9 float64 to atom

include std/convert.e

namespace convert

public function float64_to_atom(sequence_8 ieee64)

converts a sequence of 8 bytes in IEEE 64-bit format to an atom.

Parameters:

1. ieee64 : the sequence to convert.

Returns:

An atom, the same value as the FPU would see by peeking ieee64 from RAM.

Comments:

Any 64-bit IEEE floating-point number can be converted to an atom.

Example 1:

1 f = repeat(0, 8)

2 fn = open("numbers.dat", "rb") -- read binary

3 for i = 1 to 8 do

4 f[i] = getc(fn)

5 end for

6 a = float64_to_atom(f)

333

CHAPTER 51. DATA TYPE CONVERSION 51.1. ROUTINES

See Also:

float32 to atom, bytes to int, atom to float64

51.1.10 float32 to atom

include std/convert.e

namespace convert

public function float32_to_atom(sequence_4 ieee32)

converts a sequence of 4 bytes in IEEE 32-bit format to an atom.

Parameters:

1. ieee32 : the sequence to convert.

Returns:

An atom, the same value as the FPU would see by peeking ieee64 from RAM.

Comments:

Any 32-bit IEEE floating-point number can be converted to an atom.

Example 1:

1 f = repeat(0, 4)

2 fn = open("numbers.dat", "rb") -- read binary

3 f[1] = getc(fn)

4 f[2] = getc(fn)

5 f[3] = getc(fn)

6 f[4] = getc(fn)

7 a = float32_to_atom(f)

See Also:

float64 to atom, bytes to int, atom to float32

51.1.11 hex text

include std/convert.e

namespace convert

public function hex_text(sequence text)

converts a text representation of a hexadecimal number to an atom.

Parameters:

1. text : the text to convert.

Returns:

An atom, the numeric equivalent to text

334

CHAPTER 51. DATA TYPE CONVERSION 51.1. ROUTINES

Comments:

• The text can optionally begin with ’#’ which is ignored.

• The text can have any number of underscores, all of which are ignored.

• The text can have one leading ’-’, indicating a negative number.

• The text can have any number of underscores, all of which are ignored.

• Any other characters in the text stops the parsing and returns the value thus far.

Example 1:

atom h = hex_text(" -#3_4FA .00 E_1BD")

-- h is now -13562.003444492816925

atom h = hex_text("DEADBEEF")

-- h is now 3735928559

See Also:

value

51.1.12 set decimal mark

include std/convert.e

namespace convert

public function set_decimal_mark(integer new_mark)

gets, and possibly sets, the decimal mark that to number uses.

Parameters:

1. new mark : An integer: Either a comma (,), a period (.) or any other integer.

Returns:

An integer, The current value, before new mark changes it.

Comments:

• When new mark is a period it will cause to number to interpret a dot (.) as the decimal point symbol. The
pre-changed value is returned.

• When new mark is a comma it will cause to number to interpret a comma (,) as the decimal point symbol. The
pre-changed value is returned.

• Any other value does not change the current setting. Instead it just returns the current value.

• The initial value of the decimal marker is a period.

335

CHAPTER 51. DATA TYPE CONVERSION 51.1. ROUTINES

51.1.13 to number

include std/convert.e

namespace convert

public function to_number(sequence text_in , integer return_bad_pos = 0)

converts the text into a number.

Parameters:

1. text in : A string containing the text representation of a number.

2. return bad pos : An integer.

• If 0 (the default) then this will return a number based on the supplied text and it will not return any position
in text in that caused an incomplete conversion.

• If return bad pos is -1 then if the conversion of text in was complete the resulting number is returned
otherwise a single-element sequence containing the position within text in where the conversion stopped.

• If not 0 then this returns both the converted value up to the point of failure (if any) and the position in text in

that caused the failure. If that position is 0 then there was no failure.

Returns:

• an atom, If return bad pos is zero, the number represented by text in. If text in contains invalid characters,
zero is returned.

• a sequence, If return bad pos is non-zero. If return bad pos is -1 it returns a 1-element sequence containing the
spot inside text in where conversion stopped. Otherwise it returns a 2-element sequence containing the number
represented by text in and either 0 or the position in text in where conversion stopped.

Comments:

1. You can supply Hexadecimal values if the value is preceded by a ’#’ character, Octal values if the value is preceded
by a ’@’ character, and Binary values if the value is preceded by a ’ !’ character. With hexadecimal values, the case
of the digits ’A’ - ’F’ is not important. Also, any decimal marker embedded in the number is used with the correct
base.

2. Any underscore characters or thousands separators, that are embedded in the text number are ignored. These can
be used to help visual clarity for long numbers. The thousands separator is a ’,’ when the decimal mark is ’.’ (the
default), or ’.’ if the decimal mark is ’,’. You inspect and set it using set decimal mark().

3. You can supply a single leading or trailing sign. Either a minus (-) or plus (+).

4. You can supply one or more trailing adjacent percentage signs. The first one causes the resulting value to be divided
by 100, and each subsequent one divides the result by a further 10. Thus 3845% gives a value of (3845 / 100)

==> 38.45, and 3845%% gives a value of (3845 / 1000) ==> 3.845.

5. You can have single currency symbol before the first digit or after the last digit. A currency symbol is any character
of the string: ”$”.

6. You can have any number of whitespace characters before the first digit and after the last digit.

7. The currency, sign and base symbols can appear in any order. Thus "$ -21.10" is the same as " -$21.10 ",
which is also the same as "21.10$-", and so on.

336

CHAPTER 51. DATA TYPE CONVERSION 51.1. ROUTINES

8. This function can optionally return information about invalid numbers. If return bad pos is not zero, a two-element
sequence is returned. The first element is the converted number value , and the second is the position in the text
where conversion stopped. If no errors were found then the second element is zero.

9. When converting floating point text numbers to atoms, you need to be aware that many numbers cannot be
accurately converted to the exact value expected due to the limitations of the 64-bit IEEEE Floating point format.

Example 1:

1 object val

2 val = to_number("12.34") ---> 12.34 -- No errors and no error return needed.

3 val = to_number("12.34", 1) ---> {12.34 , 0} -- No errors.

4 val = to_number("12.34", -1) ---> 12.34 -- No errors.

5 val = to_number("12.34a", 1) ---> {12.34 , 6} -- Error at position 6

6 val = to_number("12.34a", -1) ---> {6} -- Error at position 6

7 val = to_number("12.34a") ---> 0 because its not a valid number

8

9 val = to_number("#f80c") --> 63500

10 val = to_number("#f80c.7aa") --> 63500.47900390625

11 val = to_number("@1703") --> 963

12 val = to_number("!101101") --> 45

13 val = to_number("12 _583_891") --> 12583891

14 val = to_number("12 _583_891%") --> 125838.91

15 val = to_number("12 ,583 ,891%%") --> 12583.891

51.1.14 to integer

include std/convert.e

namespace convert

public function to_integer(object data_in , integer def_value = 0)

converts an object into a integer.

Parameters:

1. data in : Any Euphoria object.

2. def value : An integer. This is returned if data in cannot be converted into an integer. If omitted, zero is
returned.

Returns:

An integer, either the integer rendition of data in or def value if it has no integer value.

Comments:

The returned value is guaranteed to be a valid Euphoria integer.

Example 1:

1 ? to_integer (12) --> 12

2 ? to_integer (12.4) --> 12

3 ? to_integer("12") --> 12

4 ? to_integer("12.9") --> 12

337

CHAPTER 51. DATA TYPE CONVERSION 51.1. ROUTINES

5

6 ? to_integer("a12") --> 0 (not a valid number)

7 ? to_integer("a12" ,-1) --> -1 (not a valid number)

8 ? to_integer ({"12"}) --> 0 (sub -sequence found)

9 ? to_integer (#3 FFFFFFF) --> 1073741823

10 ? to_integer (#3 FFFFFFF + 1) --> 0 (too big for a Euphoria integer)

51.1.15 to string

include std/convert.e

namespace convert

public function to_string(object data_in , integer string_quote = 0,

integer embed_string_quote = ’"’)

converts an object into a text string.

Parameters:

1. data in : Any Euphoria object.

2. string quote : An integer. If not zero (the default) this will be used to enclose data in, if it is already a string.

3. embed string quote : An integer. This will be used to enclose any strings embedded inside data in. The default
is ’”’

Returns:

A sequence. This is the string repesentation of data in.

Comments:

• The returned value is guaranteed to be a displayable text string.

• string quote is only used if data in is already a string. In this case, all occurances of string quote already in
data in are prefixed with the ’\’ escape character, as are any preexisting escape characters. Then string quote

is added to both ends of data in, resulting in a quoted string.

• embed string quote is only used if data in is a sequence that contains strings. In this case, it is used as the
enclosing quote for embedded strings.

Example 1:

1 include std/console.e

2 display(to_string (12)) --> 12

3 display(to_string("abc")) --> abc

4 display(to_string("abc",’"’)) --> "abc"

5 display(to_string(‘abc\"‘,’"’)) --> "abc \\\""

6 display(to_string ({12 ," abc",{4.5, -99}})) --> {12, "abc", {4.5, -99}}

7 display(to_string ({12 ," abc",{4.5, -99}},,0)) --> {12, abc , {4.5, -99}}

338

Chapter 52
Input Routines

52.1 Error Status Constants

These are returned from get and value.

52.1.1 GET SUCCESS

include std/get.e

namespace stdget

public constant GET_SUCCESS

52.1.2 GET EOF

include std/get.e

namespace stdget

public constant GET_EOF

52.1.3 GET FAIL

include std/get.e

namespace stdget

public constant GET_FAIL

52.1.4 GET NOTHING

include std/get.e

namespace stdget

public constant GET_NOTHING

52.2 Answer Types

52.2.1 GET SHORT ANSWER

339

CHAPTER 52. INPUT ROUTINES 52.3. ROUTINES

include std/get.e

namespace stdget

public constant GET_SHORT_ANSWER

52.2.2 GET LONG ANSWER

include std/get.e

namespace stdget

public constant GET_LONG_ANSWER

52.3 Routines

52.3.1 get

include std/get.e

namespace stdget

public function get(integer file , integer offset = 0, integer answer = GET_SHORT_ANSWER)

reads from an open file a human-readable string of characters representing a Euphoria object. Converts the string into
the numeric value of that object.

Parameters:

1. file : an integer, the handle to an open file from which to read

2. offset : an integer, an offset to apply to file position before reading. Defaults to 0.

3. answer : an integer, either GET SHORT ANSWER (the default) or GET LONG ANSWER.

Returns:

A sequence, of length two (GET SHORT ANSWER) or four (GET LONG ANSWER) consisting of:

• an integer, the return status. This is any of:

– GET SUCCESS – object was read successfully

– GET EOF – end of file before object was read completely

– GET FAIL – object is not syntactically correct

– GET NOTHING – nothing was read, even a partial object string, before end of input

• an object, the value that was read. This is valid only if return status is GET SUCCESS.

• an integer, the number of characters read. On an error, this is the point at which the error was detected.

• an integer, the amount of initial whitespace read before the first active character was found

340

CHAPTER 52. INPUT ROUTINES 52.3. ROUTINES

Comments:

When answer is not specified, or explicitly GET SHORT ANSWER, only the first two elements in the returned sequence are
actually returned.

The GET NOTHING return status will not be returned if answer is GET SHORT ANSWER.
get can read arbitrarily complicated Euphoria objects. You could have a long sequence of values in braces and separated

by commas and comments. For example: 23, 49, 57, 0.5, -1, 99, ’A’, "john". A single call to get will read in
this entire sequence, return its value as a result, and return complementary information.

If a nonzero offset is supplied, it is interpreted as an offset to the current file position; the file will start seek from
there first.

get returns a two or four element sequence; similar to what value returns:

• a status code (success, error, end of file, no value at all)

• the value just read (meaningful only when the status code is GET SUCCESS) (optionally)

• the total number of characters read

• the amount of initial whitespace read.

Using the default value for answer, or setting it to GET SHORT ANSWER, returns two elements. Setting it to GET LONG ANSWER

causes four elements to be returned.
Each call to get picks up where the previous call left off. For instance: a series of five calls to get would be needed

to read in this sequence: ‘99 5.2 1, 2, 3 "Hello" -1‘ On the sixth and any subsequent call to get you would see
a GET EOF status.

If you had something like 1, 2, xxx in the input stream you would see a GET FAIL error status because xxx is not
a Euphoria object.

After seeing -- something\nBut no value and the input stream stops right there, you will receive a status code
of GET NOTHING, because nothing but whitespace or comments was read. If you had opted for a short answer, you would
get GET EOF instead.

Multiple ”top-level” objects in the input stream must be separated from each other with one or more ”whitespace”
characters (blank, tab, \r, or \n). At the very least, a top level number must be followed by a white space from the
following object. Whitespace is not necessary within a top-level object. Comments, terminated by either ’\n’ or ’\r’, are
allowed anywhere inside sequences, and ignored if at the top level. A call to get will read one entire top-level object,
plus possibly one additional (whitespace) character, after a top level number, even though the next object may have an
identifiable starting point.

The combination of print and get can be used to save a Euphoria object to disk and later read it back. This technique
could be used to implement a database as one or more large Euphoria sequences stored in disk files. The sequences could
be read into memory, updated and then written back to disk after each series of transactions is complete. Remember to
write out a whitespace character (using puts) after each call to print, at least when a top level number was just printed.

The value returned is not meaningful unless you have a GET SUCCESS status.

Example 1:

1 -- If he types 77.5, get (0) would return:

2 {GET_SUCCESS , 77.5}

3

4 -- whereas gets (0) would return:

5 "77.5\n"

Example 2:

See .../euphoria/demo/mydata.ex

See Also:

value

341

CHAPTER 52. INPUT ROUTINES 52.3. ROUTINES

52.3.2 value

include std/get.e

namespace stdget

public function value(sequence st, integer start_point = 1, integer answer = GET_SHORT_ANSWER)

reads, from a string, a human-readable string of characters representing a Euphoria object. Converts the string into
the numeric value of that object.

Parameters:

1. st : a sequence, from which to read text

2. offset : an integer, the position at which to start reading. Defaults to 1.

3. answer : an integer, either GET SHORT ANSWER (the default) or GET LONG ANSWER.

Returns:

A sequence, of length two (GET SHORT ANSWER) or four (GET LONG ANSWER) made of:

• an integer, the return status. This is any of

– GET SUCCESS – object was read successfully

– GET EOF – end of file before object was read completely

– GET FAIL – object is not syntactically correct

– GET NOTHING – nothing was read, even a partial object string, before end of input

• an object, the value that was read. This is valid only if return status is GET SUCCESS.

• an integer, the number of characters read. On an error, this is the point at which the error was detected.

• an integer, the amount of initial whitespace read before the first active character was found

Comments:

When answer is not specified, or explicitly GET SHORT ANSWER, only the first two elements in the returned sequence are
actually returned.

This works the same as get but it reads from a string that you supply, rather than from a file or device.
After reading one valid representation of a Euphoria object value will stop reading and ignore any additional characters

in the string. For example: "36" and "36P" will both give you GET SUCCESS, 36.
The function returns return status, value if the answer type is not passed or set to GET SHORT ANSWER. If set

to GET LONG ANSWER, the number of characters read and the amount of leading whitespace are returned in 3rd and 4th
position. The GET NOTHING return status can occur only on a long answer.

Example 1:

s = value("12345"}

s is {GET_SUCCESS , 12345}

Example 2:

s = value("{0, 1, -99.9}")

-- s is {GET_SUCCESS , {0, 1, -99.9}}

342

CHAPTER 52. INPUT ROUTINES 52.3. ROUTINES

Example 3:

s = value("+++")

-- s is {GET_FAIL , 0}

See Also:

get

52.3.3 defaulted value

include std/get.e

namespace stdget

public function defaulted_value(object st, object def , integer start_point = 1)

calls the value function and returns the resulting value on success or the default default on failure.

Parameters:

1. st : object to retrieve value from.

2. def : the value returned if st is an atom or value(st) fails.

3. start point : an integer, the position in st at which to start getting the value from. Defaults to 1

Returns:

• If st, is an atom then def is returned.

• If calling value(st) is a success. then value()[2], otherwise it will return the parameter def.

Example 1:

1 object i = defaulted_value("10", 0)

2 -- i is 10

3

4 i = defaulted_value("abc", 39)

5 -- i is 39

6

7 i = defaulted_value (12, 42)

8 -- i is 42

9

10 i = defaulted_value("{1,2}", 42)

11 -- i is {1,2}

See Also:

value

343

Chapter 53
Searching

53.1 Equality

53.1.1 compare

<built -in > function compare(object compared , object reference)

compares two items returning less than, equal or greater than.

Parameters:

1. compared : the compared object

2. reference : the reference object

Returns:

An integer,

• 0 – if objects are identical

• 1 – if compared is greater than reference

• -1 – if compared is less than reference

Comments:

Atoms are considered to be less than sequences. Sequences are compared alphabetically starting with the first element
until a difference is found or one of the sequences is exhausted. Atoms are compared as ordinary reals.

Example 1:

x = compare ({1,2,{3,{4}},5}, {2 -1 ,1+1 ,{3 ,{4}} ,6 -1})

-- identical , x is 0

344

CHAPTER 53. SEARCHING 53.1. EQUALITY

Example 2:

if compare("ABC", "ABCD") < 0 then -- -1

-- will be true: ABC is "less" because it is shorter

end if

Example 3:

x = compare(’a’, "a")

-- x will be -1 because ’a’ is an atom

-- while "a" is a sequence

See Also:

equal, relational operators, operations on sequences, sort

53.1.2 equal

<built -in > function equal(object left , object right)

compares two Euphoria objects to see if they are the same.

Parameters:

1. left : one of the objects to test

2. right : the other object

Returns:

An integer, 1 if the two objects are identical, else 0.

Comments:

This is equivalent to the expression: compare(left, right) = 0.
This routine, like most other built-in routines, is very fast. It does not have any subroutine call overhead.

Example 1:

if equal(PI , 3.14) then

puts(1, "give me a better value for PI!\n")

end if

Example 2:

if equal(name , "George") or equal(name , "GEORGE") then

puts(1, "name is George\n")

end if

See Also:

compare

345

CHAPTER 53. SEARCHING 53.2. FINDING

53.2 Finding

53.2.1 find

<built -in > function find(object needle , sequence haystack , integer start)

finds the first occurrence of a ”needle” as an element of a ”haystack”, starting from position ”start”.

Parameters:

1. needle : an object whose presence is being queried

2. haystack : a sequence, which is being looked up for needle

3. start : an integer, the position at which to start searching. Defaults to 1.

Returns:

An integer, 0 if needle is not on haystack, else the smallest index of an element of haystack that equals needle.

Example 1:

location = find(11, {5, 8, 11, 2, 3})

-- location is set to 3

Example 2:

names = {"fred", "rob", "george", "mary", ""}

location = find("mary", names)

-- location is set to 4

See Also:

find, match, compare

53.2.2 find from

<built -in > function find_from(object needle , object haystack , integer start)

Deprecated:

Deprecated since version 4.0.0
In Euphoria 4.0.0 we have the ability to default parameters to procedures and functions. The built-in find therefore

now has a start parameter that is defaulted to the beginning of the sequence. Thus, find can perform the identical
functionality provided by find from. In an undetermined future release of Euphoria, find from will be removed.

53.2.3 find any

include std/search.e

namespace search

public function find_any(object needles , sequence haystack , integer start = 1)

finds any element from a list inside a sequence. Returns the location of the first hit.

346

CHAPTER 53. SEARCHING 53.2. FINDING

Parameters:

1. needles : a sequence, the list of items to look for

2. haystack : a sequence, in which ”needles” are looked for

3. start : an integer, the starting point of the search. Defaults to 1.

Returns:

An integer, the smallest index in haystack of an element of needles, or 0 if no needle is found.

Comments:

This function may be applied to a string sequence or a complex sequence.

Example 1:

location = find_any("aeiou", "John Smith", 3)

-- location is 8

Example 2:

location = find_any("aeiou", "John Doe")

-- location is 2

See Also:

find

53.2.4 match any

include std/search.e

namespace search

public function match_any(sequence needles , sequence haystack , integer start = 1)

determines if any element from needles is in haystack.

Parameters:

1. needles : a sequence, the list of items to look for

2. haystack : a sequence, in which ”needles” are looked for

3. start : an integer, the starting point of the search. Defaults to 1.

Returns:

An integer, 0 if no matches, 1 if any matches.

Comments:

This function may be applied to a string sequence or a complex sequence. An empty needles sequence will always result
in 0.

347

CHAPTER 53. SEARCHING 53.2. FINDING

Example 1:

ok = match_any("aeiou", "John Smith")

-- okay is 1

ok = match_any("xyz", "John Smith")

-- okay is 0

See Also:

find any

53.2.5 find each

include std/search.e

namespace search

public function find_each(sequence needles , sequence haystack , integer start = 1)

finds all instances of any element from the needle sequence that occur in the haystack sequence. Returns a list of
indexes.

Parameters:

1. needles : a sequence, the list of items to look for

2. haystack : a sequence, in which ”needles” are looked for

3. start : an integer, the starting point of the search. Defaults to 1.

Returns:

A sequence, the list of indexes into haystack that point to an element that is also in needles.

Comments:

This function may be applied to a string sequence or a complex sequence.

Example 1:

location = find_each("aeiou", "John Smith", 3)

-- location is {8}

Example 2:

location = find_each("aeiou", "John Doe")

-- location is {2,7,8}

See Also:

find, find any

348

CHAPTER 53. SEARCHING 53.2. FINDING

53.2.6 find all

include std/search.e

namespace search

public function find_all(object needle , sequence haystack , integer start = 1)

finds all occurrences of an object inside a sequence, starting at some specified point.

Parameters:

1. needle : an object, what to look for

2. haystack : a sequence to search in

3. start : an integer, the starting index position (defaults to 1)

Returns:

A sequence, the list of all indexes no less than start of elements of haystack that equal needle. This sequence is
empty if no match found.

Example 1:

s = find_all(’A’, "ABCABAB")

-- s is {1,4,6}

See Also:

find, match, match all

53.2.7 find all but

include std/search.e

namespace search

public function find_all_but(object needle , sequence haystack , integer start = 1)

finds all non-occurrences of an object inside a sequence, starting at some specified point.

Parameters:

1. needle : an object, what to look for

2. haystack : a sequence to search in

3. start : an integer, the starting index position (defaults to 1)

Returns:

A sequence, the list of all indexes no less than start of elements of haystack that not equal to needle. This sequence
is empty if haystack only consists of needle.

Example 1:

s = find_all_but(’A’, "ABCABAB")

-- s is {2,3,5,7}

349

CHAPTER 53. SEARCHING 53.2. FINDING

See Also:

find all, match, match all

53.2.8 NESTED ANY

include std/search.e

namespace search

public constant NESTED_ANY

53.2.9 NESTED ALL

include std/search.e

namespace search

public constant NESTED_ALL

53.2.10 NESTED INDEX

include std/search.e

namespace search

public constant NESTED_INDEX

53.2.11 NESTED BACKWARD

include std/search.e

namespace search

public constant NESTED_BACKWARD

53.2.12 find nested

include std/search.e

namespace search

public function find_nested(object needle , sequence haystack , integer flags = 0,

integer rtn_id = types :NO_ROUTINE_ID)

finds any object (among a list) in a sequence of arbitrary shape at arbitrary nesting.

Parameters:

1. needle : an object, either what to look up, or a list of items to look up

2. haystack : a sequence, where to look up

3. flags : options to the function, see Comments section. Defaults to 0.

4. routine : an integer, the routine id of an user supplied equal/find function. Defaults to types:NO ROUTINE ID.

Returns:

A possibly empty sequence, of results, one for each hit.

350

CHAPTER 53. SEARCHING 53.2. FINDING

Comments:

Each item in the returned sequence is either a sequence of indexes, or a pair sequence of indexes, index in needle.
The following flags are available to fine tune the search:

• NESTED BACKWARD – if on flags, search is performed backward. Default is forward.

• NESTED ALL – if on flags, all occurrences are looked for. Default is one hit only.

• NESTED ANY – if present on flags, needle is a list of items to look for. Not the default.

• NESTED INDEXES – if present on flags, an individual result is a pair position, index in needle. Default is just
return the position.

If s is a single index list, or position, from the returned sequence, then fetch(haystack, s) = needle.
If a routine id is supplied, the routine must behave like equal if the NESTED ANY flag is not supplied, and like find if it

is. The routine is being passed the current haystack item and needle. The returned integer is interpreted as if returned
by equal or find.

If the NESTED ANY flag is specified, and needle is an atom, then the flag is removed.

Example 1:

sequence s = find_nested (3, {5, {4, {3, {2}}}})

-- s is {2 ,2 ,1}

Example 2:

sequence s = find_nested ({3, 2}, {1, 3, {2,3}},

NESTED_ANY + NESTED_BACKWARD + NESTED_ALL)

-- s is {{3,2}, {3,1}, {2}}

Example 3:

sequence s = find_nested ({3, 2}, {1, 3, {2,3}},

NESTED_ANY + NESTED_INDEXES + NESTED_ALL)

-- s is {{{2}, 1}, {{3, 1}, 2}, {{3, 2}, 1}}

See Also:

find, rfind, find any, fetch

53.2.13 rfind

include std/search.e

namespace search

public function rfind(object needle , sequence haystack , integer start = length(haystack))

finds a needle in a haystack in reverse order.

Parameters:

1. needle : an object to search for

2. haystack : a sequence to search in

3. start : an integer, the starting index position (defaults to length(haystack))

351

CHAPTER 53. SEARCHING 53.2. FINDING

Returns:

An integer, 0 if no instance of needle can be found on haystack before index start, or the highest such index otherwise.

Comments:

If start is less than 1, it will be added once to length(haystack) to designate a position counted backwards. Thus, if
start is -1, the first element to be queried in haystack will be haystack[$-1], then haystack[$-2] and so on.

Example 1:

location = rfind (11, {5, 8, 11, 2, 11, 3})

-- location is set to 5

Example 2:

1 names = {"fred", "rob", "rob", "george", "mary"}

2 location = rfind("rob", names)

3 -- location is set to 3

4 location = rfind("rob", names , -4)

5 -- location is set to 2

See Also:

find, rmatch

53.2.14 find replace

include std/search.e

namespace search

public function find_replace(object needle , sequence haystack , object replacement ,

integer max = 0)

finds a needle in the haystack, and replaces all or upto max occurrences with replacement.

Parameters:

1. needle : an object to search and perhaps replace

2. haystack : a sequence to be inspected

3. replacement : an object to substitute for any (first) instance of needle

4. max : an integer, 0 to replace all occurrences

Returns:

A sequence, the modified haystack.

Comments:

Replacements will not be made recursively on the part of haystack that was already changed.
If max is 0 or less, any occurrence of needle in haystack will be replaced by replacement. Otherwise, only the first

max occurrences are.

352

CHAPTER 53. SEARCHING 53.2. FINDING

Example 1:

s = find_replace(’b’, "The batty book was all but in Canada.", ’c’, 0)

-- s is "The catty cook was all cut in Canada ."

Example 2:

s = find_replace(’/’, "/euphoria/demo/unix", ’\\’, 2)

-- s is "\\ euphoria \\demo/unix"

Example 3:

s = find_replace("theater", { "the", "theater", "theif" }, "theatre")

-- s is { "the", "theatre", "theif" }

See Also:

find, replace, match replace

53.2.15 match replace

include std/search.e

namespace search

public function match_replace(object needle , sequence haystack , object replacement ,

integer max = 0)

finds a ”needle” in a ”haystack”, and replace any, or only the first few, occurrences with a replacement.

Parameters:

1. needle : an non-empty sequence or atom to search and perhaps replace

2. haystack : a sequence to be inspected

3. replacement : an object to substitute for any (first) instance of needle

4. max : an integer, 0 to replace all occurrences

Returns:

A sequence, the modified haystack.

Comments:

Replacements will not be made recursively on the part of haystack that was already changed.
If max is 0 or less, any occurrence of needle in haystack will be replaced by replacement. Otherwise, only the first

max occurrences are.
If either needle or replacement are atoms they will be treated as if you had passed in a length-1 sequence containing

the said atom.
If needle is an empty sequence, an error will be raised and your program will exit.

353

CHAPTER 53. SEARCHING 53.2. FINDING

Example 1:

s = match_replace("the", "the cat ate the food under the table", "THE", 0)

-- s is "THE cat ate THE food under THE table"

Example 2:

s = match_replace("the", "the cat ate the food under the table", "THE", 2)

-- s is "THE cat ate THE food under the table"

Example 3:

s = match_replace(’/’, "/euphoria/demo/unix", ’\\’, 2)

-- s is "\\ euphoria \\demo/unix"

Example 4:

1 s = match_replace(’a’, "abracadabra", ’X’)

2 -- s is now "XbrXcXdXbrX"

3 s = match_replace("ra", "abracadabra", ’X’)

4 -- s is now "abXcadabX"

5 s = match_replace("a", "abracadabra", "aa")

6 -- s is now "aabraacaadaabraa"

7 s = match_replace("a", "abracadabra", "")

8 -- s is now "brcdbr"

See Also:

find, replace, regex:find replace, find replace

53.2.16 binary search

include std/search.e

namespace search

public function binary_search(object needle , sequence haystack , integer start_point = 1,

integer end_point = 0)

finds a ”needle” in an ordered ”haystack”. Start and end point can be given for the search.

Parameters:

1. needle : an object to look for

2. haystack : a sequence to search in

3. start point : an integer, the index at which to start searching. Defaults to 1.

4. end point : an integer, the end point of the search. Defaults to 0, ie search to end.

354

CHAPTER 53. SEARCHING 53.3. MATCHING

Returns:

An integer, either:

1. a positive integer i, which means haystack[i] equals needle.

2. a negative integer, -i, with i between adjusted start and end points. This means that needle is not in the searched
slice of haystack, but would be at index i if it were there.

3. a negative integer -i with i out of the searched range. This means than needlemight be either below the start
point if i is below the start point, or above the end point if i is.

Comments:

• If end point is not greater than zero, it is added to length(haystack) once only. Then, the end point of the
search is adjusted to length(haystack) if out of bounds.

• The start point is adjusted to 1 if below 1.

• The way this function returns is very similar to what db find key does. They use variants of the same algorithm.
The latter is all the more efficient as haystack is long.

• haystack is assumed to be in ascending order. Results are undefined if it is not.

• If duplicate copies of needle exist in the range searched on haystack, any of the possible contiguous indexes may
be returned.

See Also:

find, db find key

53.3 Matching

53.3.1 match

<built -in > function match(sequence needle , sequence haystack , integer start)

tries to match a ”needle” against some slice of a ”haystack”, starting at position ”start”.

Parameters:

1. needle : a sequence whose presence as a ”substring” is being queried

2. haystack : a sequence, which is being looked up for needle as a sub-sequence

3. start : an integer, the point from which matching is attempted. Defaults to 1.

Returns:

An integer, 0 if no slice of haystack is needle, else the smallest index at which such a slice starts.

Comments:

If needle is an empty sequence, an error is raised and your program will exit.

355

CHAPTER 53. SEARCHING 53.3. MATCHING

Example 1:

location = match("pho", "Euphoria")

-- location is set to 3

See Also:

find, compare, wildcard:is match

53.3.2 match from

<built -in > function match_from(sequence needle , sequence haystack , integer start)

Deprecated:

Deprecated since version 4.0.0
In Euphoria 4.0.0 we have the ability to default parameters to procedures and functions. The built-in match therefore

now has a start parameter that is defaulted to the beginning of the sequence. Thus, match can perform the identical
functionality provided by match from. In an undetermined future release of Euphoria, match from will be removed.

Comments:

If needle is an empty sequence, an error is raised and your program will exit.

53.3.3 match all

include std/search.e

namespace search

public function match_all(sequence needle , sequence haystack , integer start = 1)

matches all items of haystack in needle.

Parameters:

1. needle : a non-empty sequence, what to look for

2. haystack : a sequence to search in

3. start : an integer, the starting index position (defaults to 1)

Returns:

A sequence, of integers, the list of all lower indexes, not less than start, of all slices in haystack that equal needle.
The list may be empty.

Comments:

If needle is an empty sequence, an error will be raised and your program will exit.

Example 1:

s = match_all("the", "the dog chased the cat under the table.")

-- s is {1 ,16 ,30}

356

CHAPTER 53. SEARCHING 53.3. MATCHING

See Also:

match, regex:find all find, find all

53.3.4 rmatch

include std/search.e

namespace search

public function rmatch(sequence needle , sequence haystack , integer start = length(haystack))

tries to match a needle against some slice of a haystack in reverse order.

Parameters:

1. needle : a sequence to search for

2. haystack : a sequence to search in

3. start : an integer, the starting index position (defaults to length(haystack))

Returns:

An integer, either 0 if no slice of haystack starting before start equals needle, else the highest lower index of such a
slice.

Comments:

If start is less than 1, it will be added once to length(haystack) to designate a position counted backwards. Thus, if
start is -1, the first element to be queried in haystack will be haystack[$-1], then haystack[$-2] and so on.

If a needle is an empty sequence this will return 0.

Example 1:

location = rmatch("the", "the dog ate the steak from the table.")

-- location is set to 28 (3rd ’the ’)

location = rmatch("the", "the dog ate the steak from the table.", -11)

-- location is set to 13 (2nd ’the ’)

See Also:

rfind, match

53.3.5 begins

include std/search.e

namespace search

public function begins(object sub_text , sequence full_text)

tests whether a sequence is the head of another one.

Parameters:

1. sub text : an object to be looked for

2. full text : a sequence, the head of which is being inspected.

357

CHAPTER 53. SEARCHING 53.3. MATCHING

Returns:

An integer, 1 if sub text begins full text, else 0.

Comments:

If sub text is an empty sequence, this returns 1 unless full text is also an empty sequence. When they are both empty
sequences this returns 0.

Example 1:

s = begins("abc", "abcdef")

-- s is 1

s = begins("bcd", "abcdef")

-- s is 0

See Also:

ends, head

53.3.6 ends

include std/search.e

namespace search

public function ends(object sub_text , sequence full_text)

tests whether a sequence ends another one.

Parameters:

1. sub text : an object to be looked for

2. full text : a sequence, the tail of which is being inspected.

Returns:

An integer, 1 if sub text ends full text, else 0.

Comments:

If sub text is an empty sequence, this returns 1 unless full text is also an empty sequence. When they are both empty
sequences this returns 0.

Example 1:

s = ends("def", "abcdef")

-- s is 1

s = begins("bcd", "abcdef")

-- s is 0

See Also:

begins, tail

358

CHAPTER 53. SEARCHING 53.3. MATCHING

53.3.7 is in range

include std/search.e

namespace search

public function is_in_range(object item , sequence range_limits , sequence boundries = "[]")

tests to see if the item is in a range of values supplied by range limits.

Parameters:

1. item : The object to test for.

2. range limits : A sequence of two or more elements. The first is assumed to be the smallest value and the last is
assumed to be the highest value.

3. boundries: a sequence. This determines if the range limits are inclusive or not. Must be one of "[]" (the default),
"[)", "(]", or "()".

Returns:

An integer, 0 if item is not in the range limits otherwise it returns 1.

Comments:

• In boundries, square brackets mean inclusive and round brackets mean exclusive. Thus "[]" includes both limits
in the range, while "()" excludes both limits. And, "[)" includes the lower limit and excludes the upper limits while
"(]" does the reverse.

Example 1:

1 if is_in_range (2, {2, 75}) then

2 procA(user_data) -- Gets run (both limits included)

3 end if

4 if is_in_range (2, {2, 75}, "(]") then

5 procA(user_data) -- Does not get run

6 end if

53.3.8 is in list

include std/search.e

namespace search

public function is_in_list(object item , sequence list)

tests to see if the item is in a list of values supplied by list.

Parameters:

1. item : The object to test for.

2. list : A sequence of elements that item could be a member of.

Returns:

An integer, 0 if item is not in the list, otherwise it returns 1.

359

CHAPTER 53. SEARCHING 53.3. MATCHING

Example 1:

if is_in_list(user_data , {100, 45, 2, 75, 121}) then

procA(user_data)

end if

53.3.9 lookup

include std/search.e

namespace search

public function lookup(object find_item , sequence source_list , sequence target_list ,

object def_value = 0)

returns the corresponding element from the target list if the supplied item is in the source list.

Parameters:

1. find item: an object that might exist in source list.

2. source list: a sequence that might contain pITem.

3. target list: a sequence from which the corresponding item will be returned.

4. def value: an object (defaults to zero). This is returned when find item is not in source list and target list

is not longer than source list.

Returns:

An object

• If find item is found in source list then this is the corresponding element from target list

• If find item is not in source list then if target list is longer than source list then the last item in
target list is returned otherwise def value is returned.

Example 1:

1 lookup(’a’, "cat", "dog") --> ’o’

2 lookup(’d’, "cat", "dogx") --> ’x’

3 lookup(’d’, "cat", "dog") --> 0

4 lookup(’d’, "cat", "dog", -1) --> -1

5 lookup("ant", {"ant","bear","cat"}, {"spider","seal","dog","unknown"})

6 --> "spider"

7 lookup("dog", {"ant","bear","cat"}, {"spider","seal","dog","unknown"})

8 --> "unknown"

53.3.10 vlookup

include std/search.e

namespace search

public function vlookup(object find_item , sequence grid_data , integer source_col ,

integer target_col , object def_value = 0)

returns the corresponding element from the target column if the supplied item is in a source grid column.

360

CHAPTER 53. SEARCHING 53.3. MATCHING

Parameters:

1. find item: an object that might exist in source col.

2. grid data: a 2D grid sequence that might contain pITem.

3. source col: an integer. The column number to look for find item.

4. target col: an integer. The column number from which the corresponding item will be returned.

5. def value: an object (defaults to zero). This is returned when find item is not found in the source col column,
or if found but the target column does not exist.

Comments:

• If a row in the grid is actually a single atom, the row is ignored.

• If a row’s length is less than the source col, the row is ignored.

Returns:

An object,

• If find item is found in the source col column then this is the corresponding element from the target col

column.

Example 1:

1 sequence grid

2 grid = {

3 {"ant", "spider", "mortein"},

4 {"bear", "seal", "gun"},

5 {"cat", "dog", "ranger"},

6 $

7 }

8 vlookup("ant", grid , 1, 2, "?") --> "spider"

9 vlookup("ant", grid , 1, 3, "?") --> "mortein"

10 vlookup("seal", grid , 2, 3, "?") --> "gun"

11 vlookup("seal", grid , 2, 1, "?") --> "bear"

12 vlookup("mouse", grid , 2, 3, "?") --> "?"

361

Chapter 54
Sequence Manipulation

54.1 Constants

54.1.1 enum

include std/sequence.e

namespace stdseq

public enum

54.1.2 ROTATE LEFT

include std/sequence.e

namespace stdseq

public constant ROTATE_LEFT

54.1.3 ROTATE RIGHT

include std/sequence.e

namespace stdseq

public constant ROTATE_RIGHT

54.2 Basic Routines

54.2.1 binop ok

include std/sequence.e

namespace stdseq

public function binop_ok(object a, object b)

checks whether two objects can perform a sequence operation together.

Parameters:

1. a : one of the objects to test for compatible shape

2. b : the other object

362

CHAPTER 54. SEQUENCE MANIPULATION 54.2. BASIC ROUTINES

Returns:

An integer, 1 if a sequence operation is valid between a and b, else 0.

Example 1:

1 i = binop_ok ({1,2,3},{4,5})

2 -- i is 0

3

4 i = binop_ok ({1,2,3},4)

5 -- i is 1

6

7 i = binop_ok ({1,2,3},{4,{5,6},7})

8 -- i is 1

See Also:

series

54.2.2 fetch

include std/sequence.e

namespace stdseq

public function fetch(sequence source , sequence indexes)

retrieves an element nested arbitrarily deep into a sequence.

Parameters:

1. source : the sequence from which to fetch

2. indexes : a sequence of integers, the path to follow to reach the element to return.

Returns:

An object, which is source[indexes[1]][indexes[2]]...[indexes[$]]

Errors:

If the path cannot be followed to its end, an error about reading a nonexistent element, or subscripting an atom, will
occur.

Comments:

The last element of indexes may be a pair lower,upper, in which case a slice of the innermost referenced sequence is
returned.

Example 1:

x = fetch ({0,1,2,3,{"abc","def","ghi"},6},{5,2,3})

-- x is ’f’, or 102.

See Also:

store, Subscripting of Sequences

363

CHAPTER 54. SEQUENCE MANIPULATION 54.2. BASIC ROUTINES

54.2.3 store

include std/sequence.e

namespace stdseq

public function store(sequence target , sequence indexes , object x)

stores something at a location nested arbitrarily deep into a sequence.

Parameters:

1. target : the sequence in which to store something

2. indexes : a sequence of integers, the path to follow to reach the place where to store

3. x : the object to store.

Returns:

A sequence, a copy of target with the specified place indexes modified by storing x into it.

Errors:

If the path to storage location cannot be followed to its end, or an index is not what one would expect or is not valid, an
error about illegal sequence operations will occur.

Comments:

If the last element of indexes is a pair of integers, x will be stored as a slice three, the bounding indexes being given in
the pair as lower,upper.

In Euphoria, you can never modify an object by passing it to a routine. You have to get a modified copy and then
assign it back to the original.

Example 1:

s = store ({0,1,2,3,{"abc","def","ghi"},6},{5,2,3},108)

-- s is {0,1,2,3,{"abc","del","ghi"},6}

See Also:

fetch, Subscripting of Sequences

54.2.4 valid index

include std/sequence.e

namespace stdseq

public function valid_index(sequence st, object x)

checks whether an index exists on a sequence.

Parameters:

1. s : the sequence for which to check

2. x : an object, the index to check.

364

CHAPTER 54. SEQUENCE MANIPULATION 54.2. BASIC ROUTINES

Returns:

An integer, 1 if s[x] makes sense, else 0.

Example 1:

i = valid_index ({51 ,27 ,33 ,14} ,2)

-- i is 1

See Also:

Subscripting of Sequences

54.2.5 rotate

include std/sequence.e

namespace stdseq

public function rotate(sequence source , integer shift , integer start = 1,

integer stop = length(source))

rotates a slice of a sequence.

Parameters:

1. source : sequence to be rotated

2. shift : direction and count to be shifted (ROTATE LEFT or ROTATE RIGHT)

3. start : starting position for shift, defaults o 1

4. stop : stopping position for shift, defaults to length(source)

Comments:

Use amount * direction to specify the shift. direction is either ROTATE LEFT or ROTATE RIGHT. This enables to shift
multiple places in a single call. For instance, use ROTATE LEFT * 5 to rotate left, 5 positions.

A null shift does nothing and returns source unchanged.

Example 1:

s = rotate ({1, 2, 3, 4, 5}, ROTATE_LEFT)

-- s is {2, 3, 4, 5, 1}

Example 2:

s = rotate ({1, 2, 3, 4, 5}, ROTATE_RIGHT * 2)

-- s is {4, 5, 1, 2, 3}

Example 3:

s = rotate ({11,13 ,15 ,17 ,19 ,23} , ROTATE_LEFT , 2, 5)

-- s is {11 ,15 ,17 ,19 ,13 ,23}

365

CHAPTER 54. SEQUENCE MANIPULATION 54.2. BASIC ROUTINES

Example 4:

s = rotate ({11,13 ,15 ,17 ,19 ,23} , ROTATE_RIGHT , 2, 5)

-- s is {11 ,19 ,13 ,15 ,17 ,23}

See Also:

slice, head, tail

54.2.6 columnize

include std/sequence.e

namespace stdseq

public function columnize(sequence source , object cols = {}, object defval = 0)

converts a set of sub sequences into a set of ”columns.”

Parameters:

1. source : sequence containing the sub-sequences

2. cols : either a specific column number or a set of column numbers. Default is 0, which returns the maximum
number of columns.

3. defval : an object. Used when a column value is not available. Default is 0

Comments:

Any atoms found in source are treated as if they are a 1-element sequence.

Example 1:

s = columnize ({{1, 2}, {3, 4}, {5, 6}})

-- s is { {1,3,5}, {2,4,6}}

Example 2:

1 s = columnize ({{1, 2}, {3, 4}, {5, 6, 7}})

2 -- s is { {1,3,5}, {2,4,6}, {0,0,7} }

3 s = columnize ({{1, 2}, {3, 4}, {5, 6, 7},,-999})

4 --> Change the not -available value.

5 -- s is { {1,3,5}, {2,4,6}, {-999,-999,7} }

Example 3:

s = columnize ({{1, 2}, {3, 4}, {5, 6, 7}}, 2)

-- s is { {2,4,6} } -- Column 2 only

Example 4:

s = columnize ({{1, 2}, {3, 4}, {5, 6, 7}}, {2,1})

-- s is { {2,4,6}, {1,3,5} } -- Column 2 then column 1

366

CHAPTER 54. SEQUENCE MANIPULATION 54.2. BASIC ROUTINES

Example 5:

s = columnize ({"abc", "def", "ghi"})

-- s is {"adg", "beh", "cfi" }

54.2.7 apply

include std/sequence.e

namespace stdseq

public function apply(sequence source , integer rid , object userdata = {})

applies a function to every element of a sequence returning a new sequence of the same size.

Parameters:

• source : the sequence to map

• rid : the routine id of function to use as converter

• userdata : an object passed to each invocation of rid. If omitted, is used.

Returns:

A sequence, the length of source. Each element there is the corresponding element in source mapped using the routine
referred to by rid.

Comments:

The supplied routine must take two arguments. The type of the first arguments must be compatible with all the elements
in source. The second parameter is an object containing userdata.

Example 1:

1 function greeter(object o, object d)

2 return o[1] & ", " & o[2] & d

3 end function

4

5 s = apply ({{"Hello", "John"}, {"Goodbye", "John"}}, routine_id("greeter"),"!")

6 -- s is {"Hello , John!", "Goodbye , John !"}

See Also:

filter

54.2.8 mapping

include std/sequence.e

namespace stdseq

public function mapping(object source_arg , sequence from_set , sequence to_set ,

integer one_level = 0)

changes each item from source arg found in from set into the corresponding item in to set

367

CHAPTER 54. SEQUENCE MANIPULATION 54.2. BASIC ROUTINES

Parameters:

1. source arg : Any Euphoria object to be transformed.

2. from set : A sequence of objects representing the only items from source arg that are actually transformed.

3. to set : A sequence of objects representing the transformed equivalents of those found in from set.

4. one level : An integer. 0 (the default) means that mapping applies to every atom in every level of sub-sequences.
1 means that mapping only applies to the items at the first level in source arg.

Returns:

An object, The transformed version of source arg.

Comments:

• When one level is zero or omitted, for each item in source arg,

– if it is an atom then it may be transformed

– if it is a sequence, then the mapping is performed recursively on the sequence.

– This option required from set to only contain atoms and contain no sub-sequences.

• When one level is not zero, for each item in source arg,

– regardless of whether it is an atom or sequence, if it is found in from set then it is mapped to the corresponding
object in to set.

• Mapping occurs when an item in source arg is found in from set, then it is replaced by the corresponding object
in to set.

Example 1:

res = mapping("The Cat in the Hat", "aeiou", "AEIOU")

-- res is now "ThE CAt In thE HAt"

54.2.9 length

<built -in > function length(object target)

returns the length of an object.

Parameters:

1. target : the object being queried

Returns:

An integer, the number of elements involved with target.

368

CHAPTER 54. SEQUENCE MANIPULATION 54.2. BASIC ROUTINES

Comments:

• An atom only ever has a length of 1.

• The length of a sequence is the number of elements in the sequence.

• The length of each sequence is stored internally by the interpreter for fast access. In some other languages this
operation requires a search through memory for an end marker.

Example 1:

1 length ({{1,2}, {3,4}, {5 ,6}}) -- 3

2 length("") -- 0

3 length ({}) -- 0

4 length(7) -- 1

5 length(3.14) -- 1

See Also:

append, prepend, &

54.2.10 reverse

include std/sequence.e

namespace stdseq

public function reverse(object target , integer pFrom = 1, integer pTo = 0)

reverses the order of elements in a sequence.

Parameters:

1. target : the sequence to reverse.

2. pFrom : an integer, the starting point. Defaults to 1.

3. pTo : an integer, the end point. Defaults to 0.

Returns:

A sequence, if target is a sequence, the same length as target and the same elements, but those with index between
pFrom and pTo appear in reverse order.

Comments:

In the result sequence, some or all top-level elements appear in reverse order compared to the original sequence. This does
not reverse any sub-sequences found in the original sequence.

The pTo parameter can be negative, which indicates an offset from the last element. Thus -1 means the second-last
element and 0 means the last element.

369

CHAPTER 54. SEQUENCE MANIPULATION 54.3. BUILDING SEQUENCES

Example 1:

1 reverse ({1,3,5,7}) -- {7,5,3,1}

2 reverse ({1,3,5,7,9}, 2, -1) -- {1,7,5,3,9}

3 reverse ({1,3,5,7,9}, 2) -- {1,9,7,5,3}

4 reverse ({{1,2,3}, {4,5,6}}) -- {{4,5,6}, {1,2,3}}

5 reverse ({99}) -- {99}

6 reverse ({}) -- {}

7 reverse (42) -- 42

54.2.11 shuffle

include std/sequence.e

namespace stdseq

public function shuffle(object seq)

shuffles the elements of a sequence.

Parameters:

1. seq: the sequence to shuffle.

Returns:

A sequence

Comments:

The input sequence does not have to be in any specific order and can contain duplicates. The output will be in an
unpredictable order, which might even be the same as the input order.

Example 1:

shuffle ({1,2,3,3}) -- {3,1,3,2}

shuffle ({1,2,3,3}) -- {2,3,1,3}

shuffle ({1,2,3,3}) -- {1,2,3,3}

54.3 Building Sequences

54.3.1 series

include std/sequence.e

namespace stdseq

public function series(object start , object increment , integer count = 2, integer op = ’+’)

returns a new sequence built as a series from a given object.

370

CHAPTER 54. SEQUENCE MANIPULATION 54.3. BUILDING SEQUENCES

Parameters:

1. start : the initial value from which to start

2. increment : the value to recursively add to start to get new elements

3. count : an integer, the number of items in the returned sequence. The default is 2.

4. operation : an integer, the type of operation used to build the series. Can be either ’+’ for a linear series or ’*’
for a geometric series. The default is ’+’.

Returns:

An object, either 0 on failure or a sequence containing the series.

Comments:

• The first item in the returned series is always start.

• A linear series is formed by adding increment to start.

• A geometric series is formed by multiplying increment by start.

• If count is negative, or if start op increment is invalid, then 0 is returned. Otherwise, a sequence, of length
count+1, staring with start and whose adjacent elements differ by increment, is returned.

Example 1:

1 s = series(1, 4, 5)

2 -- s is {1, 5, 9, 13, 17}

3 s = series(1, 2, 6, ’*’)

4 -- s is {1, 2, 4, 8, 16, 32}

5 s = series ({1,2,3}, 4, 2)

6 -- s is {{1,2,3}, {5,6,7}}

7 s = series ({1,2,3}, {4,-1,10}, 2)

8 -- s is {{1,2,3}, {5 ,1,13}}

See Also:

repeat pattern

54.3.2 repeat pattern

include std/sequence.e

namespace stdseq

public function repeat_pattern(object pattern , integer count)

returns a periodic sequence, given a pattern and a count.

Parameters:

1. pattern : the sequence whose elements are to be repeated

2. count : an integer, the number of times the pattern is to be repeated.

371

CHAPTER 54. SEQUENCE MANIPULATION 54.3. BUILDING SEQUENCES

Returns:

A sequence, empty on failure, and of length count*length(pattern) otherwise. The first elements of the returned
sequence are those of pattern. So are those that follow, on to the end.

Example 1:

s = repeat_pattern ({1,2,5},3)

-- s is {1,2,5,1,2,5,1,2,5}

See Also:

repeat, series

54.3.3 repeat

<built -in > function repeat(object item , atom count)

creates a sequence whose all elements are identical, with given length.

Parameters:

1. item : an object, to which all elements of the result will be equal

2. count : an atom, the requested length of the result sequence. This must be a value from zero to 0x3FFFFFFF. Any
floating point values are first floored.

Returns:

A sequence, of length count each element of which is item.

Errors:

count cannot be less than zero and cannot be greater than 1 073 741 823.

Comments:

When you repeat a sequence or an atom the interpreter does not actually make multiple copies in memory. Rather, a
single copy is ”pointed to” a number of times.

Example 1:

1 repeat(0, 10) -- {0,0,0,0,0,0,0,0,0,0}

2

3 repeat("JOHN", 4) -- {"JOHN", "JOHN", "JOHN", "JOHN"}

4 -- The interpreter will create only one copy of "JOHN"

5 -- in memory and create a sequence containing four references to it.

See Also:

repeat pattern, series

372

CHAPTER 54. SEQUENCE MANIPULATION 54.4. ADDING TO SEQUENCES

54.4 Adding to Sequences

54.4.1 append

<built -in > function append(sequence target , object x)

adds an object as the last element of a sequence.

Parameters:

1. source : the sequence to add to

2. x : the object to add

Returns:

A sequence, whose first elements are those of target and whose last element is x.

Comments:

The length of the resulting sequence will be length(target) + 1, no matter what x is.
If x is an atom this is equivalent to result = target & x. If x is a sequence it is not equivalent.
The extra storage is allocated automatically and very efficiently with Euphoria’s dynamic storage allocation. The case

where target itself is appended to (as in Example 1 below) is highly optimized.

Example 1:

1 sequence x

2

3 x = {}

4 for i = 1 to 10 do

5 x = append(x, i)

6 end for

7 -- x is now {1,2,3,4,5,6,7,8,9,10}

Example 2:

1 sequence x, y, z

2

3 x = {"fred", "barney"}

4 y = append(x, "wilma")

5 -- y is now {"fred", "barney", "wilma "}

6

7 z = append(append(y, "betty"), {"bam", "bam"})

8 -- z is now {"fred", "barney", "wilma", "betty", {"bam", "bam "}}

See Also:

prepend, &

54.4.2 prepend

<built -in > function prepend(sequence target , object x)

adds an object as the first element of a sequence.

373

CHAPTER 54. SEQUENCE MANIPULATION 54.4. ADDING TO SEQUENCES

Parameters:

1. source : the sequence to add to

2. x : the object to add

Returns:

A sequence, whose last elements are those of target and whose first element is x.

Comments:

The length of the returned sequence will be length(target) + 1 always.
If x is an atom this is the same as result = x & target. If x is a sequence it is not the same.
The case where target itself is prepended to is handled very efficiently.

Example 1:

prepend ({1,2,3}, {0,0}) -- {{0,0}, 1, 2, 3}

-- Compare with concatenation:

{0,0} & {1,2,3} -- {0, 0, 1, 2, 3}

Example 2:

1 s = {}

2 for i = 1 to 10 do

3 s = prepend(s, i)

4 end for

5 -- s is {10,9,8,7,6,5,4,3,2,1}

See Also:

append, &

54.4.3 insert

<built -in > function insert(sequence target , object what , integer index)

inserts an object into a sequence as a new element at a given location.

Parameters:

1. target : the sequence to insert into

2. what : the object to insert

3. index : an integer, the position in target where what should appear

Returns:

A sequence, which is target with one more element at index, which is what.

374

CHAPTER 54. SEQUENCE MANIPULATION 54.4. ADDING TO SEQUENCES

Comments:

target can be a sequence of any shape, and what any kind of object.
The length of the returned sequence is always length(target) + 1.
Inserting a sequence into a string returns a sequence which is no longer a string.

Example 1:

s = insert("John Doe", " Middle", 5)

-- s is {’J’,’o’,’h’,’n’," Middle",’ ’,’D’,’o’,’e’}

Example 2:

s = insert ({10,30 ,40} , 20, 2)

-- s is {10 ,20 ,30 ,40}

See Also:

remove, splice, append, prepend

54.4.4 splice

<built -in > function splice(sequence target , object what , integer index)

inserts an object as a new slice in a sequence at a given position.

Parameters:

1. target : the sequence to insert into

2. what : the object to insert

3. index : an integer, the position in target where what should appear

Returns:

A sequence, which is target with one or more elements, those of what, inserted at locations starting at index.

Comments:

target can be a sequence of any shape, and what any kind of object.
The length of this new sequence is the sum of the lengths of target and what. splice is equivalent to insert when

what is an atom, but not when it is a sequence.
Splicing a string into a string results into a new string.

Example 1:

s = splice("John Doe", " Middle", 5)

-- s is "John Middle Doe"

375

CHAPTER 54. SEQUENCE MANIPULATION 54.4. ADDING TO SEQUENCES

Example 2:

s = splice ({10,30 ,40} , 20, 2)

-- s is {10 ,20 ,30 ,40}

See Also:

insert, remove, replace, &

54.4.5 pad head

include std/sequence.e

namespace stdseq

public function pad_head(object target , integer size , object ch = ’ ’)

pads the beginning of a sequence with an object so as to meet a minimum length condition.

Parameters:

1. target : the sequence to pad.

2. size : an integer, the target minimum size for target

3. padding : an object, usually the character to pad to (defaults to ’ ’).

Returns:

A sequence, either target if it was long enough, or a sequence of length size whose last elements are those of target
and whose first few head elements all equal padding.

Comments:

pad head will not remove characters. If length(target) is greater than size, this function simply returns target. See
head if you wish to truncate long sequences.

Example 1:

1 s = pad_head("ABC", 6)

2 -- s is " ABC"

3

4 s = pad_head("ABC", 6, ’-’)

5 -- s is "---ABC"

See Also:

trim head, pad tail, head

54.4.6 pad tail

include std/sequence.e

namespace stdseq

public function pad_tail(object target , integer size , object ch = ’ ’)

pads the end of a sequence with an object so as to meet a minimum length condition.

376

CHAPTER 54. SEQUENCE MANIPULATION 54.4. ADDING TO SEQUENCES

Parameters:

1. target : the sequence to pad.

2. size : an integer, the target minimum size for target

3. padding : an object, usually the character to pad to (defaults to ’ ’).

Returns:

A sequence, either target if it was long enough, or a sequence of length size whose first elements are those of target
and whose last few head elements all equal padding.

Comments:

pad tail will not remove characters. If length(target) is greater than size, this function simply returns target. See
tail if you wish to truncate long sequences.

Comments:

pad tail will not remove characters. If length(str) is greater than params, this function simply returns str. See tail

if you wish to truncate long sequences.

Example 1:

1 s = pad_tail("ABC", 6)

2 -- s is "ABC "

3

4 s = pad_tail("ABC", 6, ’-’)

5 -- s is "ABC ---"

See Also:

trim tail, pad head, tail

54.4.7 add item

include std/sequence.e

namespace stdseq

public function add_item(object needle , sequence haystack , integer pOrder = 1)

adds an item to the sequence if its not already there. If it already exists in the list, the list is returned unchanged.

Parameters:

1. needle : object to add.

2. haystack : sequence to add it to.

3. order : an integer; determines how the needle affects the haystack. It can be added to the front (prepended),
to the back (appended), or sorted after adding. The default is to prepend it.

Returns:

A sequence, which is haystack with needle added to it.

377

CHAPTER 54. SEQUENCE MANIPULATION 54.4. ADDING TO SEQUENCES

Comments:

An error occurs if an invalid order argument is supplied.
The following enum is provided for specifying order:

• ADD PREPEND – prepend needle to haystack. This is the default option.

• ADD APPEND – append needle to haystack.

• ADD SORT UP – sort haystack in ascending order after inserting needle

• ADD SORT DOWN – sort haystack in descending order after inserting needle

Example 1:

s = add_item(1, {3,4,2}, ADD_PREPEND) -- prepend

-- s is {1,3,4,2}

Example 2:

s = add_item(1, {3,4,2}, ADD_APPEND) -- append

-- s is {3,4,2,1}

Example 3:

s = add_item(1, {3,4,2}, ADD_SORT_UP) -- ascending

-- s is {1,2,3,4}

Example 4:

s = add_item(1, {3,4,2}, ADD_SORT_DOWN) -- descending

-- s is {4,3,2,1}

Example 5:

s = add_item(1, {3,1,4,2})

-- s is {3,1,4,2} -- Item was already in list so no change.

54.4.8 remove item

include std/sequence.e

namespace stdseq

public function remove_item(object needle , sequence haystack)

removes an item from the sequence.

Parameters:

1. needle : object to remove.

2. haystack : sequence to remove it from.

378

CHAPTER 54. SEQUENCE MANIPULATION 54.5. EXTRACTING, REMOVING, REPLACING

Returns:

A sequence, which is haystack with needle removed from it.

Comments:

If needle is not in haystack then haystack is returned unchanged.

Example 1:

s = remove_item(1, {3,4,2,1}) --> {3,4,2}

s = remove_item(5, {3,4,2,1}) --> {3,4,2,1}

54.5 Extracting, Removing, Replacing

54.5.1 head

<built -in > function head(sequence source , atom size =1)

returns the first size item or items of a sequence.

Parameters:

1. source : the sequence from which elements will be returned

2. size : an integer; how many elements, at most, will be returned. Defaults to 1.

Returns:

A sequence, source if its length is not greater than size, or the size first elements of source otherwise.

Example 1:

s2 = head("John Doe", 4)

-- s2 is John

Example 2:

s2 = head("John Doe", 50)

-- s2 is John Doe

Example 3:

s2 = head({1, 5.4, "John", 30}, 3)

-- s2 is {1, 5.4, "John"}

See Also:

tail, mid, slice

379

CHAPTER 54. SEQUENCE MANIPULATION 54.5. EXTRACTING, REMOVING, REPLACING

54.5.2 tail

<built -in > function tail(sequence source , atom size=length(source) - 1)

returns the last size item or items of a sequence.

Parameters:

1. source : the sequence to get the tail of.

2. size : an integer, the number of items to return. (defaults to length(source) - 1)

Returns:

A sequence, of length at most size. If the length is less than size, then source was returned. Otherwise, the size

last elements of source were returned.

Comments:

source can be any type of sequence, including nested sequences.

Example 1:

s2 = tail("John Doe", 3)

-- s2 is "Doe"

Example 2:

s2 = tail("John Doe", 50)

-- s2 is "John Doe"

Example 3:

s2 = tail({1, 5.4, "John", 30}, 3)

-- s2 is {5.4, "John", 30}

See Also:

head, mid, slice

54.5.3 mid

include std/sequence.e

namespace stdseq

public function mid(sequence source , atom start , atom len)

returns a slice of a sequence, given by a starting point and a length.

380

CHAPTER 54. SEQUENCE MANIPULATION 54.5. EXTRACTING, REMOVING, REPLACING

Parameters:

1. source : the sequence some elements of which will be returned

2. start : an integer, the lower index of the slice to return

3. len : an integer, the length of the slice to return

Returns:

A sequence, made of at most len elements of source. These elements are at contiguous positions in source starting
at start.

Errors:

If len is less than -length(source), an error occurs.

Comments:

len may be negative, in which case it is added length(source) once.

Example 1:

s2 = mid("John Middle Doe", 6, 6)

-- s2 is Middle

Example 2:

s2 = mid("John Middle Doe", 6, 50)

-- s2 is Middle Doe

Example 3:

s2 = mid({1, 5.4, "John", 30}, 2, 2)

-- s2 is {5.4, "John"}

Example 4:

s2 = mid({1, 5.4, "John", 30}, 2, -1)

-- s2 is {5.4, "John", 30}

See Also:

head, tail, slice

54.5.4 slice

include std/sequence.e

namespace stdseq

public function slice(sequence source , atom start = 1, atom stop = 0)

returns a portion of the supplied sequence.

381

CHAPTER 54. SEQUENCE MANIPULATION 54.5. EXTRACTING, REMOVING, REPLACING

Parameters:

1. source : the sequence from which to get a portion

2. start : an integer, the starting point of the portion. Default is 1.

3. stop : an integer, the ending point of the portion. Default is length(source).

Returns:

A sequence.

Comments:

• If the supplied start is less than 1 then it set to 1.

• If the supplied stop is less than 1 then length(source) is added to it. In this way, 0 represents the end of source,
-1 represents one element in from the end of source and so on.

• If the supplied stop is greater than length(source) then it is set to the end.

• After these adjustments, and if source[start..stop] makes sense, it is returned, otherwise, is returned.

Example 1:

1 s2 = slice("John Doe", 6, 8)--> "Doe"

2 s2 = slice("John Doe", 6, 50) --> "Doe"

3 s2 = slice({1, 5.4, "John", 30}, 2, 3) --> {5.4, "John"}

4 s2 = slice ({1,2,3,4,5}, 2, -1) --> {2,3,4}

5 s2 = slice ({1,2,3,4,5}, 2) --> {2,3,4,5}

6 s2 = slice ({1,2,3,4,5}, , 4) --> {1,2,3,4}

See Also:

head, mid, tail

54.5.5 vslice

include std/sequence.e

namespace stdseq

public function vslice(sequence source , atom colno , object error_control = 0)

performs a vertical slice on a nested sequence.

Parameters:

1. source : the sequence to take a vertical slice from

2. colno : an atom, the column number to extract (rounded down)

3. error control : an object which says what to do if some element does not exist. Defaults to 0 (crash in such a
circumstance).

Returns:

A sequence, usually of the same length as source, made of all the source[x][colno].

382

CHAPTER 54. SEQUENCE MANIPULATION 54.5. EXTRACTING, REMOVING, REPLACING

Errors:

If an element is not defined and error control is 0, an error occurs. If colno is less than 1, it cannot be any valid
column, and an error occurs.

Comments:

If it is not possible to return the sequence of all source[x][colno]] for all available x, the outcome is decided by
error control:

• If 0 (the default), program is aborted.

• If a nonzero atom, the short vertical slice is returned.

• Otherwise, elements of error control will be taken to make for any missing element. The elements are selected
from the first to the last, as needed and this cycles again from the first.

Example 1:

1 s = vslice ({{5,1}, {5,2}, {5,3}}, 2)

2 -- s is {1,2,3}

3

4 s = vslice ({{5,1}, {5,2}, {5,3}}, 1)

5 -- s is {5,5,5}

See Also:

slice, project

54.5.6 remove

<built -in > function remove(sequence target , atom start , atom stop=start)

removes an item, or a range of items from a sequence.

Parameters:

1. target : the sequence to remove from.

2. start : an atom, the (starting) index at which to remove

3. stop : an atom, the index at which to stop removing (defaults to start)

Returns:

A sequence, obtained from target by carving the start..stop slice out of it.

Comments:

A new sequence is created. target can be a string or complex sequence.

Example 1:

s = remove("Johnn Doe", 4)

-- s is "John Doe"

383

CHAPTER 54. SEQUENCE MANIPULATION 54.5. EXTRACTING, REMOVING, REPLACING

Example 2:

s = remove ({1,2,3,3,4}, 4)

-- s is {1,2,3,4}

Example 3:

s = remove("John Middle Doe", 6, 12)

-- s is "John Doe"

Example 4:

s = remove ({1,2,3,3,4,4}, 4, 5)

-- s is {1,2,3,4}

See Also:

replace, insert, splice, remove all

54.5.7 patch

include std/sequence.e

namespace stdseq

public function patch(sequence target , sequence source , integer start , object filler = ’ ’)

changes a sequence slice, possibly with padding.

Parameters:

1. target : a sequence, a modified copy of which will be returned

2. source : a sequence, to be patched inside or outside target

3. start : an integer, the position at which to patch

4. filler : an object, used for filling gaps. Defaults to ’ ’

Returns:

A sequence, which looks like target, but a slice starting at start equals source.

Comments:

In some cases, this call will result in the same result as replace.

If source does not fit into target because of the lengths and the supplied start value, gaps will be created, and
filler is used to fill them in.

Notionally, target has an infinite amount of filler on both sides, and start counts position relative to where
target actually starts. Then, notionally, a replace operation is performed.

384

CHAPTER 54. SEQUENCE MANIPULATION 54.5. EXTRACTING, REMOVING, REPLACING

Example 1:

sequence source = "abc", target = "John Doe"

sequence s = patch(target , source , 11,’0’)

-- s is now "John Doe00abc"

Example 2:

1 sequence source = "abc", target = "John Doe"

2 sequence s = patch(target , source , -1)

3 -- s is now "abcohn Doe"

4 Note that there was no gap to fill.

5 Since -1 = 1 - 2, the patching started 2 positions before the initial ’J’.

Example 3:

sequence source = "abc", target = "John Doe"

sequence s = patch(target , source , 6)

-- s is now "John Dabc"

See Also:

mid, replace

54.5.8 remove all

include std/sequence.e

namespace stdseq

public function remove_all(object needle , sequence haystack)

removes all occurrences of some object from a sequence.

Parameters:

1. needle : the object to remove.

2. haystack : the sequence to remove from.

Returns:

A sequence, of length at most length(haystack), and which has the same elements, without any copy of needle left

Comments:

This function weeds elements out, not sub-sequences.

Example 1:

s = remove_all(1, {1,2,4,1,3,2,4,1,2,3})

-- s is {2,4,3,2,4,2,3}

385

CHAPTER 54. SEQUENCE MANIPULATION 54.5. EXTRACTING, REMOVING, REPLACING

Example 2:

s = remove_all(’x’, "I’m toox secxksy for my shixrt.")

-- s is "I’m too secksy for my shirt ."

See Also:

remove, replace

54.5.9 retain all

include std/sequence.e

namespace stdseq

public function retain_all(object needles , sequence haystack)

keeps all occurrences of a set of objects from a sequence and removes all others.

Parameters:

1. needles : the set of objects to retain.

2. haystack : the sequence to remove items not in needles.

Returns:

A sequence containing only those objects from haystack that are also in needles.

Example 1:

s = retain_all({1,3,5}, {1,2,4,1,3,2,4,1,2,3}) --> {1,1,3,1,3}

s = retain_all("0123456789", "+34 (04) 555 -44392") -> "340455544392"

See Also:

remove, replace, remove all

54.5.10 filter

include std/sequence.e

namespace stdseq

public function filter(sequence source , object rid , object userdata = {},

object rangetype = "")

filters a sequence based on a user supplied comparator function.

Parameters:

• source : sequence to filter

• rid : Either a routine id of function to use as comparator or one of the predefined comparitors.

• userdata : an object passed to each invocation of rid. If omitted, is used.

386

CHAPTER 54. SEQUENCE MANIPULATION 54.5. EXTRACTING, REMOVING, REPLACING

• rangetype: A sequence. Only used when rid is ”in” or ”out”. This is used to let the function know how to
interpret userdata. When rangetype is an empty string (which is the default), then userdata is treated as a
set of zero or more discrete items such that ”in” will only return items from source that are in the set of item in
userdata and ”out” returns those not in userdata. The other values for rangetype mean that userdata must
be a set of exactly two items, that represent the lower and upper limits of a range of values.

Returns:

A sequence, made of the elements in source which passed the comparitor test.

Comments:

• The only items from source that are returned are those that pass the test.

• When rid is a routine id, that user defined routine must be a function. Each item in source, along with the
userdata is passed to the function. The function must return a non-zero atom if the item is to be included in the
result sequence, otherwise it should return zero to exclude it from the result.

• The predefined comparitors are:

Comparitor Return Items in source that are...
”<” ”lt” less than userdata

”<=” ”le” less than or equal to userdata

”=” or ”==” ”eq” equal to userdata

”!=” ”ne” not equal to userdata

”>” ”gt” greater than userdata

”>=” ”ge” greater than or equal to userdata

”in” in userdata

”out” not in userdata

• Range Type Usage

Range Type Range Meaning
”[]” Inclusive range. Lower and upper are in the range.
”[)” Low Inclusive range. Lower is in the range but upper is not.
”(]” High Inclusive range. Lower is not in the range but upper is.
”()” Exclusive range. Lower and upper are not in the range.

Example 1:

1 function mask_nums(atom a, object t)

2 if sequence(t) then

3 return 0

4 end if

5 return and_bits(a, t) != 0

6 end function

7

8 function even_nums(atom a, atom t)

9 return and_bits(a,1) = 0

10 end function

11

12 constant data = {5,8,20,19,3,2,10}

13 filter(data , routine_id("mask_nums"), 1) --> {5,19,3}

14 filter(data , routine_id("mask_nums"), 2) -- >{19, 3, 2, 10}

15 filter(data , routine_id("even_nums")) -- >{8, 20, 2, 10}

16

387

CHAPTER 54. SEQUENCE MANIPULATION 54.5. EXTRACTING, REMOVING, REPLACING

17 -- Using ’in’ and ’out ’ with sets.

18 filter(data , "in", {3,4,5,6,7,8}) -- >{5,8,3}

19 filter(data , "out", {3,4,5,6,7,8}) -- >{20,19,2,10}

20

21 -- Using ’in’ and ’out ’ with ranges.

22 filter(data , "in", {3,8}, "[]") --> {5,8,3}

23 filter(data , "in", {3,8}, "[)") --> {5,3}

24 filter(data , "in", {3,8}, "(]") --> {5,8}

25 filter(data , "in", {3,8}, "()") --> {5}

26 filter(data , "out", {3,8}, "[]") --> {20 ,19 ,2 ,10}

27 filter(data , "out", {3,8}, "[)") --> {8,20,19,2,10}

28 filter(data , "out", {3,8}, "(]") --> {20,19,3,2,10}

29 filter(data , "out", {3,8}, "()") --> {8,20,19,3,2,10}

Example 2:

1 function quiksort(sequence s)

2 if length(s) < 2 then

3 return s

4 end if

5 return quiksort(filter(s[2..$], " <=", s[1])) & s[1] & quiksort(filter(s[2..$], ">", s[1]))

6 end function

7 ? quiksort({5,4,7,2,4,9,1,0,4,32,7,54,2,5,8,445,67})

8 --> {0,1,2,2,4,4,4,5,5,7,7,8,9,32,54,67,445}

See Also:

apply

54.5.11 STDFLTR ALPHA

public constant STDFLTR_ALPHA

Predefined routine id for use with filter.

Comments:

Used to filter out non-alphabetic characters from a string.

Example 1:

-- Collect only the alphabetic characters from ’text ’

result = filter(text , STDFLTR_ALPHA)

54.5.12 replace

<built -in > function replace(sequence target , object replacement , integer start , integer stop=start)

replaces a slice in a sequence by an object.

388

CHAPTER 54. SEQUENCE MANIPULATION 54.5. EXTRACTING, REMOVING, REPLACING

Parameters:

1. target : the sequence in which replacement will be done.

2. replacement : an object, the item to replace with.

3. start : an integer, the starting index of the slice to replace.

4. stop : an integer, the stopping index of the slice to replace.

Returns:

A sequence, which is made of target with the start..stop slice removed and replaced by replacement, which is
spliced in.

Comments:

• A new sequence is created. target can be a string or complex sequence of any shape.

• To replace by just one element, enclose replacement in curly braces, which will be removed at replace time.

Example 1:

1 s = replace("John Middle Doe", "Smith", 6, 11)

2 -- s is "John Smith Doe"

3

4 s = replace ({45.3 , "John", 5, {10, 20}}, 25, 2, 3)

5 -- s is {45.3, 25, {10, 20}}

See Also:

splice, remove, remove all

54.5.13 extract

include std/sequence.e

namespace stdseq

public function extract(sequence source , sequence indexes)

picks out from a sequence a set of elements according to the supplied set of indexes.

Parameters:

1. source : the sequence from which to extract elements

2. indexes : a sequence of atoms, the indexes of the elements to be fetched in source.

Returns:

A sequence, of the same length as indexes.

Example 1:

s = extract ({11,13 ,15 ,17} ,{3 ,1 ,2,1,4})

-- s is {15 ,11 ,13 ,11 ,17}

389

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

See Also:

slice

54.5.14 project

include std/sequence.e

namespace stdseq

public function project(sequence source , sequence coords)

creates a list of sequences based on selected elements from sequences in the source.

Parameters:

1. source : a list of sequences.

2. coords : a list of index lists.

Returns:

A sequence, with the same length as source. Each of its elements is a sequence, the length of coords. Each innermost
sequence is made of the elements from the corresponding source sub-sequence.

Comments:

For each sequence in source, a set of sub-sequences is created; one for each index list in coords. An index list is just a
sequence containing indexes for items in a sequence.

Example 1:

s = project ({ "ABCD", "789"}, {{1,2}, {3,1}, {2}})

-- s is {{"AB","CA","B"} ,{"78" ,"97" ,"8"}}

See Also:

vslice, extract

54.6 Changing the Shape of a Sequence

54.6.1 split

include std/sequence.e

namespace stdseq

public function split(sequence st, object delim = ’ ’, integer no_empty = 0,

integer limit = 0)

splits a sequence on separator delimiters into a number of sub-sequences.

390

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

Parameters:

1. source : the sequence to split.

2. delim : an object (default is ’ ’). The delimiter that separates items in source.

3. no empty : an integer (default is 0). If not zero then all zero-length sub-sequences are removed from the returned
sequence. Use this when leading, trailing and duplicated delimiters are not significant.

4. limit : an integer (default is 0). The maximum number of sub-sequences to create. If zero, there is no limit.

Returns:

A sequence, of sub-sequences of source. Delimiters are removed.

Comments:

This function may be applied to a string sequence or a complex sequence.
If limit is > 0, this is the maximum number of sub-sequences that will created, otherwise there is no limit.

Example 1:

result = split("John Middle Doe")

-- result is {"John", "Middle", "Doe"}

Example 2:

result = split("John ,Middle ,Doe", ",",, 2) -- Only want 2 sub -sequences.

-- result is {"John", "Middle ,Doe"}

Example 3:

1 result = split("John|| Middle ||Doe|", ’|’) -- Each ’|’ is significant by default

2 -- result is {"John",""," Middle ","","Doe",""}

3 result = split("John|| Middle ||Doe|", ’|’, 1) -- Adjacent ’|’ are just a single delim ,

4 -- and leading/trailing ’|’ ignored.

5 -- result is {"John","Middle","Doe"}

See Also:

split any, breakup, join

54.6.2 split any

include std/sequence.e

namespace stdseq

public function split_any(sequence source , object delim = ", \t|", integer limit = 0,

integer no_empty = 0)

splits a sequence by any of the separators in the list of delimiters.
If limit is > 0 then limit the number of tokens that will be split to limit.

391

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

Parameters:

1. source : the sequence to split.

2. delim : a list of delimiters to split by. The default set is comma, space, tab and bar.

3. limit : an integer (default is 0). The maximum number of sub-sequences to create. If zero, there is no limit.

4. no empty : an integer (default is 0). If not zero then all zero-length sub-sequences removed from the returned
sequence. Use this when leading, trailing and duplicated delimiters are not significant.

Comments:

• This function may be applied to a string sequence or a complex sequence.

• It works like split, but in this case delim is a set of potential delimiters rather than a single delimiter.

• If delim is an empty set, the source is returned in a sequence.

Example 1:

1 result = split_any("One ,Two|Three Four") -- Default delims

2 -- result is {"One", "Two", "Three", "Four"}

3 result = split_any("192.168.1.103:8080", ".:") -- Using dot and colon

4 -- result is {"192" ,"168" ,"1" ,"103" ,"8080"}

5 result = split_any("One ,Two|Three Four",, 2) -- limited to two splits

6 -- result is {"One", "Two", "Three Four"}

7 result = split_any(",One ,,Two| Three || Four ,") -- Allow Empty option

8 -- result is {"","One","","Two","","Three ","","","Four ",""}

9 result = split_any(",One ,,Two| Three || Four ," ,,,1) -- No Empty option

10 -- result is {"One", "Two", "Three", "Four"}

11 result = split_any(",One ,,Two| Three || Four ,", "") -- Empty delimiters

12 -- result is {",One ,,Two| Three || Four ,"}

See Also:

split, breakup, join

54.6.3 join

include std/sequence.e

namespace stdseq

public function join(sequence items , object delim = " ")

joins sequences together using a delimiter.

Parameters:

1. items : the sequence of items to join.

2. delim : an object, the delimiter to join by. Defaults to ” ”.

Comments:

This function may be applied to a string sequence or a complex sequence

392

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

Example 1:

result = join({"John", "Middle", "Doe"})

-- result is "John Middle Doe"

Example 2:

result = join({"John", "Middle", "Doe"}, ",")

-- result is "John ,Middle ,Doe"

See Also:

split, split any, breakup

54.6.4 enum

include std/sequence.e

namespace stdseq

public enum

54.6.5 BK LEN

include std/sequence.e

namespace stdseq

BK_LEN

54.6.6 BK PIECES

include std/sequence.e

namespace stdseq

BK_PIECES

54.6.7 breakup

include std/sequence.e

namespace stdseq

public function breakup(sequence source , object size , integer style = BK_LEN)

breaks up a sequence into multiple sequences of a given length.

Parameters:

1. source : the sequence to be broken up into sub-sequences.

2. size : an object, if an integer it is either the maximum length of each resulting sub-sequence or the maximum
number of sub-sequences to break source into.
If size is a sequence, it is a list of element counts for the sub-sequences it creates.

3. style : an integer, Either BK LEN if size integer represents the sub-sequences’ maximum length, or BK PIECES if
the size integer represents the maximum number of sub-sequences (pieces) to break source into.

393

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

Returns:

A sequence, of sequences.

Comments:

When size is an integer and style is BK LEN...
The sub-sequences have length size, except possibly the last one, which may be shorter. For example if source has 11
items and size is 3, then the first three sub-sequences will get 3 items each and the remaining 2 items will go into the
last sub-sequence. If size is less than 1 or greater than the length of the source, the source is returned as the only
sub-sequence.

When size is an integer and style is BK PIECES...
There is exactly size sub-sequences created. If the source is not evenly divisible into that many pieces, then the lefthand
sub-sequences will contain one more element than the right-hand sub-sequences. For example, if source contains 10 items
and we break it into 3 pieces, piece #1 gets 4 elements, piece #2 gets 3 items and piece #3 gets 3 items - a total of 10.
If source had 11 elements then the pieces will have 4,4, and 3 respectively.

When size is a sequence...
The style parameter is ignored in this case. The source will be broken up according to the counts contained in the size
parameter. For example, if size was 3,4,0,1 then piece #1 gets 3 items, #2 gets 4 items, #3 gets 0 items, and #4 gets
1 item. Note that if not all items from source are placed into the sub-sequences defined by size, and extra sub-sequence
is appended that contains the remaining items from source.

In all cases, when concatenated these sub-sequences will be identical to the original source.

Example 1:

s = breakup("5545112133234454", 4)

-- s is {"5545" , "1121" , "3323" , "4454"}

Example 2:

s = breakup("12345", 2)

-- s is {"12", "34", "5"}

Example 3:

s = breakup ({1,2,3,4,5,6}, 3)

-- s is {{1,2,3}, {4,5,6}}

Example 4:

s = breakup("ABCDEF", 0)

-- s is {" ABCDEF "}

See Also:

split flatten

394

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

54.6.8 flatten

include std/sequence.e

namespace stdseq

public function flatten(sequence s, object delim = "")

removes all nesting from a sequence.

Parameters:

1. s : the sequence to flatten out.

2. delim : An optional delimiter to place after each flattened sub-sequence (except the last one).

Returns:

A sequence, of atoms, all the atoms in s enumerated.

Comments:

• If you consider a sequence as a tree, then the enumeration is performed by left-right reading of the tree. The
elements are simply read left to right, without any care for braces.

• Empty sub-sequences are stripped out entirely.

Example 1:

s = flatten ({{18 , 19}, 45, {18.4 , 29.3}})

-- s is {18, 19, 45, 18.4, 29.3}

Example 2:

s = flatten ({18,{ 19, {45}} , {18.4 , {}, 29.3}})

-- s is {18, 19, 45, 18.4, 29.3}

Example 3:

Using the delimiter argument.

s = flatten ({"abc", "def", "ghi"}, ", ")

-- s is "abc , def , ghi"

54.6.9 pivot

include std/sequence.e

namespace stdseq

public function pivot(object data_p , object pivot_p = 0)

returns a sequence of three sub-sequences. The sub-sequences contain all the elements less than the supplied pivot
value, equal to the pivot, and greater than the pivot.

395

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

Parameters:

1. data p : Either an atom or a list. An atom is treated as if it is one-element sequence.

2. pivot p : An object. Default is zero.

Returns:

A sequence, less than pivot, equal to pivot, greater than pivot

Comments:

pivot is used as a split up a sequence relative to a specific value.

Example 1:

1 pivot({7, 2, 8.5, 6, 6, -4.8, 6, 6, 3.341 , -8, "text"}, 6)

2 -- Ans: {{2, -4.8, 3.341, -8}, {6, 6, 6, 6}, {7, 8.5, "text "}}

3 pivot({4, 1, -4, 6, -1, -7, 9, 10})

4 -- Ans: {{-4, -1, -7}, {}, {4, 1, 6, 9, 10}}

5 pivot(5)

6 -- Ans: {{}, {}, {5}}

Example 2:

1 function quiksort(sequence s)

2 if length(s) < 2 then

3 return s

4 end if

5

6 sequence k = pivot(s, s[rand(length(s))])

7

8 return quiksort(k[1]) & k[2] & quiksort(k[3])

9 end function

10

11 sequence t2 = {5,4,7,2,4,9,1,0,4,32,7,54,2,5,8,445,67}

12 ? quiksort(t2) --> {0,1,2,2,4,4,4,5,5,7,7,8,9,32,54,67,445}

54.6.10 build list

include std/sequence.e

namespace stdseq

public function build_list(sequence source , object transformer , integer singleton = 1,

object user_data = {})

implements ”List Comprehension” or building a list based on the contents of another list.

Parameters:

1. source : A sequence. The list of items to base the new list upon.

2. transformer : One or more routine ids. These are routine ids of functions that must receive three parameters
(object x, sequence i, object u) where ’x’ is an item in the source list, ’i’ contains the position that ’x’ is found
in the source list and the length of source, and ’u’ is the user data value. Each transformer must return a
two-element sequence. If the first element is zero, then build list continues on with the next transformer function

396

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

for the same ’x’. If the first element is not zero, the second element is added to the new list being built (other
elements are ignored) and build list skips the rest of the transformers and processes the next element in source.

3. singleton : An integer. If zero then the transformer functions return multiple list elements. If not zero then the
transformer functions return a single item (which might be a sequence).

4. user data : Any object. This is passed unchanged to each transformer function.

Returns:

A sequence, The new list of items.

Comments:

• If the transformer is -1, then the source item is just copied.

Example 1:

1 function remitem(object x, sequence i, object q)

2 if (x < q) then

3 return {0} -- no output

4 else

5 return {1,x} -- copy ’x’

6 end if

7 end function

8

9 sequence s

10 -- Remove negative elements (x < 0)

11 s = build_list ({-3, 0, 1.1, -2, 2, 3, -1.5}, routine_id("remitem"), , 0)

12 -- s is {0, 1.1, 2, 3}

54.6.11 transform

include std/sequence.e

namespace stdseq

public function transform(sequence source_data , object transformer_rids)

transforms the input sequence by using one or more user-supplied transformers.

Parameters:

1. source data : A sequence to be transformed.

2. transformer rids : An object. One or more routine ids used to transform the input.

Returns:

The source sequence, that has been transformed.

397

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

Comments:

• This works by calling each transformer in order, passing to it the result of the previous transformation. Of course,
the first transformer gets the original sequence as passed to this routine.

• Each transformer routine takes one or more parameters. The first is a source sequence to be transformed and others
are any user data that may have been supplied to the transform routine.

• Each transformer routine returns a transformed sequence.

• The transformer rids parameters is either a single routine id or a sequence of routine ids. In this second case,
the routine id may actually be a multi-element sequence containing the real routine id and some user data to pass
to the transformer routine. If there is no user data then the transformer is called with only one parameter.

Example 1:

1 res = transform(" hello ", {

2 { routine_id("trim"), " ", 0 },

3 routine_id("upper")

4 })

5 --> "HELLO"

54.6.12 transmute

include std/sequence.e

namespace stdseq

public function transmute(sequence source_data , sequence current_items , sequence new_items ,

integer start = 1, integer limit = length(source_data))

replaces all instances of any element from the current items sequence that occur in the source data sequence with
the corresponding item from the new items sequence.

Parameters:

1. source data : a sequence, the data that might contain elements from current items

2. current items : a sequence, the set of items to look for in source data. Matching data is replaced with the
corresponding data from new items.

3. new items : a sequence, the set of replacement data for any matches found.

4. start : an integer, the starting point of the search. Defaults to 1.

5. limit : an integer, the maximum number of replacements to be made. Defaults to length(source data).

Returns:

A sequence, an updated version of source data.

398

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

Comments:

By default, this routine operates on single elements from each of the arguments. That is to say, it scans source data for
elements that match any single element in current items and when matched, replaces that with a single element from
new items.

For example, you can find all occurrances of ’h’, ’s’, and ’t’ in a string and replace them with ’1’, ’2’, and ’3’ respectively.
transmute(SomeString, "hts", "123")

However, the routine can also be used to scan for sub-sequences and/or replace matches with sequences rather than single
elements. This is done by making the first element in current items and/or new items an empty sequence.

For example, to find all occurrances of ”sh”,”th”, and ”sch” you have the current items as , "sh", "th", "sch".
Note that for the purposes of determine the corresponding replacement data, the leading empty sequence is not counted,
so in this example ”th” is the second item.

res = transmute("the school shoes", {{}, "sh", "th", "sch"}, "123")

-- res becomes "2e 3ool 1oes"

The similar syntax is used to indicates that replacements are sequences and not single elements.

res = transmute("the school shoes", {{}, "sh", "th", "sch"}, {{}, "SH", "TH", "SCH"})

-- res becomes "THe SCHool SHoes"

Using this option also allows you to remove matching data.

res = transmute("the school shoes", {{}, "sh", "th", "sch"}, {{}, "", "", ""})

-- res becomes "e ool oes"

Another thing to note is that when using this syntax, you can still mix together atoms and sequences.

res = transmute("the school shoes", {{}, "sh", ’t’, "sch"}, {{}, ’x’, "TH", "SCH"})

-- res becomes "THhe SCHool xoes"

Example 1:

res = transmute("John Smith enjoys uncooked apples.", "aeiouy", "YUOIEA")

-- res is "JIhn SmOth UnjIAs EncIIkUd YpplUs ."

See Also:

find, match, replace, mapping

54.6.13 sim index

include std/sequence.e

namespace stdseq

public function sim_index(sequence A, sequence B)

calculates the similarity between two sequences.

Parameters:

1. A : A sequence.

2. B : A sequence.

Returns:

An atom, the closer to zero, the more the two sequences are alike.

399

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

Comments:

The calculation is weighted to give mismatched elements towards the front of the sequences larger scores. This means that
sequences that differ near the begining are considered more un-alike than mismatches towards the end of the sequences.
Also, unmatched elements from the first sequence are weighted more than unmatched elements from the second sequence.

Two identical sequences return zero. A non-zero means that they are not the same and larger values indicate a larger
differences.

Example 1:

1 ? sim_index("sit", "sin") --> 0.08784

2 ? sim_index("sit", "sat") --> 0.32394

3 ? sim_index("sit", "skit") --> 0.34324

4 ? sim_index("sit", "its") --> 0.68293

5 ? sim_index("sit", "kit") --> 0.86603

6

7 ? sim_index("knitting", "knitting") --> 0.00000

8 ? sim_index("kitting", "kitten") --> 0.09068

9 ? sim_index("knitting", "knotting") --> 0.27717

10 ? sim_index("knitting", "kitten") --> 0.35332

11 ? sim_index("abacus","zoological") --> 0.76304

54.6.14 SEQ NOALT

include std/sequence.e

namespace stdseq

public constant SEQ_NOALT

Indicates that remove subseq must not replace removed sub-sequences with an alternative value.

54.6.15 remove subseq

include std/sequence.e

namespace stdseq

public function remove_subseq(sequence source_list , object alt_value = SEQ_NOALT)

removes all sub-sequences from the supplied sequence, optionally replacing them with a supplied alternative value. One
common use is to remove all strings from a mixed set of numbers and strings.

Parameters:

1. source list : A sequence from which sub-sequences are removed.

2. alt value : An object. The default is SEQ NOALT, which causes sub-sequences to be physically removed, otherwise
any other value will be used to replace the sub-sequence.

Returns:

A sequence, which contains only the atoms from source list and optionally the alt value where sub-sequences used
to be.

400

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

Example 1:

sequence s = remove_subseq ({4,6,"Apple" ,0.1, {1,2,3}, 4})

-- ’s’ is now {4, 6, 0.1, 4} -- length now 4

s = remove_subseq ({4,6,"Apple" ,0.1, {1,2,3}, 4}, -1)

-- ’s’ is now {4, 6, -1, 0.1, -1, 4} -- length unchanged.

54.6.16 enum

include std/sequence.e

namespace stdseq

public enum

54.6.17 RD INPLACE

include std/sequence.e

namespace stdseq

RD_INPLACE

Remove items while preserving the original order of the unique items.

See Also:

remove dups

54.6.18 RD PRESORTED

include std/sequence.e

namespace stdseq

RD_PRESORTED

Assume that the elements in source data are already sorted. If they are not already sorted, this option merely removed
adjacent duplicate elements.

See Also:

remove dups

54.6.19 RD SORT

include std/sequence.e

namespace stdseq

RD_SORT

Will return the unique elements in ascending sorted order.

See Also:

remove dups

401

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

54.6.20 remove dups

include std/sequence.e

namespace stdseq

public function remove_dups(sequence source_data , integer proc_option = RD_PRESORTED)

removes duplicate elements.

Parameters:

1. source data : A sequence that may contain duplicated elements

2. proc option : One of RD INPLACE, RD PRESORTED, or RD SORT.

• RD INPLACE removes items while preserving the original order of the unique items.

• RD PRESORTED assumes that the elements in source data are already sorted. If they are not already sorted,
this option merely removed adjacent duplicate elements.

• RD SORT will return the unique elements in ascending sorted order.

Returns:

A sequence, that contains only the unique elements from source data.

Example 1:

1 sequence s = { 4,7,9,7,2,5,5,9,0,4,4,5,6,5}

2 ? remove_dups(s, RD_INPLACE) --> {4,7,9,2,5,0,6}

3 ? remove_dups(s, RD_SORT) --> {0,2,4,5,6,7,9}

4 ? remove_dups(s, RD_PRESORTED) --> {4,7,9,7,2,5,9,0,4,5,6,5}

5 ? remove_dups(sort(s), RD_PRESORTED) --> {0,2,4,5,6,7,9}

54.6.21 enum

include std/sequence.e

namespace stdseq

public enum

54.6.22 combine

include std/sequence.e

namespace stdseq

public function combine(sequence source_data , integer proc_option = COMBINE_SORTED)

combines all the sub-sequences into a single, optionally sorted, list.

Parameters:

1. source data : A sequence that contains sub-sequences to be combined.

2. proc option : An integer; COMBINE UNSORTED to return a non-sorted list and COMBINE SORTED (the default) to
return a sorted list.

402

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

Returns:

A sequence, that contains all the elements from all the first-level of sub-sequences from source data.

Comments:

The elements in the sub-sequences do not have to be pre-sorted.
Only one level of sub-sequence is combined.

Example 1:

sequence s = { {4,7,9}, {7,2,5,9}, {0,4}, {5}, {6 ,5}}

combine(s, COMBINE_SORTED) --> {0,2,4,4,5,5,5,6,7,7,9,9}

combine(s, COMBINE_UNSORTED) --> {4,7,9,7,2,5,9,0,4,5,6,5}

Example 2:

sequence s = { {"cat", "dog"}, {"fish", "whale"}, {"wolf"}, {"snail", "worm"}}

combine(s) --> {"cat","dog","fish","snail","whale","wolf","worm"}

combine(s, COMBINE_UNSORTED) --> {"cat","dog","fish","whale","wolf","snail","worm"}

Example 3:

sequence s = { "cat", "dog","fish", "whale", "wolf", "snail", "worm"}

combine(s) --> "aaacdeffghhiilllmnooorsstwww"

combine(s, COMBINE_UNSORTED) --> "catdogfishwhalewolfsnailworm"

54.6.23 minsize

1 include std/sequence.e

2 namespace stdseq

3 public function minsize(object source_data ,

4 integer min_size = floor(length(source_data)* 1.5),

5 object new_data = 0)

ensures that the supplied sequence is at least the supplied minimum length.

Parameters:

1. source data : An object that might need extending.

2. min size: An integer. The minimum length that source data must be. The default is to increase the length of

3. new data: An object. This used to when source data needs to be extended, in which case it is appended as many
times as required to make the length equal to min size. The default is 0.

Returns:

A sequence. The padded sequence, unchanged if its size was not less than min size on input.

Comments:

Pads source data to the right until its length reaches min size using new data as filler.

403

CHAPTER 54. SEQUENCE MANIPULATION 54.6. CHANGING THE SHAPE OF A SEQUENCE

Example 1:

sequence s

s = minsize ({4,3,6,2,7,1,2}, 10, -1) --> {4,3,6,2,7,1,2,-1,-1,-1}

s = minsize ({4,3,6,2,7,1,2}, 5, -1) --> {4,3,6,2,7,1,2}

404

Chapter 55
Serialization of Euphoria Objects

55.1 Routines

55.1.1 deserialize

include std/serialize.e

namespace serialize

public function deserialize(object sdata , integer pos = 1)

converts a serialized object in to a standard Euphoria object.

Parameters:

1. sdata : either a sequence containing one or more concatenated serialized objects or an open file handle. If this is a
file handle, the current position in the file is assumed to be at a serialized object in the file.

2. pos : optional index into sdata. If omitted 1 is assumed. The index must point to the start of a serialized object.

Returns:

The return value, depends on the input type.

• If sdata is a file handle then this function returns a Euphoria object that had been stored in the file, and moves the
current file to the first byte after the stored object.

• If sdata is a sequence then this returns a two-element sequence. The first element is the Euphoria object that
corresponds to the serialized object that begins at index pos, and the second element is the index position in the
input parameter just after the serialized object.

Comments:

A serialized object is one that has been returned from the serialize function.

Example 1:

1 sequence objcache

2 objcache = serialize(FirstName) &

3 serialize(LastName) &

4 serialize(PhoneNumber) &

405

CHAPTER 55. SERIALIZATION OF EUPHORIA OBJECTS 55.1. ROUTINES

5 serialize(Address)

6

7 sequence res

8 integer pos = 1

9 res = deserialize(objcache , pos)

10 FirstName = res[1] pos = res[2]

11 res = deserialize(objcache , pos)

12 LastName = res[1] pos = res[2]

13 res = deserialize(objcache , pos)

14 PhoneNumber = res[1] pos = res[2]

15 res = deserialize(objcache , pos)

16 Address = res [1] pos = res [2]

Example 2:

1 sequence objcache

2 objcache = serialize ({FirstName ,

3 LastName ,

4 PhoneNumber ,

5 Address })

6

7 sequence res

8 res = deserialize(objcache)

9 FirstName = res [1][1]

10 LastName = res [1][2]

11 PhoneNumber = res [1][3]

12 Address = res [1][4]

Example 3:

1 integer fh

2 fh = open("cust.dat", "wb")

3 puts(fh, serialize(FirstName))

4 puts(fh, serialize(LastName))

5 puts(fh, serialize(PhoneNumber))

6 puts(fh, serialize(Address))

7 close(fh)

8

9 fh = open("cust.dat", "rb")

10 FirstName = deserialize(fh)

11 LastName = deserialize(fh)

12 PhoneNumber = deserialize(fh)

13 Address = deserialize(fh)

14 close(fh)

Example 4:

1 integer fh

2 fh = open("cust.dat", "wb")

3 puts(fh, serialize ({FirstName ,

4 LastName ,

5 PhoneNumber ,

6 Address }))

7 close(fh)

8

406

CHAPTER 55. SERIALIZATION OF EUPHORIA OBJECTS 55.1. ROUTINES

9 sequence res

10 fh = open("cust.dat", "rb")

11 res = deserialize(fh)

12 close(fh)

13 FirstName = res[1]

14 LastName = res[2]

15 PhoneNumber = res[3]

16 Address = res [4]

55.1.2 serialize

include std/serialize.e

namespace serialize

public function serialize(object x)

converts a standard Euphoria object in to a serialized version of it.

Parameters:

1. euobj : any Euphoria object.

Returns:

A sequence, this is the serialized version of the input object.

Comments:

A serialized object is one that has been converted to a set of byte values. This can then by written directly out to a file
for storage.

You can use the deserialize function to convert it back into a standard Euphoria object.

Example 1:

1 integer fh

2 fh = open("cust.dat", "wb")

3 puts(fh, serialize(FirstName))

4 puts(fh, serialize(LastName))

5 puts(fh, serialize(PhoneNumber))

6 puts(fh, serialize(Address))

7 close(fh)

8

9 fh = open("cust.dat", "rb")

10 FirstName = deserialize(fh)

11 LastName = deserialize(fh)

12 PhoneNumber = deserialize(fh)

13 Address = deserialize(fh)

14 close(fh)

Example 2:

1 integer fh

2 fh = open("cust.dat", "wb")

3 puts(fh, serialize ({FirstName ,

4 LastName ,

407

CHAPTER 55. SERIALIZATION OF EUPHORIA OBJECTS 55.1. ROUTINES

5 PhoneNumber ,

6 Address }))

7 close(fh)

8

9 sequence res

10 fh = open("cust.dat", "rb")

11 res = deserialize(fh)

12 close(fh)

13 FirstName = res[1]

14 LastName = res[2]

15 PhoneNumber = res[3]

16 Address = res [4]

55.1.3 dump

include std/serialize.e

namespace serialize

public function dump(sequence data , sequence filename)

saves a Euphoria object to disk in a binary format.

Parameters:

1. data : any Euphoria object.

2. filename : the name of the file to save it to.

Returns:

An integer, 0 if the function fails, otherwise the number of bytes in the created file.

Comments:

If the named file does not exist it is created, otherwise it is overwritten.
You can use the load function to recover the data from the file.

Example 1:

1 include std/serialize.e

2 integer size = dump(myData , theFileName)

3 if size = 0 then

4 puts(1, "Failed to save data to file\n")

5 else

6 printf(1, "Saved file is %d bytes long\n", size)

7 end if

55.1.4 load

include std/serialize.e

namespace serialize

public function load(sequence filename)

restores a Euphoria object that has been saved to disk by dump.

408

CHAPTER 55. SERIALIZATION OF EUPHORIA OBJECTS 55.1. ROUTINES

Parameters:

1. filename : the name of the file to restore it from.

Returns:

A sequence, the first element is the result code. If the result code is 0 then it means that the function failed, otherwise
the restored data is in the second element.

Comments:

This is used to load back data from a file created by the dump function.

Example 1:

1 include std/serialize.e

2 sequence mydata = load(theFileName)

3 if mydata [1] = 0 then

4 puts(1, "Failed to load data from file\n")

5 else

6 mydata = mydata [2] -- Restored data is in second element.

7 end if

409

Chapter 56
Sorting

56.1 Constants

56.1.1 ASCENDING

include std/sort.e

namespace stdsort

public constant ASCENDING

Ascending sort order, always the default.

When a sequence is sorted in ASCENDING order, its first element is the smallest as per the sort order and its last element
is the largest

56.1.2 NORMAL ORDER

include std/sort.e

namespace stdsort

public constant NORMAL_ORDER

The normal sort order used by the custom comparison routine.

56.1.3 DESCENDING

include std/sort.e

namespace stdsort

public constant DESCENDING

Descending sort order, which is the reverse of ASCENDING.

56.1.4 REVERSE ORDER

include std/sort.e

namespace stdsort

public constant REVERSE_ORDER

Reverses the sense of the order returned by a custom comparison routine.

410

CHAPTER 56. SORTING 56.2. ROUTINES

56.2 Routines

56.2.1 sort

include std/sort.e

namespace stdsort

public function sort(sequence x, integer order = ASCENDING)

sorts the elements of a sequence into ascending order.

Parameters:

1. x : The sequence to be sorted.

2. order : the sort order. Default is ASCENDING.

Returns:

A sequence, a copy of the original sequence in ascending order

Comments:

The elements can be atoms or sequences.

The standard compare routine is used to compare elements. This means that ”y is greater than x” is defined by
compare(y, x)=1.

This function uses the ”Shell” sort algorithm. This sort is not ”stable” which means elements that are considered
equal might change position relative to each other.

Example 1:

constant student_ages = {18 ,21 ,16 ,23 ,17 ,16 ,20 ,20 ,19}

sequence sorted_ages

sorted_ages = sort(student_ages)

-- result is {16 ,16 ,17 ,18 ,19 ,20 ,20 ,21 ,23}

See Also:

compare, custom sort

56.2.2 custom sort

include std/sort.e

namespace stdsort

public function custom_sort(integer custom_compare , sequence x, object data = {},

integer order = NORMAL_ORDER)

sorts the elements of a sequence according to a user-defined order.

411

CHAPTER 56. SORTING 56.2. ROUTINES

Parameters:

1. custom compare : an integer, the routine-id of the user defined routine that compares two items which appear in
the sequence to sort.

2. x : the sequence of items to be sorted.

3. data : an object, either (no custom data, the default), an atom or a non-empty sequence.

4. order : an integer, either NORMAL ORDER (the default) or REVERSE ORDER.

Returns:

A sequence, a copy of the original sequence in sorted order

Errors:

If the user defined routine does not return according to the specifications in the Comments section below, an error will
occur.

Comments:

• If some user data is being provided, that data must be either an atom or a sequence with at least one element.
NOTE only the first element is passed to the user defined comparison routine, any other elements are just ignored.
The user data is not used or inspected it in any way other than passing it to the user defined routine.

• The user defined routine must return an integer comparison result

– a negative value if object A must appear before object B

– a positive value if object B must appear before object A

– 0 if the order does not matter

NOTE: The meaning of the value returned by the user-defined routine is reversed when order = REVERSE ORDER.
The default is order = NORMAL ORDER, which sorts in order returned by the custom comparison routine.

• When no user data is provided, the user defined routine must accept two objects (A, B) and return just the comparison
result.

• When some user data is provided, the user defined routine must take three objects (A, B , data). It must return
either...

– an integer, which is a comparison result

– a two-element sequence, in which the first element is a comparison result and the second element is the updated
user data that is to be used for the next call to the user defined routine.

• The elements of x can be atoms or sequences. Each time that the sort needs to compare two items in the sequence,
it calls the user-defined function to determine the order.

• This function uses the ”Shell” sort algorithm. This sort is not ”stable” which means the elements that are considered
equal might change position relative to each other.

412

CHAPTER 56. SORTING 56.2. ROUTINES

Example 1:

1 constant students = {{"Anne" ,18}, {"Bob" ,21},

2 {"Chris" ,16}, {"Diane" ,23},

3 {"Eddy" ,17}, {"Freya" ,16},

4 {"George" ,20}, {"Heidi" ,20},

5 {"Ian" ,19}}

6 sequence sorted_byage

7 function byage(object a, object b)

8 ----- If the ages are the same , compare the names otherwise just compare ages.

9 if equal(a[2], b[2]) then

10 return compare(upper(a[1]), upper(b[1]))

11 end if

12 return compare(a[2], b[2])

13 end function

14

15 sorted_byage = custom_sort(routine_id("byage"), students)

16 -- result is {{" Chris ",16}, {"Freya ",16},

17 -- {"Eddy",17}, {"Anne",18},

18 -- {"Ian",19}, {" George ",20},

19 -- {"Heidi ",20}, {"Bob",21},

20 -- {"Diane ",23}}

21

22 sorted_byage = custom_sort(routine_id("byage"), students ,, REVERSE_ORDER)

23 -- result is {{" Diane ",23}, {"Bob",21},

24 -- {"Heidi ",20}, {" George ",20},

25 -- {"Ian",19}, {"Anne",18},

26 -- {"Eddy",17}, {"Freya ",16},

27 -- {"Chris ",16}}

28 --

Example 2:

1 constant students = {{"Anne","Baxter" ,18}, {"Bob","Palmer" ,21},

2 {"Chris","du Pont" ,16},{"Diane","Fry" ,23},

3 {"Eddy","Ammon" ,17},{"Freya","Brash" ,16},

4 {"George","Gungle" ,20},{"Heidi","Smith" ,20},

5 {"Ian","Sidebottom" ,19}}

6 sequence sorted

7 function colsort(object a, object b, sequence cols)

8 integer sign

9 for i = 1 to length(cols) do

10 if cols[i] < 0 then

11 sign = -1

12 cols[i] = -cols[i]

13 else

14 sign = 1

15 end if

16 if not equal(a[cols[i]], b[cols[i]]) then

17 return sign * compare(upper(a[cols[i]]), upper(b[cols[i]]))

18 end if

19 end for

20

21 return 0

22 end function

23

24 -- Order is age:descending , Surname , Given Name

413

CHAPTER 56. SORTING 56.2. ROUTINES

25 sequence column_order = {-3,2,1}

26 sorted = custom_sort(routine_id("colsort"), students , {column_order})

27 -- result is

28 {

29 {"Diane","Fry" ,23},

30 {"Bob","Palmer" ,21},

31 {"George","Gungle" ,20},

32 {"Heidi","Smith" ,20},

33 {"Ian","Sidebottom" ,19},

34 {"Anne", "Baxter", 18 },

35 {"Eddy","Ammon" ,17},

36 {"Freya","Brash" ,16},

37 {"Chris","du Pont" ,16}

38 }

39

40 sorted = custom_sort(routine_id("colsort"), students , {column_order}, REVERSE_ORDER)

41 -- result is

42 {

43 {"Chris","du Pont" ,16},

44 {"Freya","Brash" ,16},

45 {"Eddy","Ammon" ,17},

46 {"Anne", "Baxter", 18 },

47 {"Ian","Sidebottom" ,19},

48 {"Heidi","Smith" ,20},

49 {"George","Gungle" ,20},

50 {"Bob","Palmer" ,21},

51 {"Diane","Fry" ,23}

52 }

See Also:

compare, sort

56.2.3 sort columns

include std/sort.e

namespace stdsort

public function sort_columns(sequence x, sequence column_list)

sorts the rows in a sequence according to a user-defined column order.

Parameters:

1. x : a sequence, holding the sequences to be sorted.

2. column list : a list of columns indexes x is to be sorted by.

Returns:

A sequence, a copy of the original sequence in sorted order.

Comments:

x must be a sequence of sequences.
A non-existent column is treated as coming before an existing column. This allows sorting of records that are shorter

than the columns in the column list.

414

CHAPTER 56. SORTING 56.2. ROUTINES

By default columns are sorted in ascending order. To sort in descending order make the column number negative.
This function uses the ”Shell” sort algorithm. This sort is not ”stable” which means elements that are considered

equal might change position relative to each other.

Example 1:

1 sequence dirlist

2 dirlist = dir("c:\\ temp")

3 sequence sorted

4 -- Order is Size:descending , Name

5 sorted = sort_columns(dirlist , {-D_SIZE , D_NAME})

See Also:

compare, sort

56.2.4 merge

include std/sort.e

namespace stdsort

public function merge(sequence a, sequence b, integer compfunc = - 1, object userdata = "")

merges two pre-sorted sequences into a single sequence.

Parameters:

1. a : a sequence, holding pre-sorted data.

2. b : a sequence, holding pre-sorted data.

3. compfunc : an integer, either -1 or the routine id of a user-defined comparision function.

Returns:

A sequence, consisting of a and b merged together.

Comments:

• If a or b is not already sorted, the resulting sequence might not be sorted either.

• The input sequences do not have to be the same size.

• The user-defined comparision function must accept two objects and return an integer. It returns -1 if the first object
must appear before the second one, and 1 if the first object must after before the second one, and 0 if the order
doesn’t matter.

Example 1:

sequence X,Y

X = sort({5,3,7,1,9,0}) --> {0,1,3,5,7,9}

Y = sort({6,8,10,2}) --> {2,6,8,10}

? merge(X,Y) --> {0,1,2,3,5,6,7,8,9,10}

415

CHAPTER 56. SORTING 56.2. ROUTINES

See Also:

compare, sort

56.2.5 insertion sort

include std/sort.e

namespace stdsort

public function insertion_sort(sequence s, object e = "", integer compfunc = - 1,

object userdata = "")

sorts a sequence and optionally another object together.

Parameters:

1. s : a sequence, holding data to be sorted.

2. e : an object. If this is an atom, it is sorted in with s. If this is a non-empty sequence then s and e are both sorted
independantly using this insertion sort function and then the results are merged and returned.

3. compfunc : an integer, either -1 or the routine id of a user-defined comparision function.

Returns:

A sequence, consisting of s and e sorted together.

Comments:

• This routine is usually a lot faster than the standard sort when s and e are (mostly) sorted before calling the function.
For example, you can use this routine to quickly add to a sorted list.

• The input sequences do not have to be the same size.

• The user-defined comparision function must accept two objects and return an integer. It returns -1 if the first object
must appear before the second one, and 1 if the first object must after before the second one, and 0 if the order
does not matter.

Example 1:

1 sequence X = {}

2 while true do

3 newdata = get_data ()

4 if compare(-1, newdata) then

5 exit

6 end if

7 X = insertion_sort(X, newdata)

8 process(new_data)

9 end while

See Also:

compare, sort, merge

416

Chapter 57
Locale Routines

57.1 Message Translation Functions

57.1.1 set lang path

include std/locale.e

namespace locale

public procedure set_lang_path(object pp)

sets the language path.

Parameters:

1. pp : an object, either an actual path or an atom.

Comments:

When the language path is not set, and it is unset by default, set does not load any language file.

See Also:

set

57.1.2 get lang path

include std/locale.e

namespace locale

public function get_lang_path ()

gets the language path.

Returns:

An object, the current language path.

See Also:

get lang path

417

CHAPTER 57. LOCALE ROUTINES 57.1. MESSAGE TRANSLATION FUNCTIONS

57.1.3 lang load

include std/locale.e

namespace locale

public function lang_load(sequence filename)

loads a language file.

Parameters:

1. filename : a sequence, the name of the file to load. If no file extension is supplied, then ".lng" is used.

Returns:

A language map, if successful. This is to be used when calling translate.
If the load fails it returns a zero.

Comments:

The language file must be made of lines which are either comments, empty lines or translations. Note that leading
whitespace is ignored on all lines except continuation lines.

• Comments are lines that begin with a # character and extend to the end of the line.

• Empty Lines are ignored.

• Translations have two forms.

keyword translation_text

In which the ’keyword’ is a word that must not have any spaces in it.

keyphrase = translation_text

In which the ’keyphrase’ is anything up to the first ’=’ symbol.
It is possible to have the translation text span multiple lines. You do this by having ’&’ as the last character of the

line. These are placed by newline characters when loading.

Example 1:

Example translation file

#

hello Hola

world Mundo

greeting %s, %s!

help text = &

This is an example of some &

translation text that spans &

multiple lines.

End of example PO #2

418

CHAPTER 57. LOCALE ROUTINES 57.1. MESSAGE TRANSLATION FUNCTIONS

See Also:

translate

57.1.4 set def lang

include std/locale.e

namespace locale

public procedure set_def_lang(object langmap)

sets the default language (translation) map.

Parameters:

1. langmap : A value returned by lang load, or zero to remove any default map.

Example 1:

set_def_lang(lang_load("appmsgs"))

57.1.5 get def lang

include std/locale.e

namespace locale

public function get_def_lang ()

gets the default language (translation) map.

Parameters:

none.

Returns:

An object, a language map, or zero if there is no default language map yet.

Example 1:

object langmap = get_def_lang ()

57.1.6 translate

include std/locale.e

namespace locale

public function translate(sequence word , object langmap = 0, object defval = "",

integer mode = 0)

translates a word, using the current language file.

419

CHAPTER 57. LOCALE ROUTINES 57.1. MESSAGE TRANSLATION FUNCTIONS

Parameters:

1. word : a sequence, the word to translate.

2. langmap : Either a value returned by lang load or zero to use the default language map

3. defval : a object. The value to return if the word cannot be translated. Default is ””. If defval is PINF then the
word is returned if it can not be translated.

4. mode : an integer. If zero (the default) it uses word as the keyword and returns the translation text. If not zero it
uses word as the translation and returns the keyword.

Returns:

A sequence, the value associated with word, or defval if there is no association.

Example 1:

1 sequence newword

2 newword = translate(msgtext)

3 if length(msgtext) = 0 then

4 error_message(msgtext)

5 else

6 error_message(newword)

7 end if

Example 2:

error_message(translate(msgtext , , PINF))

See Also:

set, lang load

57.1.7 trsprintf

include std/locale.e

namespace locale

public function trsprintf(sequence fmt , sequence data , object langmap = 0)

returns a formatted string with automatic translation performed on the parameters.

Parameters:

1. fmt : A sequence. Contains the formatting string. See printf for details.

2. data : A sequence. Contains the data that goes into the formatted result. see printf for details.

3. langmap : An object. Either 0 (the default) to use the default language maps, or the result returned from lang load
to specify a particular language map.

Returns:

A sequence, the formatted result.

420

CHAPTER 57. LOCALE ROUTINES 57.2. TIME AND NUMBER TRANSLATION

Comments:

This works very much like the sprintf function. The difference is that the fmt sequence and sequences contained in the
data parameter are translated before passing them to sprintf. If an item has no translation, it remains unchanged.

Further more, after the translation pass, if the result text begins with " ", the " " is removed. This function can be
used when you do not want an item to be translated.

Example 1:

1 -- Assuming a language has been loaded and

2 -- "greeting" translates as ’%s %s, %s’

3 -- "hello" translates as "G’day"

4 -- "how are you today" translates as "How ’s the family ?"

5 sequence UserName = "Bob"

6 sequence result = trsprintf("greeting", {"hello", "__" & UserName , "how are you today"})

7 --> "G’day Bob , How ’s the family ?"

57.2 Time and Number Translation

57.2.1 set

include std/locale.e

namespace locale

public function set(sequence new_locale)

sets the computer locale, and possibly loads an appropriate translation file.

Parameters:

1. new locale : a sequence representing a new locale.

Returns:

An integer, either 0 on failure or 1 on success.

Comments:

Locale strings have the following format: xx YY or xx YY.xyz . The xx part refers to a culture, or main language or script.
For instance, "en" refers to English, "de" refers to German, and so on. For some languages, a script may be specified,
like "mn Cyrl MN" (Mongolian in cyrillic transcription).

The YY part refers to a subculture, or variant, of the main language. For instance, "fr FR" refers to metropolitan
France, while "fr BE" refers to the variant spoken in Wallonie, the French speaking region of Belgium.

The optional .xyz part specifies an encoding, like .utf8 or .1252 . This is required in some cases.

57.2.2 get

include std/locale.e

namespace locale

public function get()

gets the current locale string.

421

CHAPTER 57. LOCALE ROUTINES 57.2. TIME AND NUMBER TRANSLATION

Returns:

A sequence, a locale string.

See Also:

set

57.2.3 money

include std/locale.e

namespace locale

public function money(object amount)

converts an amount of currency into a string representing that amount.

Parameters:

1. amount : an atom, the value to write out.

Returns:

A sequence, a string that writes out amount of current currency.

Example 1:

-- Assuming an en_US locale

money (1020.5) -- returns"$1 ,020.50"

See Also:

set, number

57.2.4 number

include std/locale.e

namespace locale

public function number(object num)

converts a number into a string representing that number.

Parameters:

1. num : an atom, the value to write out.

Returns:

A sequence, a string that writes out num.

Example 1:

-- Assuming an en_US locale

number (1020.5) -- returns "1 ,020.50"

422

CHAPTER 57. LOCALE ROUTINES 57.2. TIME AND NUMBER TRANSLATION

See Also:

set, money

57.2.5 datetime

include std/locale.e

namespace locale

public function datetime(sequence fmt , datetime :datetime dtm)

formats a date according to current locale.

Parameters:

1. fmt : A format string, as described in datetime:format

2. dtm : the datetime to write out.

Returns:

A sequence, representing the formatted date.

Example 1:

include std/datetime.e

datetime("Today is a %A", datetime:now())

See Also:

datetime:format

57.2.6 get text

include std/locale.e

namespace locale

public function get_text(integer MsgNum , sequence LocalQuals = {}, sequence DBBase = "teksto")

gets the text associated with the message number in the requested locale.

Parameters:

1. MsgNum : An integer. The message number whose text you are trying to get.

2. LocalQuals : A sequence. Zero or more locale codes. Default is .

3. DBBase: A sequence. The base name for the database files containing the locale text strings. The default is
"teksto".

Returns:

A string sequence, the text associated with the message number and locale.
The integer zero, if associated text can not be found for any reason.

423

CHAPTER 57. LOCALE ROUTINES 57.2. TIME AND NUMBER TRANSLATION

Comments:

• This first scans the database or databases linked to the locale codes supplied.

• The database name for each locale takes the format of "<DBBase> <Locale>.edb" so if the default DBBase is
used, and the locales supplied are "enus", "enau" the databases scanned are "teksto enus.edb" and "teksto enau.edb".
The database table name searched is "1" with the key being the message number, and the text is the record data.

• If the message is not found in these databases (or the databases do not exist) a database called "<DBBase>.edb"
is searched. Again the table name is "1" but it first looks for keys with the format <locale>,msgnum and failing
that it looks for keys in the format "", msgnum, and if that fails it looks for a key of just the msgnum.

424

Chapter 58
Locale Names

58.1 Constants

Windows locale names:
af-ZA sq-AL gsw-FR am-ET ar-DZ ar-BH ar-EG ar-IQ
ar-JO ar-KW ar-LB ar-LY ar-MA ar-OM ar-QA ar-SA
ar-SY ar-TN ar-AE ar-YE hy-AM as-IN az-Cyrl-AZ az-Latn-AZ
ba-RU eu-ES be-BY bn-IN bs-Cyrl-BA bs-Latn-BA br-FR bg-BG
ca-ES zh-HK zh-MO zh-CN zh-SG zh-TW co-FR hr-BA
hr-HR cs-CZ da-DK prs-AF dv-MV nl-BE nl-NL en-AU
en-BZ en-CA en-029 en-IN en-IE en-JM en-MY en-NZ
en-PH en-SG en-ZA en-TT en-GB en-US en-ZW et-EE
fo-FO fil-PH fi-FI fr-BE fr-CA fr-FR fr-LU fr-MC
fr-CH fy-NL gl-ES ka-GE de-AT de-DE de-LI de-LU
de-CH el-GR kl-GL gu-IN ha-Latn-NG he-IL hi-IN hu-HU
is-IS ig-NG id-ID iu-Latn-CA iu-Cans-CA ga-IE it-IT it-CH
ja-JP kn-IN kk-KZ kh-KH qut-GT rw-RW kok-IN ko-KR
ky-KG lo-LA lv-LV lt-LT dsb-DE lb-LU mk-MK ms-BN
ms-MY ml-IN mt-MT mi-NZ arn-CL mr-IN moh-CA mn-Cyrl-

MN
mn-Mong-
CN

ne-IN ne-NP nb-NO nn-NO oc-FR or-IN ps-AF

fa-IR pl-PL pt-BR pt-PT pa-IN quz-BO quz-EC quz-PE
ro-RO rm-CH ru-RU smn-FI smj-NO smj-SE se-FI se-NO
se-SE sms-FI sma-NO sma-SE sa-IN sr-Cyrl-BA sr-Latn-BA sr-Cyrl-CS
sr-Latn-CS ns-ZA tn-ZA si-LK sk-SK sl-SI es-AR es-BO
es-CL es-CO es-CR es-DO es-EC es-SV es-GT es-HN
es-MX es-NI es-PA es-PY es-PE es-PR es-ES es-

ES tradnl
es-US es-UY es-VE sw-KE sv-FI sv-SE syr-SY tg-Cyrl-TJ
tmz-Latn-
DZ

ta-IN tt-RU te-IN th-TH bo-BT bo-CN tr-TR

tk-TM ug-CN uk-UA wen-DE tr-IN ur-PK uz-Cyrl-UZ uz-Latn-UZ
vi-VN cy-GB wo-SN xh-ZA sah-RU ii-CN yo-NG zu-ZA

58.1.1 w32 names

include std/localeconv.e

425

CHAPTER 58. LOCALE NAMES 58.1. CONSTANTS

namespace localconv

public constant w32_names

58.1.2 w32 name canonical

include std/localeconv.e

namespace localconv

public constant w32_name_canonical

Canonical locale names for Windows:

426

CHAPTER 58. LOCALE NAMES 58.1. CONSTANTS

Afrikaans South Africa Afrikaans South Africa Afrikaans South Africa
Afrikaans South Africa Afrikaans South Africa Afrikaans South Africa
Afrikaans South Africa Afrikaans South Africa Afrikaans South Africa
Afrikaans South Africa Afrikaans South Africa Afrikaans South Africa
Afrikaans South Africa Afrikaans South Africa Afrikaans South Africa
Afrikaans South Africa Afrikaans South Africa Afrikaans South Africa
Afrikaans South Africa Afrikaans South Africa Afrikaans South Africa
Afrikaans South Africa Afrikaans South Africa Afrikaans South Africa
Basque Spain Basque Spain Belarusian Belarus
Belarusian Belarus Belarusian Belarus Belarusian Belarus
Belarusian Belarus Belarusian Belarus Catalan Spain
Catalan Spain Catalan Spain Catalan Spain
Catalan Spain Catalan Spain Catalan Spain
Catalan Spain Catalan Spain Catalan Spain
Danish Denmark Danish Denmark Danish Denmark
Danish Denmark Danish Denmark English Australia
English United States English United States English United States
English United States English United States English United States
English United States English United States English United States
English United States English United States English United States
English United States English United States English United States
English United States English United States English United States
Finnish Finland French France French France
French France French France French France
French France French France French France
French France French France French France
French France French France French France
French France French France French France
French France French France French France
Hungarian Hungary Hungarian Hungary Hungarian Hungary
Hungarian Hungary Hungarian Hungary Hungarian Hungary
Hungarian Hungary Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Italian Italy Italian Italy
Italian Italy Romanian Romania Romanian Romania
Russian Russia Russian Russia Russian Russia
Russian Russia Serbian (Cyrillic) Serbia Serbian (Cyrillic) Serbia
Serbian (Cyrillic) Serbia Serbian (Cyrillic) Serbia Serbian (Cyrillic) Serbia
Serbian (Cyrillic) Serbia Serbian (Cyrillic) Serbia Serbian (Cyrillic) Serbia
Serbian (Cyrillic) Serbia Serbian (Cyrillic) Serbia Serbian (Cyrillic) Serbia
Serbian (Cyrillic) Serbia Serbian (Cyrillic) Serbia Serbian (Cyrillic) Serbia
Serbian (Cyrillic) Serbia Slovak Slovakia Estonian Estonia
Estonian Estonia Estonian Estonia Estonian Estonia
Estonian Estonia Estonian Estonia Estonian Estonia
Estonian Estonia Estonian Estonia Estonian Estonia
Estonian Estonia Estonian Estonia Estonian Estonia
Estonian Estonia Estonian Estonia Estonian Estonia
Estonian Estonia Estonian Estonia Estonian Estonia
Estonian Estonia Estonian Estonia Swedish Sweden
Swedish Sweden Swedish Sweden Swedish Sweden
Swedish Sweden Swedish Sweden Swedish Sweden
Swedish Sweden Swedish Sweden Swedish Sweden
Swedish Sweden Swedish Sweden Swedish Sweden
Swedish Sweden Swedish Sweden Ukrainian Ukraine
Ukrainian Ukraine Ukrainian Ukraine Ukrainian Ukraine
Ukrainian Ukraine Ukrainian Ukraine Ukrainian Ukraine
Ukrainian Ukraine Ukrainian Ukraine Ukrainian Ukraine
Ukrainian Ukraine Ukrainian Ukraine Ukrainian Ukraine
Ukrainian Ukraine

427

CHAPTER 58. LOCALE NAMES 58.2. LOCALE NAME TRANSLATION

58.1.3 posix names

include std/localeconv.e

namespace localconv

public constant posix_names

POSIX locale names:
af ZA sq AL gsw FR am ET ar DZ ar BH ar EG ar IQ
ar JO ar KW ar LB ar LY ar MA ar OM ar QA ar SA
ar SY ar TN ar AE ar YE hy AM as IN az Cyrl AZ az Latn AZ
ba RU eu ES be BY bn IN bs Cyrl BA bs Latn BA br FR bg BG
ca ES zh HK zh MO zh CN zh SG zh TW co FR hr BA
hr HR cs CZ da DK prs AF dv MV nl BE nl NL en AU
en BZ en CA en 029 en IN en IE en JM en MY en NZ
en PH en SG en ZA en TT en GB en US en ZW et EE
fo FO fil PH fi FI fr BE fr CA fr FR fr LU fr MC
fr CH fy NL gl ES ka GE de AT de DE de LI de LU
de CH el GR kl GL gu IN ha Latn NG he IL hi IN hu HU
is IS ig NG id ID iu Latn CA iu Cans CA ga IE it IT it CH
ja JP kn IN kk KZ kh KH qut GT rw RW kok IN ko KR
ky KG lo LA lv LV lt LT dsb DE lb LU mk MK ms BN
ms MY ml IN mt MT mi NZ arn CL mr IN moh CA mn Cyrl MN
mn Mong CN ne IN ne NP nb NO nn NO oc FR or IN ps AF
fa IR pl PL pt BR pt PT pa IN quz BO quz EC quz PE
ro RO rm CH ru RU smn FI smj NO smj SE se FI se NO
se SE sms FI sma NO sma SE sa IN sr Cyrl BA sr Latn BA sr Cyrl CS
sr Latn CS ns ZA tn ZA si LK sk SK sl SI es AR es BO
es CL es CO es CR es DO es EC es SV es GT es HN
es MX es NI es PA es PY es PE es PR es ES es ES tradnl
es US es UY es VE sw KE sv FI sv SE syr SY tg Cyrl TJ
tmz Latn DZ ta IN tt RU te IN th TH bo BT bo CN tr TR
tk TM ug CN uk UA wen DE tr IN ur PK uz Cyrl UZ uz Latn UZ
vi VN cy GB wo SN xh ZA sah RU ii CN yo NG zu ZA

58.1.4 locale canonical

include std/localeconv.e

namespace localconv

public constant locale_canonical

58.1.5 platform locale

include std/localeconv.e

namespace localconv

public constant platform_locale

58.2 Locale Name Translation

58.2.1 canonical

428

CHAPTER 58. LOCALE NAMES 58.2. LOCALE NAME TRANSLATION

include std/localeconv.e

namespace localconv

public function canonical(sequence new_locale)

Get canonical name for a locale.

Parameters:

1. new locale : a sequence, the string for the locale.

Returns:

A sequence, either the translated locale on success or new locale on failure.

See Also:

get, set, decanonical

58.2.2 decanonical

include std/localeconv.e

namespace localconv

public function decanonical(sequence new_locale)

gets the translation of a locale string for current platform.

Parameters:

1. new locale: a sequence, the string for the locale.

Returns:

A sequence, either the translated locale on success or new locale on failure.

See Also:

get, set, canonical

58.2.3 canon2win

include std/localeconv.e

namespace localconv

public function canon2win(sequence new_locale)

gets the translation of a canoncial locale string for the Windows platform.

Parameters:

1. new locale: a sequence, the string for the locale.

Returns:

A sequence, either the Windows native locale name on success or ”C” on failure.

429

CHAPTER 58. LOCALE NAMES 58.2. LOCALE NAME TRANSLATION

See Also:

get, set, canonical, decanonical

430

Chapter 59
Regular Expressions

59.1 Introduction

Regular expressions in Euphoria are based on the PCRE (Perl Compatible Regular Expressions) library created by Philip
Hazel.

This document will detail the Euphoria interface to Regular Expressions, not really regular expression syntax. It is a
very complex subject that many books have been written on. Here are a few good resources online that can help while
learning regular expressions.

• EUForum Article

• Perl Regular Expressions Man Page

• Regular Expression Library (user supplied regular expressions for just about any task).

• WikiPedia Regular Expression Article

• Man page of PCRE in HTML

59.2 General Use

Many functions take an optional options argument. This argument can be either a single option constant (see Option
Constants), multiple option constants or’ed together into a single atom or a sequence of options, in which the function
will take care of ensuring the are or’ed together correctly. Options are like their C equivalents with the ’PCRE ’ prefix
stripped off. Name spaces disambiguate symbols so we do not need this prefix.

All strings passed into this library must be either 8-bit per character strings or UTF which uses multiple bytes to encode
UNICODE characters. You can use UTF8 encoded UNICODE strings when you pass the UTF8 option.

59.3 Option Constants

59.3.1 Compile Time and Match Time

When a regular expression object is created via new we call also say it gets ”compiled.” The options you may use for this
are called ”compile time” option constants. Once the regular expression is created you can use the other functions that
take this regular expression and a string. These routines’ options are called ”match time” option constants. To not set
any options at all, do not supply the options argument or supply DEFAULT.

431

http://openeuphoria.org/wiki/euwiki.cgi?EuGuide%20Regular%20Expressions
http://perldoc.perl.org/perlre.html
http://regexlib.com/
http://en.wikipedia.org/wiki/Regular_expression
http://www.slabihoud.de/software/archives/pcrecompat.html

CHAPTER 59. REGULAR EXPRESSIONS 59.3. OPTION CONSTANTS

Compile Time Option Constants

The only options that may set at ”compile time” (that is to pass to new) are ANCHORED, AUTO CALLOUT, BSR ANYCRLF,
BSR UNICODE, CASELESS, DEFAULT, DOLLAR ENDONLY, DOTALL, DUPNAMES, EXTENDED, EXTRA, FIRST-
LINE, MULTILINE, NEWLINE CR, NEWLINE LF, NEWLINE CRLF, NEWLINE ANY, NEWLINE ANYCRLF, NO AUTO CAPTURE,
NO UTF8 CHECK, UNGREEDY, and UTF8.

Match Time Option Constants

Options that may be set at ”match time” are: ANCHORED, NEWLINE CR, NEWLINE LF, NEWLINE CRLF, NEW-
LINE ANY NEWLINE ANYCRLF NOTBOL, NOTEOL, NOTEMPTY, NO UTF8 CHECK.

Routines that take match time option constants: match, split, or replace a regular expression against some string.

59.3.2 ANCHORED

public constant ANCHORED

Forces matches to be only from the first place it is asked to try to make a search. In C, this is called PCRE ANCHORED.
This is passed to all routines including new.

59.3.3 AUTO CALLOUT

public constant AUTO_CALLOUT

In C, this is called PCRE AUTO CALLOUT. To get the functionality of this flag in Euphoria, you can use: find replace callback
without passing this option. This is passed to new.

59.3.4 BSR ANYCRLF

<eucode public constant BSR ANYCRLF </eucode>
With this option only ASCII new line sequences are recognized as newlines. Other UNICODE newline sequences

(encoded as UTF8) are not recognized as an end of line marker. This is passed to all routines including new.

59.3.5 BSR UNICODE

public constant BSR_UNICODE

With this option any UNICODE new line sequence is recognized as a newline. The UNICODE will have to be encoded
as UTF8, however. This is passed to all routines including new.

59.3.6 CASELESS

public constant CASELESS

This will make your regular expression matches case insensitive. With this flag for example, [a-z] is the same as
[A-Za-z]. This is passed to new.

59.3.7 DEFAULT

public constant DEFAULT

This is a value used for not setting any flags at all. This can be passed to all routines including new

432

CHAPTER 59. REGULAR EXPRESSIONS 59.3. OPTION CONSTANTS

59.3.8 DFA SHORTEST

public constant DFA_SHORTEST

This is NOT used by any standard library routine.

59.3.9 DFA RESTART

public constant DFA_RESTART

This is NOT used by any standard library routine.

59.3.10 DOLLAR ENDONLY

public constant DOLLAR_ENDONLY

If this bit is set, a dollar sign metacharacter in the pattern matches only at the end of the subject string. Without
this option, a dollar sign also matches immediately before a newline at the end of the string (but not before any other
newlines). Thus you must include the newline character in the pattern before the dollar sign if you want to match a line
that contanis a newline character. The DOLLAR ENDONLY option is ignored if MULTILINE is set. There is no way to set
this option within a pattern. This is passed to new.

59.3.11 DOTALL

public constant DOTALL

With this option the ’.’ character also matches a newline sequence. This is passed to new.

59.3.12 DUPNAMES

public constant DUPNAMES

Allow duplicate names for named subpatterns. Since there is no way to access named subpatterns this flag has no
effect. This is passed to new.

59.3.13 EXTENDED

public constant EXTENDED

Whitespace and characters beginning with a hash mark to the end of the line in the pattern will be ignored when
searching except when the whitespace or hash is escaped or in a character class. This is passed to new.

59.3.14 EXTRA

public constant EXTRA

When an alphanumeric follows a backslash (\) has no special meaning an error is generated. This is passed to new.

59.3.15 FIRSTLINE

public constant FIRSTLINE

If PCRE FIRSTLINE is set, the match must happen before or at the first newline in the subject (though it may continue
over the newline). This is passed to new.

433

CHAPTER 59. REGULAR EXPRESSIONS 59.3. OPTION CONSTANTS

59.3.16 MULTILINE

public constant MULTILINE

When MULTILINE is set the ”start of line” and ”end of line” constructs match immediately following or immediately
before internal newlines in the subject string, respectively, as well as at the very start and end. This is passed to new.

59.3.17 NEWLINE CR

public constant NEWLINE_CR

Sets CR as the NEWLINE sequence. The NEWLINE sequence will match $ when MULTILINE is set. This is passed to all
routines including new.

59.3.18 NEWLINE LF

public constant NEWLINE_LF

Sets LF as the NEWLINE sequence. The NEWLINE sequence will match $ when MULTILINE is set. This is passed to all
routines including new.

59.3.19 NEWLINE CRLF

public constant NEWLINE_CRLF

Sets CRLF as the NEWLINE sequence The NEWLINE sequence will match $ when MULTILINE is set. This is passed to
all routines including new.

59.3.20 NEWLINE ANY

public constant NEWLINE_ANY

Sets ANY newline sequence as the NEWLINE sequence including those from UNICODE when UTF8 is also set. The
string will have to be encoded as UTF8, however. The NEWLINE sequence will match $ when MULTILINE is set. This is
passed to all routines including new.

59.3.21 NEWLINE ANYCRLF

public constant NEWLINE_ANYCRLF

Sets ANY newline sequence from ASCII. The NEWLINE sequence will match $ when MULTILINE is set. This is passed
to all routines including new.

59.3.22 NOTBOL

public constant NOTBOL

This indicates that beginning of the passed string does NOTBOL (NOT start at the Beginning Of a Line) so a carrot
symbol (^) in the original pattern will not match the beginning of the string. This is used by routines other than new.

434

CHAPTER 59. REGULAR EXPRESSIONS 59.3. OPTION CONSTANTS

59.3.23 NOTEOL

public constant NOTEOL

This indicates that end of the passed string does NOTEOL (NOT end at the End Of a Line) so a dollar sign ($) in
the original pattern will not match the end of the string. This is used by routines other than new.

59.3.24 NO AUTO CAPTURE

public constant NO_AUTO_CAPTURE

Disables capturing subpatterns except when the subpatterns are named. This is passed to new.

59.3.25 NO UTF8 CHECK

public constant NO_UTF8_CHECK

Turn off checking for the validity of your UTF string. Use this with caution. An invalid utf8 string with this option
could crash your program. Only use this if you know the string is a valid utf8 string. This is passed to all routines including
new.

59.3.26 NOTEMPTY

public constant NOTEMPTY

Here matches of empty strings will not be allowed. In C, this is PCRE NOTEMPTY. The pattern: ‘A*a*‘ will match
"AAAA", "aaaa", and "Aaaa" but not "". This is used by routines other than new.

59.3.27 PARTIAL

public constant PARTIAL

This option has no effect on whether a match will occur or not. However, it does affect the error code generated by
find in the event of a failure: If for some pattern re, and two strings s1 and s2, find(re, s1 & s2) would return
a match but both find(re, s1) and find(re, s2) would not, then find(re, s1, 1, PCRE PARTIAL) will
return ERROR PARTIAL rather than ERROR NOMATCH. We say s1 has a partial match of re.

Note that find(re, s2, 1, PCRE PARTIAL) will ERROR NOMATCH. In C, this constant is called PCRE PARTIAL.

59.3.28 STRING OFFSETS

public constant STRING_OFFSETS

This is used by matches and all matches.

59.3.29 UNGREEDY

public constant UNGREEDY

This is passed to new. This modifier sets the pattern such that quantifiers are not greedy by default, but become
greedy if followed by a question mark.

435

CHAPTER 59. REGULAR EXPRESSIONS 59.4. ERROR CONSTANTS

59.3.30 UTF8

public constant UTF8

Makes strings passed in to be interpreted as a UTF8 encoded string. This is passed to new.

59.4 Error Constants

Error constants differ from their C equivalents as they do not have PCRE prepended to each name.

59.4.1 ERROR NOMATCH

include std/regex.e

namespace regex

public constant ERROR_NOMATCH

There was no match found.

59.4.2 ERROR NULL

include std/regex.e

namespace regex

public constant ERROR_NULL

There was an internal error in the EUPHORIA wrapper (std/regex.e in the standard include directory or be regex.c in
the EUPHORIA source).

59.4.3 ERROR BADOPTION

include std/regex.e

namespace regex

public constant ERROR_BADOPTION

There was an internal error in the EUPHORIA wrapper (std/regex.e in the standard include directory or be regex.c in
the EUPHORIA source).

59.4.4 ERROR BADMAGIC

include std/regex.e

namespace regex

public constant ERROR_BADMAGIC

The pattern passed is not a value returned from new.

59.4.5 ERROR UNKNOWN OPCODE

include std/regex.e

namespace regex

public constant ERROR_UNKNOWN_OPCODE

An internal error either in the pcre library EUPHORIA uses or its wrapper occured.

436

CHAPTER 59. REGULAR EXPRESSIONS 59.4. ERROR CONSTANTS

59.4.6 ERROR UNKNOWN NODE

include std/regex.e

namespace regex

public constant ERROR_UNKNOWN_NODE

An internal error either in the pcre library EUPHORIA uses or its wrapper occured.

59.4.7 ERROR NOMEMORY

include std/regex.e

namespace regex

public constant ERROR_NOMEMORY

Out of memory.

59.4.8 ERROR NOSUBSTRING

include std/regex.e

namespace regex

public constant ERROR_NOSUBSTRING

The wrapper or the PCRE backend did not preallocate enough capturing groups for this pattern.

59.4.9 ERROR MATCHLIMIT

include std/regex.e

namespace regex

public constant ERROR_MATCHLIMIT

Too many matches encountered.

59.4.10 ERROR CALLOUT

include std/regex.e

namespace regex

public constant ERROR_CALLOUT

Not applicable to our implementation.

59.4.11 ERROR BADUTF8

include std/regex.e

namespace regex

public constant ERROR_BADUTF8

The subject or pattern is not valid UTF8 but it was specified as such with UTF8.

59.4.12 ERROR BADUTF8 OFFSET

include std/regex.e

namespace regex

public constant ERROR_BADUTF8_OFFSET

The offset specified does not start on a UTF8 character boundary but it was specified as UTF8 with UTF8.

437

CHAPTER 59. REGULAR EXPRESSIONS 59.4. ERROR CONSTANTS

59.4.13 ERROR PARTIAL

include std/regex.e

namespace regex

public constant ERROR_PARTIAL

Pattern didn’t match, but there is a partial match. See PARTIAL.

59.4.14 ERROR BADPARTIAL

include std/regex.e

namespace regex

public constant ERROR_BADPARTIAL

PCRE backend doesn’t support partial matching for this pattern.

59.4.15 ERROR INTERNAL

include std/regex.e

namespace regex

public constant ERROR_INTERNAL

59.4.16 ERROR BADCOUNT

include std/regex.e

namespace regex

public constant ERROR_BADCOUNT

size parameter to find is less than minus 1.

59.4.17 ERROR DFA UITEM

include std/regex.e

namespace regex

public constant ERROR_DFA_UITEM

Not applicable to our implementation: The PCRE wrapper doesn’t use DFA routines

59.4.18 ERROR DFA UCOND

include std/regex.e

namespace regex

public constant ERROR_DFA_UCOND

Not applicable to our implementation: The PCRE wrapper doesn’t use DFA routines

59.4.19 ERROR DFA UMLIMIT

include std/regex.e

namespace regex

public constant ERROR_DFA_UMLIMIT

Not applicable to our implementation: The PCRE wrapper doesn’t use DFA routines

438

CHAPTER 59. REGULAR EXPRESSIONS 59.5. CREATE AND DESTROY

59.4.20 ERROR DFA WSSIZE

include std/regex.e

namespace regex

public constant ERROR_DFA_WSSIZE

Not applicable to our implementation: The PCRE wrapper doesn’t use DFA routines

59.4.21 ERROR DFA RECURSE

include std/regex.e

namespace regex

public constant ERROR_DFA_RECURSE

Not applicable to our implementation: The PCRE wrapper doesn’t use DFA routines

59.4.22 ERROR RECURSIONLIMIT

include std/regex.e

namespace regex

public constant ERROR_RECURSIONLIMIT

Too much recursion used for match.

59.4.23 ERROR NULLWSLIMIT

include std/regex.e

namespace regex

public constant ERROR_NULLWSLIMIT

This error isn’t in the source code.

59.4.24 ERROR BADNEWLINE

include std/regex.e

namespace regex

public constant ERROR_BADNEWLINE

Both BSR UNICODE and BSR ANY options were specified. These options are contradictory.

59.4.25 error names

include std/regex.e

namespace regex

public constant error_names

59.5 Create and Destroy

59.5.1 regex

include std/regex.e

namespace regex

public type regex(object o)

Regular expression type

439

CHAPTER 59. REGULAR EXPRESSIONS 59.5. CREATE AND DESTROY

59.5.2 option spec

include std/regex.e

namespace regex

public type option_spec(object o)

Regular expression option specification type
Although the functions do not use this type (they return an error instead), you can use this to check if your routine is

receiving something sane.

59.5.3 option spec to string

include std/regex.e

namespace regex

public function option_spec_to_string(option_spec o)

converts an option spec to a string.
This can be useful for debugging what options were passed in. Without it you have to convert a number to hex and

lookup the constants in the source code.

59.5.4 error to string

include std/regex.e

namespace regex

public function error_to_string(integer i)

converts an regex error to a string.
This can be useful for debugging and even something rough to give to the user incase of a regex failure. It is preferable

to a number.

See Also:

error message

59.5.5 new

include std/regex.e

namespace regex

public function new(string pattern , option_spec options = DEFAULT)

returns an allocated regular expression.

Parameters:

1. pattern : a sequence representing a human readable regular expression

2. options : defaults to DEFAULT. See Compile Time Option Constants.

Returns:

A regex, which other regular expression routines can work on or an atom to indicate an error. If an error, you can call
error message to get a detailed error message.

440

CHAPTER 59. REGULAR EXPRESSIONS 59.5. CREATE AND DESTROY

Comments:

This is the only routine that accepts a human readable regular expression. The string is compiled and a regex is returned.
Analyzing and compiling a regular expression is a costly operation and should not be done more than necessary. For
instance, if your application looks for an email address among text frequently, you should create the regular expression
as a constant accessible to your source code and any files that may use it, thus, the regular expression is analyzed and
compiled only once per run of your application.

1 -- Bad Example

2 include std/regex.e as re

3

4 while sequence(line) do

5 re:regex proper_name = re:new("[A-Z][a-z]+ [A-Z][a-z]+")

6 if re:find(proper_name , line) then

7 -- code

8 end if

9 end while

1 -- Good Example

2 include std/regex.e as re

3 constant re_proper_name = re:new("[A-Z][a-z]+ [A-Z][a-z]+")

4 while sequence(line) do

5 if re:find(re_proper_name , line) then

6 -- code

7 end if

8 end while

Example 1:

include std/regex.e as re

re:regex number = re:new("[0 -9]+")

Note:

For simple matches, the built-in Euphoria routine eu:match and the library routine wildcard:is match are often times easier
to use and a little faster. Regular expressions are faster for complex searching/matching.

See Also:

error message, find, find all

59.5.6 error message

include std/regex.e

namespace regex

public function error_message(object re)

returns a text based error message.

Parameters:

1. re: Regular expression to get the error message from

441

CHAPTER 59. REGULAR EXPRESSIONS 59.6. UTILITY ROUTINES

Returns:

An atom (0) when no error message exists, otherwise a sequence describing the error.

Comments:

If new returns an atom, this function will return a text error message as to the reason.

Example 1:

1 include std/regex.e

2 object r = regex:new("[A-Z[a-z]*")

3 if atom(r) then

4 printf(1, "Regex failed to compile: %s\n", { regex:error_message(r) })

5 end if

59.6 Utility Routines

59.6.1 escape

include std/regex.e

namespace regex

public function escape(string s)

escapes special regular expression characters that may be entered into a search string from user input.

Parameters:

1. s: string sequence to escape

Returns:

An escaped sequence representing s.

Note:

Special regex characters are:

. \ + * ? [^] $ () { } = ! < > | : -

Example 1:

include std/regex.e as re

sequence search_s = re:escape("Payroll is $***15.00")

-- search_s = "Payroll is \\$***15\\.00"

59.6.2 get ovector size

include std/regex.e

namespace regex

public function get_ovector_size(regex ex, integer maxsize = 0)

returns the number of capturing subpatterns (the ovector size) for a regex.

442

CHAPTER 59. REGULAR EXPRESSIONS 59.7. MATCH

Parameters:

1. ex : a regex

2. maxsize : optional maximum number of named groups to get data from

Returns:

An integer

59.7 Match

59.7.1 find

1 include std/regex.e

2 namespace regex

3 public function find(regex re, string haystack , integer from = 1,

4 option_spec options = DEFAULT ,

5 integer size = get_ovector_size(re , 30))

returns the first match of re in haystack. You can optionally start at the position from.

Parameters:

1. re : a regex for a subject to be matched against

2. haystack : a string in which to searched

3. from : an integer setting the starting position to begin searching from. Defaults to 1

4. options : defaults to DEFAULT. See Match Time Option Constants. The only options that may be set when call-
ing find are ANCHORED, NEWLINE CR, NEWLINE LF, NEWLINE CRLF, NEWLINE ANY NEWLINE ANYCRLF
NOTBOL, NOTEOL, NOTEMPTY, and NO UTF8 CHECK. options can be any match time option or a sequence
of valid options or it can be a value that comes from using or bits on any two valid option values.

5. size : internal (how large an array the C backend should allocate). Defaults to 90, in rare cases this number may
need to be increased in order to accomodate complex regex expressions.

Returns:

An object, which is either an atom of 0, meaning nothing matched or a sequence of index pairs. These index pairs may
be fewer than the number of groups specified. These index pairs may be the invalid index pair 0,0.

The first pair is the starting and ending indeces of the sub-string that matches the expression. This pair may be
followed by indeces of the groups. The groups are subexpressions in the regular expression surrounded by parenthesis ().

Now, it is possible to get a match without having all of the groups match. This can happen when there is a quantifier
after a group. For example: ’([01])*’ or ’([01])?’. In this case, the returned sequence of pairs will be missing the last
group indeces for which there is no match. However, if the missing group is followed by a group that *does* match, 0,0
will be used as a place holder. You can ensure your groups match when your expression matches by keeping quantifiers
inside your groups: For example use: ’([01]?)’ instead of ’([01])?’

443

CHAPTER 59. REGULAR EXPRESSIONS 59.7. MATCH

Example 1:

1 include std/regex.e as re

2 r = re:new("([A-Za -z]+) ([0 -9]+)") -- John 20 or Jane 45

3 object result = re:find(r, "John 20")

4

5 -- The return value will be:

6 -- {

7 -- { 1, 7 }, -- Total match

8 -- { 1, 4 }, -- First grouping "John" ([A-Za-z]+)

9 -- { 6, 7 } -- Second grouping "20" ([0 -9]+)

10 -- }

59.7.2 find all

1 include std/regex.e

2 namespace regex

3 public function find_all(regex re, string haystack , integer from = 1,

4 option_spec options = DEFAULT ,

5 integer size = get_ovector_size(re , 30))

returns all matches of re in haystack optionally starting at the sequence position from.

Parameters:

1. re : a regex for a subject to be matched against

2. haystack : a string in which to searched

3. from : an integer setting the starting position to begin searching from. Defaults to 1

4. options : defaults to DEFAULT. See Match Time Option Constants.

Returns:

A sequence of sequences that were returned by find and in the case of no matches this returns an empty sequence.

Comments:

Please see find for a detailed description of each member of the return sequence.

Example 1:

1 include std/regex.e as re

2 constant re_number = re:new("[0 -9]+")

3 object matches = re:find_all(re_number , "10 20 30")

4

5 -- matches is:

6 -- {

7 -- {{1, 2}},

8 -- {{4, 5}},

9 -- {{7, 8}}

10 -- }

444

CHAPTER 59. REGULAR EXPRESSIONS 59.7. MATCH

59.7.3 has match

include std/regex.e

namespace regex

public function has_match(regex re, string haystack , integer from = 1,

option_spec options = DEFAULT)

determines if re matches any portion of haystack.

Parameters:

1. re : a regex for a subject to be matched against

2. haystack : a string in which to searched

3. from : an integer setting the starting position to begin searching from. Defaults to 1

4. options : defaults to DEFAULT. See Match Time Option Constants. options can be any match time option or a
sequence of valid options or it can be a value that comes from using or bits on any two valid option values.

Returns:

An atom, 1 if re matches any portion of haystack or 0 if not.

59.7.4 is match

include std/regex.e

namespace regex

public function is_match(regex re, string haystack , integer from = 1,

option_spec options = DEFAULT)

determines if the entire haystack matches re.

Parameters:

1. re : a regex for a subject to be matched against

2. haystack : a string in which to searched

3. from : an integer setting the starting position to begin searching from. Defaults to 1

4. options : defaults to DEFAULT. See Match Time Option Constants. options can be any match time option or a
sequence of valid options or it can be a value that comes from using or bits on any two valid option values.

Returns:

An atom, 1 if re matches the entire haystack or 0 if not.

59.7.5 matches

include std/regex.e

namespace regex

public function matches(regex re, string haystack , integer from = 1,

option_spec options = DEFAULT)

gets the matched text only.

445

CHAPTER 59. REGULAR EXPRESSIONS 59.7. MATCH

Parameters:

1. re : a regex for a subject to be matched against

2. haystack : a string in which to searched

3. from : an integer setting the starting position to begin searching from. Defaults to 1

4. options : defaults to DEFAULT. See Match Time Option Constants. options can be any match time option or
STRING OFFSETS or a sequence of valid options or it can be a value that comes from using or bits on any two
valid option values.

Returns:

Returns a sequence of strings, the first being the entire match and subsequent items being each of the captured groups
or ERROR NOMATCH of there is no match. The size of the sequence is the number of groups in the expression plus
one (for the entire match).

If options contains the bit STRING OFFSETS, then the result is different. For each item, a sequence is returned
containing the matched text, the starting index in haystack and the ending index in haystack.

Example 1:

1 include std/regex.e as re

2 constant re_name = re:new("([A-Z][a-z]+) ([A-Z][a-z]+)")

3

4 object matches = re:matches(re_name , "John Doe and Jane Doe")

5 -- matches is:

6 -- {

7 -- "John Doe", -- full match data

8 -- "John", -- first group

9 -- "Doe" -- second group

10 -- }

11

12 matches = re:matches(re_name , "John Doe and Jane Doe", 1, re:STRING_OFFSETS)

13 -- matches is:

14 -- {

15 -- { "John Doe", 1, 8 }, -- full match data

16 -- { "John", 1, 4 }, -- first group

17 -- { "Doe", 6, 8 } -- second group

18 -- }

See Also:

all matches

59.7.6 all matches

include std/regex.e

namespace regex

public function all_matches(regex re, string haystack , integer from = 1,

option_spec options = DEFAULT)

gets the text of all matches.

446

CHAPTER 59. REGULAR EXPRESSIONS 59.7. MATCH

Parameters:

1. re : a regex for a subject to be matched against

2. haystack : a string in which to searched

3. from : an integer setting the starting position to begin searching from. Defaults to 1

4. options : options, defaults to DEFAULT. See Match Time Option Constants. options can be any match time
option or a sequence of valid options or it can be a value that comes from using or bits on any two valid option
values.

Returns:

Returns ERROR NOMATCH if there are no matches, or a sequence of sequences of strings if there is at least one
match. In each member sequence of the returned sequence, the first string is the entire match and subsequent items being
each of the captured groups. The size of the sequence is the number of groups in the expression plus one (for the entire
match). In other words, each member of the return value will be of the same structure of that is returned by matches.

If options contains the bit STRING OFFSETS, then the result is different. In each member sequence, instead of each
member being a string each member is itself a sequence containing the matched text, the starting index in haystack and
the ending index in haystack.

Example 1:

1 include std/regex.e as re

2 constant re_name = re:new("([A-Z][a-z]+) ([A-Z][a-z]+)")

3

4 object matches = re:all_matches(re_name , "John Doe and Jane Doe")

5 -- matches is:

6 -- {

7 -- { -- first match

8 -- "John Doe", -- full match data

9 -- "John", -- first group

10 -- "Doe" -- second group

11 -- },

12 -- { -- second match

13 -- "Jane Doe", -- full match data

14 -- "Jane", -- first group

15 -- "Doe" -- second group

16 -- }

17 -- }

18

19 matches = re:all_matches(re_name , "John Doe and Jane Doe", , re:STRING_OFFSETS)

20 -- matches is:

21 -- {

22 -- { -- first match

23 -- { "John Doe", 1, 8 }, -- full match data

24 -- { "John", 1, 4 }, -- first group

25 -- { "Doe", 6, 8 } -- second group

26 -- },

27 -- { -- second match

28 -- { "Jane Doe", 14, 21 }, -- full match data

29 -- { "Jane", 14, 17 }, -- first group

30 -- { "Doe", 19, 21 } -- second group

31 -- }

32 -- }

447

CHAPTER 59. REGULAR EXPRESSIONS 59.8. SPLITTING

See Also:

matches

59.8 Splitting

59.8.1 split

include std/regex.e

namespace regex

public function split(regex re, string text , integer from = 1, option_spec options = DEFAULT)

splits a string based on a regex as a delimiter.

Parameters:

1. re : a regex which will be used for matching

2. text : a string on which search and replace will apply

3. from : optional start position

4. options : options, defaults to DEFAULT. See Match Time Option Constants. options can be any match time
option or a sequence of valid options or it can be a value that comes from using or bits on any two valid option
values.

Returns:

A sequence of string values split at the delimiter and if no delimiters were matched this sequence will be a one member
sequence equal to text.

Example 1:

1 include std/regex.e as re

2 regex comma_space_re = re:new(‘,\s‘)

3 sequence data = re:split(comma_space_re ,

4 "euphoria programming , source code , reference data")

5 -- data is

6 -- {

7 -- "euphoria programming",

8 -- "source code",

9 -- "reference data"

10 -- }

59.8.2 split limit

include std/regex.e

namespace regex

public function split_limit(regex re, string text , integer limit = 0, integer from = 1,

option_spec options = DEFAULT)

448

CHAPTER 59. REGULAR EXPRESSIONS 59.9. REPLACEMENT

59.9 Replacement

59.9.1 find replace

include std/regex.e

namespace regex

public function find_replace(regex ex, string text , sequence replacement , integer from = 1,

option_spec options = DEFAULT)

replaces all matches of a regex with the replacement text.

Parameters:

1. re : a regex which will be used for matching

2. text : a string on which search and replace will apply

3. replacement : a string, used to replace each of the full matches

4. from : optional start position

5. options : options, defaults to DEFAULT. See Match Time Option Constants. options can be any match time
option or a sequence of valid options or it can be a value that comes from using or bits on any two valid option
values.

Returns:

A sequence, the modified text. If there is no match with re the return value will be the same as text when it was
passed in.

Comments:

Special replacement operators:

• \ – Causes the next character to lose its special meaning.

• \n – Inserts a 0x0A (LF) character.

• \r – Inserts a 0x0D (CR) character.

• \t – Inserts a 0x09 (TAB) character.

• \1 to \9 – Recalls stored substrings from registers (\1, \2, \3, to \9).

• \0 – Recalls entire matched pattern.

• \u – Convert next character to uppercase

• \l – Convert next character to lowercase

• \U – Convert to uppercase till \E or \e

• \L – Convert to lowercase till \E or \e

• \E or \e – Terminate a \\U or \L conversion

449

CHAPTER 59. REGULAR EXPRESSIONS 59.9. REPLACEMENT

Example 1:

1 include std/regex.e

2 regex r = new(‘([A-Za -z]+)\.([A-Za -z]+)‘)

3 sequence details = find_replace(r, "hello.txt",

4 ‘Filename: \U\1\e Extension: \U\2\e‘)

5 -- details = "Filename: HELLO Extension: TXT"

59.9.2 find replace limit

include std/regex.e

namespace regex

public function find_replace_limit(regex ex, string text , sequence replacement ,

integer limit , integer from = 1, option_spec options = DEFAULT)

replaces up to limit matches of ex in text except when limit is 0. When limit is 0, this routine replaces all of
the matches.

Parameters:

1. re : a regex which will be used for matching

2. text : a string on which search and replace will apply

3. replacement : a string, used to replace each of the full matches

4. limit : the number of matches to process

5. from : optional start position

6. options : options, defaults to DEFAULT. See Match Time Option Constants. options can be any match time
option or a sequence of valid options or it can be a value that comes from using or bits on any two valid option
values.

Comments:

This function is identical to find replace except it allows you to limit the number of replacements to perform. Please see
the documentation for find replace for all the details.

Returns:

A sequence, the modified text.

See Also:

find replace

59.9.3 find replace callback

include std/regex.e

namespace regex

public function find_replace_callback(regex ex, string text , integer rid , integer limit = 0,

integer from = 1, option_spec options = DEFAULT)

finds and then replaces text that is processed by a call back function.

450

CHAPTER 59. REGULAR EXPRESSIONS 59.9. REPLACEMENT

Parameters:

1. re : a regex which will be used for matching

2. text : a string on which search and replace will apply

3. rid : routine id to execute for each match

4. limit : the number of matches to process

5. from : optional start position

6. options : options, defaults to DEFAULT. See Match Time Option Constants. options can be any match time
option or a sequence of valid options or it can be a value that comes from using or bits on any two valid option
values.

Returns:

A sequence, the modified text.

Comments:

When limit is positive, this routine replaces up to limit matches of ex in text with the result of the user defined
callback, rid, and when limit is 0, replaces all matches of ex in text with the result of this user defined callback, rid.

The callback should take one sequence. The first member of this sequence will be a a string representing the entire
match and the subsequent members, if they exist, will be a strings for the captured groups within the regular expression.

The function rid. Must take one sequence parameter. The function needs to accept a sequence of strings and return
a string. For each match, the function will be passed a sequence of strings. The first string is the entire match the
subsequent strings are for the capturing groups. If a match succeeds with groups that don’t exist, that place will contain
a 0. If the sub-group does exist, the palce will contain the matching group string. for that group.

Example 1:

1 include std/text.e

2 function my_convert(sequence params)

3 switch params [1] do

4 case "1" then

5 return "one "

6 case "2" then

7 return "two "

8 case else

9 return "unknown "

10 end switch

11 end function

12

13 regex r = re:new(‘\d‘)

14 sequence result = re:find_replace_callback(r, "125",routine_id("my_convert"))

15 -- result = "one two unknown "

16

17

18 integer missing_data_flag = 0

19 regex r2 = re:new(‘[A-Z][a-z]+ ([A-Z][a-z]+)? ‘)

20 function my_toupper(sequence params)

21 -- here params [2] may be 0.

22 return upper(params [1])

23 end function

24

25 result = find_replace_callback(r2, "John Doe", routine_id("my_toupper"))

451

CHAPTER 59. REGULAR EXPRESSIONS 59.9. REPLACEMENT

26 -- params [2] is "Doe"

27 -- result = "JOHN DOE"

28 printf(1, "result =%s\n", {result})

29 result = find_replace_callback(r2, "Mary", routine_id("my_toupper"))

30 -- result = "MARY"

452

Chapter 60
Text Manipulation

60.1 Routines

60.1.1 sprintf

<built -in > function sprintf(sequence format , object values)

returns the representation of any Euphoria object as a string of characters with formatting.

Parameters:

1. format : a sequence, the text to print. This text may contain format specifiers.

2. values : usually, a sequence of values. It should have as many elements as format specifiers in format, as these
values will be substituted to the specifiers.

Returns:

A sequence, of printable characters, representing format with the values in values spliced in.

Comments:

This is exactly the same as printf except that the output is returned as a sequence of characters, rather than being sent
to a file or device.

printf(fn, st, x) is equivalent to puts(fn, sprintf(st, x)).
Some typical uses of sprintf are:

1. Converting numbers to strings.

2. Creating strings to pass to system.

3. Creating formatted error messages that can be passed to a common error message handler.

Example 1:

s = sprintf("%08d", 12345)

-- s is "00012345"

453

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

See Also:

printf, sprint, format

60.1.2 sprint

include std/text.e

namespace text

public function sprint(object x)

returns the representation of any Euphoria object as a string of characters.

Parameters:

1. x : Any Euphoria object.

Returns:

A sequence, a string representation of x.

Comments:

This is exactly the same as print(fn, x), except that the output is returned as a sequence of characters, rather than
being sent to a file or device. x can be any Euphoria object.

The atoms contained within x will be displayed to a maximum of ten significant digits, just as with print.

Example 1:

s = sprint (12345)

-- s is "12345"

Example 2:

s = sprint ({10 ,20 ,30}+5)

-- s is "{15 ,25 ,35}"

See Also:

sprintf, printf

60.1.3 trim head

include std/text.e

namespace text

public function trim_head(sequence source , object what = " \t\r\n", integer ret_index = 0)

trims all items in the supplied set from the leftmost (start or head) of a sequence.

Parameters:

1. source : the sequence to trim.

2. what : the set of item to trim from source (defaults to " \t\r\n").

3. ret index : If zero (the default) returns the trimmed sequence, otherwise it returns the index of the leftmost item
not in what.

454

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

Returns:

A sequence, if ret index is zero, which is the trimmed version of source
A integer, if ret index is not zero, which is index of the leftmost element in source that is not in what.

Example 1:

1 object s

2 s = trim_head("\r\nSentence read from a file\r\n", "\r\n")

3 -- s is "Sentence read from a file\r\n"

4 s = trim_head("\r\nSentence read from a file\r\n", "\r\n", TRUE)

5 -- s is 3

See Also:

trim tail, trim, pad head

60.1.4 trim tail

include std/text.e

namespace text

public function trim_tail(sequence source , object what = " \t\r\n", integer ret_index = 0)

trims all items in the supplied set from the rightmost (end or tail) of a sequence.

Parameters:

1. source : the sequence to trim.

2. what : the set of item to trim from source (defaults to " \t\r\n").

3. ret index : If zero (the default) returns the trimmed sequence, otherwise it returns the index of the rightmost item
not in what.

Returns:

A sequence, if ret index is zero, which is the trimmed version of source
A integer, if ret index is not zero, which is index of the rightmost element in source that is not in what.

Example 1:

1 object s

2 s = trim_tail("\r\nSentence read from a file\r\n", "\r\n")

3 -- s is "\r\nSentence read from a file"

4 s = trim_tail("\r\nSentence read from a file\r\n", "\r\n", TRUE)

5 -- s is 27

See Also:

trim head, trim, pad tail

455

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

60.1.5 trim

include std/text.e

namespace text

public function trim(sequence source , object what = " \t\r\n", integer ret_index = 0)

trims all items in the supplied set from both the left end (head/start) and right end (tail/end) of a sequence.

Parameters:

1. source : the sequence to trim.

2. what : the set of item to trim from source (defaults to " \t\r\n").

3. ret index : If zero (the default) returns the trimmed sequence, otherwise it returns a 2-element sequence containing
the index of the leftmost item and rightmost item not in what.

Returns:

A sequence, if ret index is zero, which is the trimmed version of source
A 2-element sequence, if ret index is not zero, in the form left index, right index .

Example 1:

1 object s

2 s = trim("\r\nSentence read from a file\r\n", "\r\n")

3 -- s is "Sentence read from a file"

4 s = trim("\r\nSentence read from a file\r\n", "\r\n", TRUE)

5 -- s is {3 ,27}

6 s = trim(" This is a sentence .\n") -- Default is to trim off all " \t\r\n"

7 -- s is "This is a sentence ."

See Also:

trim head, trim tail

60.1.6 set encoding properties

include std/text.e

namespace text

public procedure set_encoding_properties(sequence en = "", sequence lc = "", sequence uc = "")

sets the table of lowercase and uppercase characters that is used by lower and upper

Parameters:

1. en : The name of the encoding represented by these character sets

2. lc : The set of lowercase characters

3. uc : The set of upper case characters

456

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

Comments:

• lc and uc must be the same length.

• If no parameters are given, the default ASCII table is set.

Example 1:

set_encoding_properties("Elvish", "aeiouy", "AEIOUY")

Example 1:

set_encoding_properties("1251") -- Loads a predefined code page.

See Also:

lower, upper, get encoding properties

60.1.7 get encoding properties

include std/text.e

namespace text

public function get_encoding_properties ()

gets the table of lowercase and uppercase characters that is used by lower and upper.

Parameters:

none

Returns:

A sequence, containing three items.
Encoding Name, LowerCase Set, UpperCase Set

Example 1:

encode_sets = get_encoding_properties ()

See Also:

lower, upper, set encoding properties

60.1.8 lower

include std/text.e

namespace text

public function lower(object x)

converts an atom or sequence to lower case.

457

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

Parameters:

1. x : Any Euphoria object.

Returns:

A sequence, the lowercase version of x

Comments:

• For Windows systems, this uses the current code page for conversion

• For Unix this only works on ASCII characters. It alters characters in the ’a’..’z’ range. If you need to do case
conversion with other encodings use the set encoding properties first.

• x may be a sequence of any shape, all atoms of which will be acted upon.

WARNING, When using ASCII encoding, this can also affect floating point numbers in the range 65 to 90.

Example 1:

1 s = lower("Euphoria")

2 -- s is "euphoria"

3

4 a = lower(’B’)

5 -- a is ’b’

6

7 s = lower ({"Euphoria", "Programming"})

8 -- s is {" euphoria", "programming "}

See Also:

upper, proper, set encoding properties, get encoding properties

60.1.9 upper

include std/text.e

namespace text

public function upper(object x)

converts an atom or sequence to upper case.

Parameters:

1. x : Any Euphoria object.

Returns:

A sequence, the uppercase version of x

458

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

Comments:

• For Windows systems, this uses the current code page for conversion

• For Unix this only works on ASCII characters. It alters characters in the ’a’..’z’ range. If you need to do case
conversion with other encodings use the set encoding properties first.

• x may be a sequence of any shape, all atoms of which will be acted upon.

WARNING, When using ASCII encoding, this can also affects floating point numbers in the range 97 to 122.

Example 1:

1 s = upper("Euphoria")

2 -- s is "EUPHORIA"

3

4 a = upper(’b’)

5 -- a is ’B’

6

7 s = upper ({"Euphoria", "Programming"})

8 -- s is {" EUPHORIA", "PROGRAMMING "}

See Also:

lower, proper, set encoding properties, get encoding properties

60.1.10 proper

include std/text.e

namespace text

public function proper(sequence x)

converts a text sequence to capitalized words.

Parameters:

1. x : A text sequence.

Returns:

A sequence, the Capitalized Version of x

Comments:

A text sequence is one in which all elements are either characters or text sequences. This means that if a non-character
is found in the input, it is not converted. However this rule only applies to elements on the same level, meaning that
sub-sequences could be converted if they are actually text sequences.

Example 1:

1 s = proper("euphoria programming language")

2 -- s is "Euphoria Programming Language"

3 s = proper("EUPHORIA PROGRAMMING LANGUAGE")

4 -- s is "Euphoria Programming Language"

5 s = proper ({"EUPHORIA PROGRAMMING", "language", "rapid dEPLOYMENT", "sOfTwArE"})

459

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

6 -- s is {" Euphoria Programming", "Language", "Rapid Deployment", "Software "}

7 s = proper ({’a’, ’b’, ’c’})

8 -- s is {’A’, ’b’, c’} -- "Abc"

9 s = proper ({’a’, ’b’, ’c’, 3.1472})

10 -- s is {’a’, ’b’, c’, 3.1472} -- Unchanged because it contains a non -character.

11 s = proper ({"abc", 3.1472})

12 -- s is {"Abc", 3.1472} -- The embedded text sequence is converted.

See Also:

lower upper

60.1.11 keyvalues

include std/text.e

namespace text

public function keyvalues(sequence source , object pair_delim = ";,", object kv_delim = ":=",

object quotes = "\"’‘", object whitespace = " \t\n\r", integer haskeys = 1)

converts a string containing Key/Value pairs into a set of sequences, one per K/V pair.

Parameters:

1. source : a text sequence, containing the representation of the key/values.

2. pair delim : an object containing a list of elements that delimit one key/value pair from the next. The defaults
are semi-colon (;) and comma (,).

3. kv delim : an object containing a list of elements that delimit the key from its value. The defaults are colon (:)
and equal (=).

4. quotes : an object containing a list of elements that can be used to enclose either keys or values that contain
delimiters or whitespace. The defaults are double-quote (”), single-quote (’) and back-quote (‘)

5. whitespace : an object containing a list of elements that are regarded as whitespace characters. The defaults are
space, tab, new-line, and carriage-return.

6. haskeys : an integer containing true or false. The default is true. When true, the kv delim values are used to
separate keys from values, but when false it is assumed that each ’pair’ is actually just a value.

Returns:

A sequence, of pairs. Each pair is in the form key, value.

Comments:

String representations of atoms are not converted, either in the key or value part, but returned as any regular string instead.
If haskeys is true, but a substring only holds what appears to be a value, the key is synthesized as p[n], where n is

the number of the pair. See Example 2.
By default, pairs can be delimited by either a comma or semi-colon ”,;” and a key is delimited from its value by either

an equal or a colon ”=:”. Whitespace between pairs, and between delimiters is ignored.
If you need to have one of the delimiters in the value data, enclose it in quotation marks. You can use any of single,

double and back quotes, which also means you can quote quotation marks themselves. See Example 3.
It is possible that the value data itself is a nested set of pairs. To do this enclose the value in parentheses. Nested sets

can nested to any level. See Example 4.
If a sub-list has only data values and not keys, enclose it in either braces or square brackets. See Example 5. If you

need to have a bracket as the first character in a data value, prefix it with a tilde. Actually a leading tilde will always just
be stripped off regardless of what it prefixes. See Example 6.

460

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

Example 1:

1 s= keyvalues("foo=bar , qwe=1234 , asdf=’contains space , comma , and equal(=)’")

2 -- s is

3 -- {

4 -- {"foo", "bar"},

5 -- {"qwe", "1234"} ,

6 -- {"asdf", "contains space , comma , and equal (=)"}

7 -- }

Example 2:

s = keyvalues("abc fgh=ijk def")

-- s is { {"p[1]", "abc"}, {"fgh", "ijk"}, {"p[3]", "def"} }

Example 3:

s = keyvalues("abc=‘’quoted ’‘")

-- s is { {"abc", "’quoted ’"} }

Example 4:

1 s = keyvalues("colors =(a=black , b=blue , c=red)")

2 -- s is { {" colors", {{"a", "black"}, {"b", "blue "},{"c", "red "}} } }

3 s = keyvalues("colors =(black =[0,0,0], blue=[0,0,FF], red=[FF ,0,0])")

4 -- s is

5 -- { {" colors",

6 -- {{" black ",{"0", "0", "0"}},

7 -- {"blue",{"0", "0", "FF"}},

8 -- {"red", {"FF" ,"0" ,"0"}}}} }

Example 5:

s = keyvalues("colors =[black , blue , red]")

-- s is { {" colors", { "black", "blue", "red"} } }

Example 6:

1 s = keyvalues("colors =~[black , blue , red]")

2 -- s is { {" colors", "[black , blue , red]"} } }

3 -- The following is another way to do the same.

4 s = keyvalues("colors=‘[black , blue , red]‘")

5 -- s is { {" colors", "[black , blue , red]"} } }

60.1.12 escape

include std/text.e

namespace text

public function escape(sequence s, sequence what = "\"")

escapes special characters in a string.

461

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

Parameters:

1. s: string to escape

2. what: sequence of characters to escape defaults to escaping a double quote.

Returns:

An escaped sequence representing s.

Example 1:

sequence s = escape("John \"Mc\" Doe")

puts(1, s)

-- output is: John \"Mc\" Doe

See Also:

quote

60.1.13 quote

include std/text.e

namespace text

public function quote(sequence text_in , object quote_pair = {"\"", "\""}, integer esc = - 1,

t_text sp = "")

returns a quoted version of the first argument.

Parameters:

1. text in : The string or set of strings to quote.

2. quote pair : A sequence of two strings. The first string is the opening quote to use, and the second string is the
closing quote to use. The default is ”\””, ”\”” which means that the output will be enclosed by double-quotation
marks.

3. esc : A single escape character. If this is not negative (the default), then this is used to ’escape’ any embedded
quote characters and ’esc’ characters already in the text in string.

4. sp : A list of zero or more special characters. The text in is only quoted if it contains any of the special characters.
The default is ”” which means that the text in is always quoted.

Returns:

A sequence, the quoted version of text in.

Example 1:

-- Using the defaults. Output enclosed in double -quotes , no escapes and no specials.

s = quote("The small man")

-- ’s’ now contains ’"the small man"’ including the double -quote characters.

462

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

Example 2:

s = quote("The small man", {"(", ")"})

-- ’s’ now contains ’(the small man)’

Example 3:

s = quote("The (small) man", {"(", ")"}, ’~’)

-- ’s’ now contains ’(The ~(small ~) man)’

Example 4:

s = quote("The (small) man", {"(", ")"}, ’~’, "#")

-- ’s’ now contains "the (small) man"

-- because the input did not contain a ’#’ character.

Example 5:

s = quote("The #1 (small) man", {"(", ")"}, ’~’, "#")

-- ’s’ now contains ’(the #1 ~(small ~) man)’

-- because the input did contain a ’#’ character.

Example 6:

-- input is a set of strings ...

s = quote ({"a b c", "def", "g hi"},)

-- ’s’ now contains three quoted strings: ’"a b c"’, ’"def"’, and ’"g hi"’

See Also:

escape

60.1.14 dequote

include std/text.e

namespace text

public function dequote(sequence text_in , object quote_pairs = {{"\"", "\""}},

integer esc = - 1)

removes ’quotation’ text from the argument.

Parameters:

1. text in : The string or set of strings to de-quote.

2. quote pairs : A set of one or more sub-sequences of two strings, or an atom representing a single character to be
used as both the open and close quotes. The first string in each sub-sequence is the opening quote to look for, and
the second string is the closing quote. The default is "\"", "\"" which means that the output is ’quoted’ if it is
enclosed by double-quotation marks.

3. esc : A single escape character. If this is not negative (the default), then this is used to ’escape’ any embedded
occurrences of the quote characters. In which case the ’escape’ character is also removed.

463

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

Returns:

A sequence, the original text but with ’quote’ strings stripped of quotes.

Example 1:

-- Using the defaults.

s = dequote("\"The small man\"")

-- ’s’ now contains "The small man"

Example 2:

-- Using the defaults.

s = dequote("(The small ?(?) man)", {{"(",")"}}, ’?’)

-- ’s’ now contains "The small () man"

60.1.15 format

include std/text.e

namespace text

public function format(sequence format_pattern , object arg_list = {})

formats a set of arguments in to a string based on a supplied pattern.

Parameters:

1. format pattern : A sequence: the pattern string that contains zero or more tokens.

2. arg list : An object: Zero or more arguments used in token replacement.

Returns:

A string sequence, the original format pattern but with tokens replaced by corresponding arguments.

Comments:

The format pattern string contains text and argument tokens. The resulting string is the same as the format string
except that each token is replaced by an item from the argument list.

A token has the form [<Q>], where <Q> is are optional qualifier codes.

The qualifier. <Q> is a set of zero or more codes that modify the default way that the argument is used to replace
the token. The default replacement way is to convert the argument to its shortest string representation and use that to
replace the token. This may be modified by the following codes, which can occur in any order.

464

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

Qualifier Usage
N (’N’ is an integer) The index of the argument to use
id Uses the argument that begins with ”id=” where ”id”
is an identifier name.
%envvar% Uses the Environment Symbol ’envar’ as an argument
w For string arguments, if capitalizes the first
letter in each word
u For string arguments, it converts it to upper case.
l For string arguments, it converts it to lower case.
< For numeric arguments, it left justifies it.
> For string arguments, it right justifies it.
c Centers the argument.
z For numbers, it zero fills the left side.
:S (’S’ is an integer) The maximum size of the
resulting field. Also, if ’S’ begins with ’0’ the
field will be zero-filled if the argument is an integer
.N (’N’ is an integer) The number of digits after
the decimal point
+ For positive numbers, show a leading plus sign
(For negative numbers, enclose them in parentheses
b For numbers, causes zero to be all blanks
s If the resulting field would otherwise be zero
length, this ensures that at least one space occurs
between this token’s field
t After token replacement, the resulting string up to this

point is trimmed.
X Outputs integer arguments using hexadecimal digits.
B Outputs integer arguments using binary digits.
? The corresponding argument is a set of two strings. This
uses the first string if the previous token’s argument is
not the value 1 or a zero-length string, otherwise it
uses the second string.
[Does not use any argument. Outputs a left-square-bracket

symbol
,X Insert thousands separators. The <X> is the character
to use. If this is a dot ”.” then the decimal point
is rendered using a comma. Does not apply to zero-filled
fields.
N.B. if hex or binary output was specified, the
separators are every 4 digits otherwise they are
every three digits.
T If the argument is a number it is output as a text character,
otherwise it is output as text string

Clearly, certain combinations of these qualifier codes do not make sense and in those situations, the rightmost clashing
code is used and the others are ignored.

Any tokens in the format that have no corresponding argument are simply removed from the result. Any arguments
that are not used in the result are ignored.

Any sequence argument that is not a string will be converted to its pretty format before being used in token replacement.
If a token is going to be replaced by a zero-length argument, all white space following the token until the next

non-whitespace character is not copied to the result string.

Example 1:

465

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

1 format("Cannot open file ’[]’ - code []", {"/usr/temp/work.dat", 32})

2 -- "Cannot open file ’/usr/temp/work.dat ’ - code 32"

3

4 format("Err -[2], Cannot open file ’[1]’", {"/usr/temp/work.dat", 32})

5 -- "Err -32, Cannot open file ’/usr/temp/work.dat ’"

6

7 format("[4w] [3z:2] [6] [5l] [2z:2], [1:4]", {2009,4,21,"DAY","MONTH","of"})

8 -- "Day 21 of month 04, 2009"

9

10 format("The answer is [:6.2]%", {35.22341})

11 -- "The answer is 35.22%"

12

13 format("The answer is [.6]", {1.2345})

14 -- "The answer is 1.234500"

15

16 format("The answer is [,,.2]", {1234.56})

17 -- "The answer is 1 ,234.56"

18

19 format("The answer is [,..2]", {1234.56})

20 -- "The answer is 1.234 ,56"

21

22 format("The answer is [,:.2]", {1234.56})

23 -- "The answer is 1:234.56"

24

25 format("[] [?]", {5, {"cats", "cat"}})

26 -- "5 cats"

27

28 format("[] [?]", {1, {"cats", "cat"}})

29 -- "1 cat"

30

31 format("[<:4]", {"abcdef"})

32 -- "abcd"

33

34 format("[>:4]", {"abcdef"})

35 -- "cdef"

36

37 format("[>:8]", {"abcdef"})

38 -- " abcdef"

39

40 format("seq is []", {{1.2, 5, "abcdef", {3}}})

41 -- ‘seq is {1.2,5," abcdef ",{3}}‘

42

43 format("Today is [{day}], the [{date}]", {"date =10/ Oct /2012", "day=Wednesday"})

44 -- "Today is Wednesday , the 10/ Oct /2012"

45

46 format("’A’ is [T]", 65)

47 -- ‘’A’ is A‘

See Also:

sprintf

60.1.16 wrap

include std/text.e

namespace text

public function wrap(sequence content , integer width = 78, sequence wrap_with = "\n",

466

CHAPTER 60. TEXT MANIPULATION 60.1. ROUTINES

sequence wrap_at = " \t")

wraps text to a column width.

Parameters:

• content – sequence content to wrap

• width – width to wrap at, defaults to 78

• wrap with – sequence to wrap with, defaults to "\n"

• wrap at – sequence of characters to wrap at, defaults to space and tab

Returns:

Sequence containing wrapped text

Example 1:

sequence result = wrap("Hello , World")

-- result = "Hello , World"

Example 2:

1 sequence msg = "Hello , World. Today we are going to learn about apples."

2 sequence result = wrap(msg , 40)

3 -- result =

4 -- "Hello , World. today we are going to\n"

5 -- "learn about apples ."

Example 3:

1 sequence msg = "Hello , World. Today we are going to learn about apples."

2 sequence result = wrap(msg , 40, "\n ")

3 -- result =

4 -- "Hello , World. today we are going to\n"

5 -- " learn about apples ."

Example 4:

1 sequence msg = "Hello , World. This , Is, A, Dummy , Sentence , Ok , World?"

2 sequence result = wrap(msg , 30, "\n", ",")

3 -- result =

4 -- "Hello , World. This , Is, A,"

5 -- "Dummy , Sentence , Ok, World ?"

467

Chapter 61
Wildcard Matching

61.1 Routines

61.1.1 is match

include std/wildcard.e

namespace wildcard

public function is_match(sequence pattern , sequence string)

determines whether a string matches a pattern. The pattern may contain * and ? wildcards.

Parameters:

1. pattern : a string, the pattern to match

2. string : the string to be matched against

Returns:

An integer, TRUE if string matches pattern, else FALSE.

Comments:

Character comparisons are case sensitive. If you want case insensitive comparisons, pass both pattern and string

through upper, or both through lower, before calling is match.

If you want to detect a pattern anywhere within a string, add * to each end of the pattern:

i = is_match(’*’ & pattern & ’*’, string)

There is currently no way to treat * or ? literally in a pattern.

Example 1:

i = is_match("A?B*", "AQBXXYY")

-- i is 1 (TRUE)

468

CHAPTER 61. WILDCARD MATCHING 61.1. ROUTINES

Example 2:

i = is_match("*xyz*", "AAAbbbxyz")

-- i is 1 (TRUE)

Example 3:

i = is_match("A*B*C", "a111b222c")

-- i is 0 (FALSE) because upper/lower case doesn ’t match

Example 4:

.../euphoria/demo/search.ex

See Also:

upper, lower, Regular Expressions

469

Chapter 62
Base 64 Encoding and Decoding

Base64 is used to encode binary data into an ASCII string; this allows binary data to be transmitted using media designed
to transmit text data only. See \hrefhttp://en.wikipedia.orgen.wikipedia.org/wiki/Base64 (??) and the RFC 2045 standard
for more information.

62.1 Routines

62.1.1 encode

include std/base64.e

namespace base64

public function encode(sequence in, integer wrap_column = 0)

encodes to base64.

Parameters:

1. in – must be a simple sequence

2. wrap column – column to wrap the base64 encoded message to; defaults to 0 which is do not wrap

Returns:

A sequence, a base64 encoded sequence representing in.

Example 1:

puts(1, encode("Hello Euphoria!"))

--> SGVsbG8gRXVwaG9yaWEh

62.1.2 decode

include std/base64.e

namespace base64

public function decode(sequence in)

decodes from base64.

470

CHAPTER 62. BASE 64 ENCODING AND DECODING 62.1. ROUTINES

Parameters:

1. in – must be a simple sequence of length 4 to 76 .

Returns:

A sequence, base256 decode of passed sequence. the length of data to decode must be a multiple of 4 .

Comments:

The calling program is expected to strip newlines and so on before calling.

471

Chapter 63
Math

63.1 Sign and Comparisons

63.1.1 abs

include std/math.e

namespace math

public function abs(object a)

returns the absolute value of numbers.

Parameters:

1. value : an object, each atom is processed, no matter how deeply nested.

Returns:

An object, the same shape as value. When value is an atom, the result is the same if not less than zero, and the
opposite value otherwise.

Comments:

This function may be applied to an atom or to all elements of a sequence.

Example 1:

1 x = abs ({10.5 , -12, 3})

2 -- x is {10.5, 12, 3}

3

4 i = abs(-4)

5 -- i is 4

See Also:

sign

472

CHAPTER 63. MATH 63.1. SIGN AND COMPARISONS

63.1.2 sign

include std/math.e

namespace math

public function sign(object a)

returns -1, 0 or 1 for each element according to it being negative, zero or positive.

Parameters:

1. value : an object, each atom of which will be acted upon, no matter how deeply nested.

Returns:

An object, the same shape as value. When value is an atom, the result is -1 if value is less than zero, 1 if greater and
0 if equal.

Comments:

This function may be applied to an atom or to all elements of a sequence.
For an atom, sign(x) is the same as compare(x,0).

Example 1:

1 i = sign (5)

2 i is 1

3

4 i = sign (0)

5 -- i is 0

6

7 i = sign(-2)

8 -- i is -1

See Also:

compare

63.1.3 larger of

include std/math.e

namespace math

public function larger_of(object objA , object objB)

returns the larger of two objects.

Parameters:

1. objA : an object.

2. objB : an object.

Returns:

Whichever of objA and objB is the larger one.

473

CHAPTER 63. MATH 63.1. SIGN AND COMPARISONS

Comments:

Introduced in v4.0.3

Example 1:

? larger_of (10, 15.4) -- returns 15.4

? larger_of("cat", "dog") -- returns "dog"

? larger_of("apple", "apes") -- returns "apple"

? larger_of (10, 10) -- returns 10

See Also:

max, compare, smaller of

63.1.4 smaller of

include std/math.e

namespace math

public function smaller_of(object objA , object objB)

returns the smaller of two objects.

Parameters:

1. objA : an object.

2. objB : an object.

Returns:

Whichever of objA and objB is the smaller one.

Comments:

Introduced in v4.0.3

Example 1:

? smaller_of (10, 15.4) -- returns 10

? smaller_of("cat", "dog") -- returns "cat"

? smaller_of("apple", "apes") -- returns "apes"

? smaller_of (10, 10) -- returns 10

See Also:

min, compare, larger of

63.1.5 max

include std/math.e

namespace math

public function max(object a)

computes the maximum value among all the argument’s elements.

474

CHAPTER 63. MATH 63.1. SIGN AND COMPARISONS

Parameters:

1. values : an object, all atoms of which will be inspected, no matter how deeply nested.

Returns:

An atom, the maximum of all atoms in flatten(values).

Comments:

This function may be applied to an atom or to a sequence of any shape.

Example 1:

a = max ({10 ,15.4 ,3})

-- a is 15.4

See Also:

min, compare, flatten

63.1.6 min

include std/math.e

namespace math

public function min(object a)

computes the minimum value among all the argument’s elements.

Parameters:

1. values : an object, all atoms of which will be inspected, no matter how deeply nested.

Returns:

An atom, the minimum of all atoms in flatten(values).

Comments:

This function may be applied to an atom or to a sequence of any shape.

Example 1:

a = min ({10 ,15.4 ,3})

-- a is 3

63.1.7 ensure in range

include std/math.e

namespace math

public function ensure_in_range(object item , sequence range_limits)

ensures that the item is in a range of values supplied by inclusive range limits.

475

CHAPTER 63. MATH 63.1. SIGN AND COMPARISONS

Parameters:

1. item : The object to test for.

2. range limits : A sequence of two or more elements. The first is assumed to be the smallest value and the last is
assumed to be the highest value.

Returns:

A object, If item is lower than the first item in the range limits it returns the first item. If item is higher than the
last element in the range limits it returns the last item. Otherwise it returns item.

Example 1:

1 object valid_data = ensure_in_range(user_data , {2, 75})

2 if not equal(valid_data , user_data) then

3 errmsg("Invalid input supplied. Using %d instead.", valid_data)

4 end if

5 procA(valid_data)

63.1.8 ensure in list

include std/math.e

namespace math

public function ensure_in_list(object item , sequence list , integer default = 1)

ensures that the item is in a list of values supplied by list.

Parameters:

1. item : The object to test for.

2. list : A sequence of elements that item should be a member of.

3. default : an integer, the index of the list item to return if item is not found. Defaults to 1.

Returns:

An object, if item is not in the list, it returns the list item of index default, otherwise it returns item.

Comments:

If default is set to an invalid index, the first item on the list is returned instead when item is not on the list.

Example 1:

1 object valid_data = ensure_in_list(user_data , {100, 45, 2, 75, 121})

2 if not equal(valid_data , user_data) then

3 errmsg("Invalid input supplied. Using %d instead.", valid_data)

4 end if

5 procA(valid_data)

476

CHAPTER 63. MATH 63.2. ROUNDINGS AND REMAINDERS

63.2 Roundings and Remainders

63.2.1 remainder

<built -in > function remainder(object dividend , object divisor)

computes the remainder of the division of two objects using truncated division.

Parameters:

1. dividend : any Euphoria object.

2. divisor : any Euphoria object.

Returns:

An object, the shape of which depends on dividend’s and divisor’s. For two atoms, this is the remainder of dividing
dividend by divisor, with dividend’s sign.

Errors:

1. If any atom in divisor is 0, this is an error condition as it amounts to an attempt to divide by zero.

2. If both dividend and divisor are sequences, they must be the same length as each other.

Comments:

• There is a integer N such that dividend = N * divisor + result.

• The result has the sign of dividend and lesser magnitude than divisor.

• The result has the same sign as the dividend.

• This differs from mod in that when the operands’ signs are different this function rounds dividend/divisior

towards zero whereas mod rounds away from zero.

The arguments to this function may be atoms or sequences. The rules for operations on sequences apply, and determine
the shape of the returned object.

Example 1:

a = remainder (9, 4)

-- a is 1

Example 2:

s = remainder ({81, -3.5, -9, 5.5}, {8, -1.7, 2, -4})

-- s is {1, -0.1, -1, 1.5}

Example 3:

s = remainder ({17, 12, 34}, 16)

-- s is {1, 12, 2}

477

CHAPTER 63. MATH 63.2. ROUNDINGS AND REMAINDERS

Example 4:

s = remainder (16, {2, 3, 5})

-- s is {0, 1, 1}

See Also:

mod, Relational operators, Operations on sequences

63.2.2 mod

include std/math.e

namespace math

public function mod(object x, object y)

computes the remainder of the division of two objects using floored division.

Parameters:

1. dividend : any Euphoria object.

2. divisor : any Euphoria object.

Returns:

An object, the shape of which depends on dividend’s and divisor’s. For two atoms, this is the remainder of dividing
dividend by divisor, with divisor’s sign.

Comments:

• There is a integer N such that dividend = N * divisor + result.

• The result is non-negative and has lesser magnitude than divisor. n needs not fit in an Euphoria integer.

• The result has the same sign as the dividend.

• The arguments to this function may be atoms or sequences. The rules for operations on sequences apply, and
determine the shape of the returned object.

• When both arguments have the same sign, mod() and remainder return the same result.

• This differs from remainder in that when the operands’ signs are different this function rounds dividend/divisior
away from zero whereas remainder rounds towards zero.

Example 1:

a = mod(9, 4)

-- a is 1

Example 2:

s = mod({81, -3.5, -9, 5.5}, {8, -1.7, 2, -4})

-- s is {1,-0.1,1,-2.5}

478

CHAPTER 63. MATH 63.2. ROUNDINGS AND REMAINDERS

Example 3:

s = mod({17, 12, 34}, 16)

-- s is {1, 12, 2}

Example 4:

s = mod(16, {2, 3, 5})

-- s is {0, 1, 1}

See Also:

remainder, Relational operators, Operations on sequences

63.2.3 trunc

include std/math.e

namespace math

public function trunc(object x)

returns the integer portion of a number.

Parameters:

1. value : any Euphoria object.

Returns:

An object, the shape of which depends on values’s. Each item in the returned object will be an integer. These are the
same corresponding items in value except with any fractional portion removed.

Comments:

• This is essentially done by always rounding towards zero. The floor function rounds towards negative infinity, which
means it rounds towards zero for positive values and away from zero for negative values.

• Note that trunc(x) + frac(x) = x

Example 1:

a = trunc (9.4)

-- a is 9

Example 2:

s = trunc ({81, -3.5, -9.999, 5.5})

-- s is {81,-3, -9, 5}

See Also:

floor frac

479

CHAPTER 63. MATH 63.2. ROUNDINGS AND REMAINDERS

63.2.4 frac

include std/math.e

namespace math

public function frac(object x)

returns the fractional portion of a number.

Parameters:

1. value : any Euphoria object.

Returns:

An object, the shape of which depends on values’s. Each item in the returned object will be the same corresponding
items in value except with the integer portion removed.

Comments:

Note that trunc(x) + frac(x) = x

Example 1:

a = frac (9.4)

-- a is 0.4

Example 2:

s = frac ({81, -3.5, -9.999, 5.5})

-- s is {0, -0.5, -0.999, 0.5}

See Also:

trunc

63.2.5 intdiv

include std/math.e

namespace math

public function intdiv(object a, object b)

returns an integral division of two objects.

Parameters:

1. divided : any Euphoria object.

2. divisor : any Euphoria object.

Returns:

An object, which will be a sequence if either dividend or divisor is a sequence.

480

CHAPTER 63. MATH 63.2. ROUNDINGS AND REMAINDERS

Comments:

• This calculates how many non-empty sets when dividend is divided by divisor.

• The result’s sign is the same as the dividend’s sign.

Example 1:

object Tokens = 101

object MaxPerEnvelope = 5

integer Envelopes = intdiv(Tokens , MaxPerEnvelope) --> 21

63.2.6 floor

<built -in > function floor(object value)

Rounds value down to the next integer less than or equal to value.

Parameters:

1. value : any Euphoria object; each atom in value will be acted upon.

Comments:

It does not simply truncate the fractional part, but actually rounds towards negative infinity.

Returns:

An object, the same shape as value but with each item guarenteed to be an integer less than or equal to the corresponding
item in value.

Example 1:

y = floor ({0.5 , -1.6, 9.99, 100})

-- y is {0, -2, 9, 100}

See Also:

ceil, round

63.2.7 ceil

include std/math.e

namespace math

public function ceil(object a)

computes the next integer equal or greater than the argument.

Parameters:

1. value : an object, each atom of which processed, no matter how deeply nested.

481

CHAPTER 63. MATH 63.2. ROUNDINGS AND REMAINDERS

Returns:

An object, the same shape as value. Each atom in value is returned as an integer that is the smallest integer equal to
or greater than the corresponding atom in value.

Comments:

This function may be applied to an atom or to all elements of a sequence.
ceil(X) is 1 more than floor(X) for non-integers. For integers, X = floor(X) = ceil(X).

Example 1:

sequence nums

nums = {8, -5, 3.14, 4.89, -7.62, -4.3}

nums = ceil(nums) -- {8, -5, 4, 5, -7, -4}

See Also:

floor, round

63.2.8 round

include std/math.e

namespace math

public function round(object a, object precision = 1)

returns the argument’s elements rounded to some precision.

Parameters:

1. value : an object, each atom of which will be acted upon, no matter how deeply nested.

2. precision : an object, the rounding precision(s). If not passed, this defaults to 1.

Returns:

An object, the same shape as value. When value is an atom, the result is that atom rounded to the nearest integer
multiple of 1/precision.

Comments:

This function may be applied to an atom or to all elements of a sequence.

Example 1:

round (5.2) -- 5

round ({4.12 , 4.67, -5.8, -5.21}, 10) -- {4.1, 4.7, -5.8, -5.2}

round (12.2512 , 100) -- 12.25

See Also:

floor, ceil

482

CHAPTER 63. MATH 63.3. TRIGONOMETRY

63.3 Trigonometry

63.3.1 arctan

<built -in > function arctan(object tangent)

returns an angle with given tangent.

Parameters:

1. tangent : an object, each atom of which will be converted, no matter how deeply nested.

Returns:

An object, of the same shape as tangent. For each atom in flatten(tangent), the angle with smallest magnitude that
has this atom as tangent is computed.

Comments:

All atoms in the returned value lie between -PI/2 and PI/2, exclusive.
This function may be applied to an atom or to all elements of a sequence (of sequence (...)).
arctan is faster than arcsin or arccos.

Example 1:

s = arctan ({1,2 ,3})

-- s is {0.785398 , 1.10715 , 1.24905}

See Also:

arcsin, arccos, tan, flatten

63.3.2 tan

<built -in > function tan(object angle)

returns the tangent of an angle, or a sequence of angles.

Parameters:

1. angle : an object, each atom of which will be converted, no matter how deeply nested.

Returns:

An object, of the same shape as angle. Each atom in the flattened angle is replaced by its tangent.

Errors:

If any atom in angle is an odd multiple of PI/2, an error occurs, as its tangent would be infinite.

Comments:

This function may be applied to an atom or to all elements of a sequence of arbitrary shape, recursively.

483

CHAPTER 63. MATH 63.3. TRIGONOMETRY

Example 1:

t = tan (1.0)

-- t is 1.55741

See Also:

sin, cos, arctan

63.3.3 cos

<built -in > function cos(object angle)

returns the cosine of an angle expressed in radians.

Parameters:

1. angle : an object, each atom of which will be converted, no matter how deeply nested.

Returns:

An object, the same shape as angle. Each atom in angle is turned into its cosine.

Comments:

This function may be applied to an atom or to all elements of a sequence.
The cosine of an angle is an atom between -1 and 1 inclusive. 0.0 is hit by odd multiples of PI/2 only.

Example 1:

x = cos({0.5 , 0.6, 0.7})

-- x is {0.8775826 , 0.8253356 , 0.7648422}

See Also:

sin, tan, arccos, PI, deg2rad

63.3.4 sin

<built -in > function sin(object angle)

returns the sine of an angle expressed in radians.

Parameters:

1. angle : an object, each atom in which will be acted upon.

Returns:

An object, the same shape as angle. When angle is an atom, the result is the sine of angle.

484

CHAPTER 63. MATH 63.3. TRIGONOMETRY

Comments:

This function may be applied to an atom or to all elements of a sequence.

The sine of an angle is an atom between -1 and 1 inclusive. 0.0 is hit by integer multiples of PI only.

Example 1:

sin_x = sin({0.5 , 0.9, 0.11})

-- sin_x is {.479, .783, .110}

See Also:

cos, arcsin, PI, deg2rad

63.3.5 arccos

include std/math.e

namespace math

public function arccos(trig_range x)

returns an angle given its cosine.

Parameters:

1. value : an object, each atom in which will be acted upon.

Returns:

An object, the same shape as value. When value is an atom, the result is an atom, an angle whose cosine is value.

Errors:

If any atom in value is not in the -1..1 range, it cannot be the cosine of a real number, and an error occurs.

Comments:

A value between 0 and PI radians will be returned.

This function may be applied to an atom or to all elements of a sequence.

arccos is not as fast as arctan.

Example 1:

s = arccos ({-1,0,1})

-- s is {3.141592654 , 1.570796327 , 0}

See Also:

cos, PI, arctan

485

CHAPTER 63. MATH 63.3. TRIGONOMETRY

63.3.6 arcsin

include std/math.e

namespace math

public function arcsin(trig_range x)

returns an angle given its sine.

Parameters:

1. value : an object, each atom in which will be acted upon.

Returns:

An object, the same shape as value. When value is an atom, the result is an atom, an angle whose sine is value.

Errors:

If any atom in value is not in the -1..1 range, it cannot be the sine of a real number, and an error occurs.

Comments:

A value between -PI/2 and +PI/2 (radians) inclusive will be returned.
This function may be applied to an atom or to all elements of a sequence.
arcsin is not as fast as arctan.

Example 1:

s = arcsin ({-1,0,1})

s is { -1.570796327 , 0, 1.570796327}

See Also:

arccos, arccos, sin

63.3.7 atan2

include std/math.e

namespace math

public function atan2(atom y, atom x)

calculate the arctangent of a ratio.

Parameters:

1. y : an atom, the numerator of the ratio

2. x : an atom, the denominator of the ratio

Returns:

An atom, which is equal to arctan(y/x), except that it can handle zero denominator and is more accurate.

486

CHAPTER 63. MATH 63.3. TRIGONOMETRY

Example 1:

a = atan2 (10.5 , 3.1)

-- a is 1.283713958

See Also:

arctan

63.3.8 rad2deg

include std/math.e

namespace math

public function rad2deg(object x)

converts an angle measured in radians to an angle measured in degrees.

Parameters:

1. angle : an object, all atoms of which will be converted, no matter how deeply nested.

Returns:

An object, the same shape as angle, all atoms of which were multiplied by 180/PI.

Comments:

This function may be applied to an atom or sequence. A flat angle is PI radians and 180 degrees.
arcsin, arccos and arctan return angles in radians.

Example 1:

x = rad2deg (3.385938749)

-- x is 194

See Also:

deg2rad

63.3.9 deg2rad

include std/math.e

namespace math

public function deg2rad(object x)

converts an angle measured in degrees to an angle measured in radians.

Parameters:

1. angle : an object, all atoms of which will be converted, no matter how deeply nested.

487

CHAPTER 63. MATH 63.4. LOGARITHMS AND POWERS

Returns:

An object, the same shape as angle, all atoms of which were multiplied by PI/180.

Comments:

This function may be applied to an atom or sequence. A flat angle is PI radians and 180 degrees. sin, cos and tan expect
angles in radians.

Example 1:

x = deg2rad (194)

-- x is 3.385938749

See Also:

rad2deg

63.4 Logarithms and Powers

63.4.1 log

<built -in > function log(object value)

returns the natural logarithm of a positive number.

Parameters:

1. value : an object, any atom of which log acts upon.

Returns:

An object, the same shape as value. For an atom, the returned atom is its logarithm of base E.

Errors:

If any atom in value is not greater than zero, an error occurs as its logarithm is not defined.

Comments:

This function may be applied to an atom or to all elements of a sequence.
To compute the inverse, you can use power(E, x) where E is 2.7182818284590452, or equivalently exp(x). Beware

that the logarithm grows very slowly with x, so that exp grows very fast.

Example 1:

a = log (100)

-- a is 4.60517

See Also:

E, exp, log10

488

CHAPTER 63. MATH 63.4. LOGARITHMS AND POWERS

63.4.2 log10

include std/math.e

namespace math

public function log10(object x1)

returns the base 10 logarithm of a number.

Parameters:

1. value : an object, each atom of which will be converted, no matter how deeply nested.

Returns:

An object, the same shape as value. When value is an atom, raising 10 to the returned atom yields value back.

Errors:

If any atom in value is not greater than zero, its logarithm is not a real number and an error occurs.

Comments:

This function may be applied to an atom or to all elements of a sequence.
log10 is proportional to log by a factor of 1/log(10), which is about 0.435 .

Example 1:

a = log10 (12)

-- a is 2.48490665

See Also:

log

63.4.3 exp

include std/math.e

namespace math

public function exp(atom x)

computes some power of E.

Parameters:

1. value : an object, all atoms of which will be acted upon, no matter how deeply nested.

Returns:

An object, the same shape as value. When value is an atom, its exponential is being returned.

Comments:

This function can be applied to a single atom or to a sequence of any shape.
Due to its rapid growth, the returned values start losing accuracy as soon as values are greater than 10. Values above

710 will cause an overflow in hardware.

489

CHAPTER 63. MATH 63.4. LOGARITHMS AND POWERS

Example 1:

x = exp (5.4)

-- x is 221.4064162

See Also:

log

63.4.4 power

<built -in > function power(object base , object exponent)

raises a base value to some power.

Parameters:

1. base : an object, the value or values to raise to some power.

2. exponent : an object, the exponent or exponents to apply to base.

Returns:

An object, the shape of which depends on base’s and exponent’s. For two atoms, this will be base raised to the power
exponent.

Errors:

If some atom in base is negative and is raised to a non integer exponent, an error will occur, as the result is undefined.
If 0 is raised to any negative power, this is the same as a zero divide and causes an error.
power(0,0) is illegal, because there is not an unique value that can be assigned to that quantity.

Comments:

The arguments to this function may be atoms or sequences. The rules for operations on sequences apply.
Powers of 2 are calculated very efficiently.
Other languages have a ** or ^ operator to perform the same action. But they do not have sequences.

Example 1:

? power(5, 2)

-- 25 is printed

Example 2:

? power ({5, 4, 3.5}, {2, 1, -0.5})

-- {25, 4, 0.534522} is printed

Example 3:

? power(2, {1, 2, 3, 4})

-- {2, 4, 8, 16}

490

CHAPTER 63. MATH 63.4. LOGARITHMS AND POWERS

Example 4:

? power ({1, 2, 3, 4}, 2)

-- {1, 4, 9, 16}

See Also:

log, Operations on sequences

63.4.5 sqrt

<built -in > function sqrt(object value)

calculates the square root of a number.

Parameters:

1. value : an object, each atom in which will be acted upon.

Returns:

An object, the same shape as value. When value is an atom, the result is the positive atom whose square is value.

Errors:

If any atom in value is less than zero, an error will occur, as no squared real can be less than zero.

Comments:

This function may be applied to an atom or to all elements of a sequence.

Example 1:

r = sqrt (16)

-- r is 4

See Also:

power, Operations on sequences

63.4.6 fib

include std/math.e

namespace math

public function fib(integer i)

computes the nth Fibonacci Number.

Parameters:

1. value : an integer. The starting value to compute a Fibonacci Number from.

491

CHAPTER 63. MATH 63.5. HYPERBOLIC TRIGONOMETRY

Returns:

An atom,

• The Fibonacci Number specified by value.

Comments:

• Note that due to the limitations of the floating point implementation, only ’i’ values less than 76 are accurate on
Windows platforms, and 69 on other platforms (due to rounding differences in the native C runtime libraries).

Example 1:

? fib(6)

-- output ...

-- 8

63.5 Hyperbolic Trigonometry

63.5.1 cosh

include std/math.e

namespace math

public function cosh(object a)

computes the hyperbolic cosine of an object.

Parameters:

1. x : the object to process.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Comments:

The hyperbolic cosine grows like the exponential function.

For all reals, power(cosh(x), 2) - power(sinh(x), 2) = 1. Compare with ordinary trigonometry.

Example 1:

? cosh(LN2) -- prints out 1.25

See Also:

cos, sinh, arccosh

492

CHAPTER 63. MATH 63.5. HYPERBOLIC TRIGONOMETRY

63.5.2 sinh

include std/math.e

namespace math

public function sinh(object a)

computes the hyperbolic sine of an object.

Parameters:

1. x : the object to process.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Comments:

The hyperbolic sine grows like the exponential function.
For all reals, power(cosh(x), 2) - power(sinh(x), 2) = 1. Compare with ordinary trigonometry.

Example 1:

? sinh(LN2) -- prints out 0.75

See Also:

cosh, sin, arcsinh

63.5.3 tanh

include std/math.e

namespace math

public function tanh(object a)

computes the hyperbolic tangent of an object.

Parameters:

1. x : the object to process.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Comments:

The hyperbolic tangent takes values from -1 to +1.
tanh is the ratio sinh / cosh. Compare with ordinary trigonometry.

Example 1:

? tanh(LN2) -- prints out 0.6

493

CHAPTER 63. MATH 63.5. HYPERBOLIC TRIGONOMETRY

See Also:

cosh, sinh, tan, arctanh

63.5.4 arcsinh

include std/math.e

namespace math

public function arcsinh(object a)

computes the reverse hyperbolic sine of an object.

Parameters:

1. x : the object to process.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Comments:

The hyperbolic sine grows like the logarithm function.

Example 1:

? arcsinh (1) -- prints out 0 ,4812118250596034

See Also:

arccosh, arcsin, sinh

63.5.5 arccosh

include std/math.e

namespace math

public function arccosh(not_below_1 a)

computes the reverse hyperbolic cosine of an object.

Parameters:

1. x : the object to process.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Errors:

Since cosh only takes values not below 1, an argument below 1 causes an error.

Comments:

The hyperbolic cosine grows like the logarithm function.

494

CHAPTER 63. MATH 63.6. ACCUMULATION

Example 1:

? arccosh (1) -- prints out 0

See Also:

arccos, arcsinh, cosh

63.5.6 arctanh

include std/math.e

namespace math

public function arctanh(abs_below_1 a)

computes the reverse hyperbolic tangent of an object.

Parameters:

1. x : the object to process.

Returns:

An object, the same shape as x, each atom of which was acted upon.

Errors:

Since tanh only takes values between -1 and +1 excluded, an out of range argument causes an error.

Comments:

The hyperbolic cosine grows like the logarithm function.

Example 1:

? arctanh (1/2) -- prints out 0 ,5493061443340548456976

See Also:

arccos, arcsinh, cosh

63.6 Accumulation

63.6.1 sum

include std/math.e

namespace math

public function sum(object a)

computes the sum of all atoms in the argument, no matter how deeply nested.

Parameters:

1. values : an object, all atoms of which will be added up, no matter how nested.

495

CHAPTER 63. MATH 63.6. ACCUMULATION

Returns:

An atom, the sum of all atoms in flatten(values).

Comments:

This function may be applied to an atom or to all elements of a sequence.

Example 1:

1 a = sum({10, 20, 30})

2 -- a is 60

3

4 a = sum ({10.5 , {11.2} , 8.1})

5 -- a is 29.8

See Also:

product, or all

63.6.2 product

include std/math.e

namespace math

public function product(object a)

computes the product of all the atom in the argument, no matter how deeply nested.

Parameters:

1. values : an object, all atoms of which will be multiplied up, no matter how nested.

Returns:

An atom, the product of all atoms in flatten(values).

Comments:

This function may be applied to an atom or to all elements of a sequence

Example 1:

1 a = product ({10, 20, 30})

2 -- a is 6000

3

4 a = product ({10.5 , {11.2} , 8.1})

5 -- a is 952.56

See Also:

sum, or all

496

CHAPTER 63. MATH 63.7. BITWISE OPERATIONS

63.6.3 or all

include std/math.e

namespace math

public function or_all(object a)

or’s together all atoms in the argument, no matter how deeply nested.

Parameters:

1. values : an object, all atoms of which will be added up, no matter how nested.

Returns:

An atom, the result of bitwise or of all atoms in flatten(values).

Comments:

This function may be applied to an atom or to all elements of a sequence. It performs or bits operations repeatedly.

Example 1:

1 a = or_all ({10, 7, 35})

2 -- a is 47

3 -- To see why notice:

4 -- 10=0 b1010 , 7=0 b111 and 35=0 b100011.

5 -- combining these gives:

6 -- 0b001010

7 -- (or_bits)0 b000111

8 -- 0b100011

9 -- --------

10 -- 0b101111 = 47

See Also:

sum, product, or bits

63.7 Bitwise Operations

63.7.1 and bits

<built -in > function and_bits(object a, object b)

performs the bitwise AND operation on corresponding bits in two objects. A bit in the result will be 1 only if the
corresponding bits in both arguments are 1.

Parameters:

1. a : one of the objects involved

2. b : the second object

497

CHAPTER 63. MATH 63.7. BITWISE OPERATIONS

Returns:

An object, whose shape depends on the shape of both arguments. Each atom in this object is obtained by bitwise AND
between atoms on both objects.

Comments:

The arguments to this function may be atoms or sequences. The rules for operations on sequences apply. The atoms in
the arguments must be representable as 32-bit numbers, either signed or unsigned.

If you intend to manipulate full 32-bit values, you should declare your variables as atom, rather than integer. Euphoria’s
integer type is limited to 31-bits.

Results are treated as signed numbers. They will be negative when the highest-order bit is 1.
To understand the binary representation of a number you should display it in hexadecimal notation. Use the %x format

of printf. Using int to bits is an even more direct approach.

Example 1:

a = and_bits (#0 F0F0000 , #12345678)

-- a is #02040000

Example 2:

a = and_bits (#FF, {#123456 , #876543 , #2211})

-- a is {#56, #43, #11}

Example 3:

1 a = and_bits (#FFFFFFFF , #FFFFFFFF)

2 -- a is -1

3 -- Note that #FFFFFFFF is a positive number ,

4 -- but the result of a bitwise operation is interpreted

5 -- as a signed 32-bit number , so it’s negative.

See Also:

or bits, xor bits, not bits, int to bits

63.7.2 xor bits

<built -in > function xor_bits(object a, object b)

performs the bitwise XOR operation on corresponding bits in two objects. A bit in the result will be 1 only if the
corresponding bits in both arguments are different.

Parameters:

1. a : one of the objects involved

2. b : the second object

498

CHAPTER 63. MATH 63.7. BITWISE OPERATIONS

Returns:

An object, whose shape depends on the shape of both arguments. Each atom in this object is obtained by bitwisel XOR
between atoms on both objects.

Comments:

The arguments must be representable as 32-bit numbers, either signed or unsigned.
If you intend to manipulate full 32-bit values, you should declare your variables as atom, rather than integer. Euphoria’s

integer type is limited to 31-bits.
Results are treated as signed numbers. They will be negative when the highest-order bit is 1.

Example 1:

a = xor_bits (#0110 , #1010)

-- a is #1100

See Also:

and bits, or bits, not bits, int to bits

63.7.3 or bits

<built -in > function or_bits(object a, object b)

performs the bitwise OR operation on corresponding bits in two objects. A bit in the result will be 1 only if the
corresponding bits in both arguments are both 0.

Parameters:

1. a : one of the objects involved

2. b : the second object

Returns:

An object, whose shape depends on the shape of both arguments. Each atom in this object is obtained by bitwise OR
between atoms on both objects.

Comments:

The arguments must be representable as 32-bit numbers, either signed or unsigned.
If you intend to manipulate full 32-bit values, you should declare your variables as atom, rather than integer. Euphoria’s

integer type is limited to 31-bits.
Results are treated as signed numbers. They will be negative when the highest-order bit is 1.

Example 1:

a = or_bits (#0 F0F0000 , #12345678)

-- a is #1 F3F5678

499

CHAPTER 63. MATH 63.7. BITWISE OPERATIONS

Example 2:

a = or_bits (#FF, {#123456 , #876543 , #2211})

-- a is {#1234FF, #8765FF, #22FF}

See Also:

and bits, xor bits, not bits, int to bits

63.7.4 not bits

<built -in > function not_bits(object a)

performs the bitwise NOT operation on each bit in an object. A bit in the result will be 1 when the corresponding bit
in x1 is 0, and will be 0 when the corresponding bit in x1 is 1.

Parameters:

1. a : the object to invert the bits of.

Returns:

An object, the same shape as a. Each bit in an atom of the result is the reverse of the corresponding bit inside a.

Comments:

The argument to this function may be an atom or a sequence.
The argument must be representable as a 32-bit number, either signed or unsigned.
If you intend to manipulate full 32-bit values, you should declare your variables as atom, rather than integer. Euphoria’s

integer type is limited to 31-bits.
Results are treated as signed numbers. They will be negative when the highest-order bit is 1.
A simple equality holds for an atom a: a + not bits(a) = -1.

Example 1:

a = not_bits (#000000 F7)

-- a is -248 (i.e. FFFFFF08 interpreted as a negative number)

See Also:

and bits, or bits, xor bits, int to bits

63.7.5 shift bits

include std/math.e

namespace math

public function shift_bits(object source_number , integer shift_distance)

moves the bits in the input value by the specified distance.

500

CHAPTER 63. MATH 63.7. BITWISE OPERATIONS

Parameters:

1. source number : object: The value or values whose bits will be be moved.

2. shift distance : integer: number of bits to be moved by.

Comments:

• If source number is a sequence, each element is shifted.

• The value or values in source number are first truncated to a 32-bit integer.

• The output is truncated to a 32-bit integer.

• Vacated bits are replaced with zero.

• If shift distance is negative, the bits in source number are moved left.

• If shift distance is positive, the bits in source number are moved right.

• If shift distance is zero, the bits in source number are not moved.

Returns:

Atom or atoms containing a 32-bit integer. A single atom in source number is an atom, or a sequence in the same form
as source number containing 32-bit integers.

Example 1:

1 ? shift_bits ((7, -3) --> 56

2 ? shift_bits ((0, -9) --> 0

3 ? shift_bits ((4, -7) --> 512

4 ? shift_bits ((8, -4) --> 128

5 ? shift_bits ((0 xFE427AAC , -7) --> 0x213D5600

6 ? shift_bits ((-7, -3) --> -56 which is 0xFFFFFFC8

7 ? shift_bits ((131 , 0) --> 131

8 ? shift_bits ((184.464 , 0) --> 184

9 ? shift_bits ((999 _999_999_999_999 , 0) --> -1530494977 which is 0xA4C67FFF

10 ? shift_bits ((184 , 3) -- 23

11 ? shift_bits ((48, 2) --> 12

12 ? shift_bits ((121 , 3) --> 15

13 ? shift_bits ((0 xFE427AAC , 7) --> 0x01FC84F5

14 ? shift_bits ((-7, 3) --> 0x1FFFFFFF

15 ? shift_bits ({48, 121}, 2) --> {12, 30}

See Also:

rotate bits

63.7.6 rotate bits

include std/math.e

namespace math

public function rotate_bits(object source_number , integer shift_distance)

rotates the bits in the input value by the specified distance.

501

CHAPTER 63. MATH 63.7. BITWISE OPERATIONS

Parameters:

1. source number : object: value or values whose bits will be be rotated.

2. shift distance : integer: number of bits to be moved by.

Comments:

• If source number is a sequence, each element is rotated.

• The value(s) in source number are first truncated to a 32-bit integer.

• The output is truncated to a 32-bit integer.

• If shift distance is negative, the bits in source number are rotated left.

• If shift distance is positive, the bits in source number are rotated right.

• If shift distance is zero, the bits in source number are not rotated.

Returns:

Atom or atoms containing a 32-bit integer. A single atom in source number is an atom, or a sequence in the same form
as source number containing 32-bit integers.

Example 1:

1 ? rotate_bits (7, -3) --> 56

2 ? rotate_bits (0, -9) --> 0

3 ? rotate_bits (4, -7) --> 512

4 ? rotate_bits (8, -4) --> 128

5 ? rotate_bits (0xFE427AAC , -7) --> 0x213D567F

6 ? rotate_bits(-7, -3) --> -49 which is 0xFFFFFFCF

7 ? rotate_bits (131, 0) --> 131

8 ? rotate_bits (184.464 , 0) --> 184

9 ? rotate_bits (999 _999_999_999_999 , 0) --> -1530494977 which is 0xA4C67FFF

10 ? rotate_bits (184, 3) -- 23

11 ? rotate_bits (48, 2) --> 12

12 ? rotate_bits (121, 3) --> 536870927

13 ? rotate_bits (0xFE427AAC , 7) --> 0x59FC84F5

14 ? rotate_bits(-7, 3) --> 0x3FFFFFFF

15 ? rotate_bits ({48, 121}, 2) --> {12, 1073741854}

See Also:

shift bits
Arithmetic

63.7.7 gcd

include std/math.e

namespace math

public function gcd(atom p, atom q)

returns the greater common divisor of to atoms.

502

CHAPTER 63. MATH 63.7. BITWISE OPERATIONS

Parameters:

1. p : one of the atoms to consider

2. q : the other atom.

Returns:

A positive integer, which is the largest value that evenly divides into both parameters.

Comments:

• Signs are ignored. Atoms are rounded down to integers.

• If both parameters are zero, 0 is returned.

• If one parameter is zero, the other parameter is returned.

Parameters and return value are atoms so as to take mathematical integers up to power(2,53).

Example 1:

? gcd(76.3 , -114) --> 38

? gcd(0, -114) --> 114

? gcd(0, 0) --> 0 (This is often regarded as an error condition)

Floating Point

63.7.8 approx

include std/math.e

namespace math

public function approx(object p, object q, atom epsilon = 0.005)

compares two (sets of) numbers based on approximate equality.

Parameters:

1. p : an object, one of the sets to consider

2. q : an object, the other set.

3. epsilon : an atom used to define the amount of inequality allowed. This must be a positive value. Default is 0.005

Returns:

An integer,

• 1 when p > (q + epsilon) : P is definitely greater than q.

• -1 when p < (q - epsilon) : P is definitely less than q.

• 0 when p >= (q - epsilon) and p <= (q + epsilon) : p and q are approximately equal.

503

CHAPTER 63. MATH 63.7. BITWISE OPERATIONS

Comments:

This can be used to see if two numbers are near enough to each other.
Also, because of the way floating point numbers are stored, it not always possible express every real number exactly,

especially after a series of arithmetic operations. You can use approx to see if two floating point numbers are almost the
same value.

If p and q are both sequences, they must be the same length as each other.
If p or q is a sequence, but the other is not, then the result is a sequence of results whose length is the same as the

sequence argument.

Example 1:

1 ? approx (10, 33.33 * 30.01 / 100)

2 --> 0 because 10 and 10.002333 are within 0.005 of each other

3 ? approx (10, 10.001)

4 --> 0 because 10 and 10.001 are within 0.005 of each other

5 ? approx (10, {10.001 ,9.999 , 9.98, 10.04})

6 --> {0,0,1,-1}

7 ? approx ({10.001 ,9.999 , 9.98, 10.04} , 10)

8 --> {0,0,-1,1}

9 ? approx ({10.001 ,{9.999 , 10.01} , 9.98, 10.04} , {10.01 ,9.99 , 9.8, 10.4})

10 --> {-1,{1,1},1,-1}

11 ? approx (23,32, 10)

12 --> 0 because 23 and 32 are within 10 of each other.

63.7.9 powof2

include std/math.e

namespace math

public function powof2(object p)

tests for power of 2.

Parameters:

1. p : an object. The item to test. This can be an integer, atom or sequence.

Returns:

An integer,

• 1 for each item in p that is a power of two (like 2,4,8,16,32, ...)

• 0 for each item in p that is not a power of two (like 3, 54.322, -2)

Example 1:

1 for i = 1 to 10 do

2 ? {i, powof2(i)}

3 end for

4 -- output ...

5 -- {1,1}

6 -- {2,1}

7 -- {3,0}

8 -- {4,1}

504

CHAPTER 63. MATH 63.7. BITWISE OPERATIONS

9 -- {5,0}

10 -- {6,0}

11 -- {7,0}

12 -- {8,1}

13 -- {9,0}

14 -- {10 ,0}

63.7.10 is even

include std/math.e

namespace math

public function is_even(integer test_integer)

tests if the supplied integer is a even or odd number.

Parameters:

1. test integer : an integer. The item to test.

Returns:

An integer,

• 1 if its even.

• 0 if its odd.

Example 1:

1 for i = 1 to 10 do

2 ? {i, is_even(i)}

3 end for

4 -- output ...

5 -- {1,0}

6 -- {2,1}

7 -- {3,0}

8 -- {4,1}

9 -- {5,0}

10 -- {6,1}

11 -- {7,0}

12 -- {8,1}

13 -- {9,0}

14 -- {10 ,1}

63.7.11 is even obj

include std/math.e

namespace math

public function is_even_obj(object test_object)

tests if the supplied Euphoria object is even or odd.

505

CHAPTER 63. MATH 63.7. BITWISE OPERATIONS

Parameters:

1. test object : any Euphoria object. The item to test.

Returns:

An object,

• If test object is an integer...

– 1 if its even.

– 0 if its odd.

• Otherwise if test object is an atom this always returns 0

• otherwise if test object is an sequence it tests each element recursively, returning a sequence of the same structure
containing ones and zeros for each element. A 1 means that the element at this position was even otherwise it was
odd.

Example 1:

1 for i = 1 to 5 do

2 ? {i, is_even_obj(i)}

3 end for

4 -- output ...

5 -- {1,0}

6 -- {2,1}

7 -- {3,0}

8 -- {4,1}

9 -- {5,0}

Example 2:

? is_even_obj (3.4) --> 0

Example 3:

? is_even_obj ({{1,2,3}, {{4 ,5} ,6 ,{7 ,8}} ,9}) --> {{0 ,1 ,0} ,{{1 ,0} ,1 ,{0 ,1}} ,0}

506

Chapter 64
Math Constants

64.1 Constants

64.1.1 PI

include std/mathcons.e

namespace mathcons

public constant PI

PI is the ratio of a circle’s circumference to it’s diameter.

PI = C / D :: C = PI * D :: C = PI * 2 * R(radius)

64.1.2 QUARTPI

include std/mathcons.e

namespace mathcons

public constant QUARTPI

Quarter of PI

64.1.3 HALFPI

include std/mathcons.e

namespace mathcons

public constant HALFPI

Half of PI

64.1.4 TWOPI

include std/mathcons.e

namespace mathcons

public constant TWOPI

Two times PI

507

CHAPTER 64. MATH CONSTANTS 64.1. CONSTANTS

64.1.5 PISQR

include std/mathcons.e

namespace mathcons

public constant PISQR

PI ˆ 2

64.1.6 INVSQ2PI

include std/mathcons.e

namespace mathcons

public constant INVSQ2PI

1 / (sqrt(2PI))

64.1.7 PHI

include std/mathcons.e

namespace mathcons

public constant PHI

phi => Golden Ratio = (1 + sqrt(5)) / 2

64.1.8 E

include std/mathcons.e

namespace mathcons

public constant E

Euler (e)The base of the natural logarithm.

64.1.9 LN2

include std/mathcons.e

namespace mathcons

public constant LN2

ln(2) :: 2 = power(E, LN2)

64.1.10 INVLN2

include std/mathcons.e

namespace mathcons

public constant INVLN2

1 / (ln(2))

64.1.11 LN10

include std/mathcons.e

namespace mathcons

public constant LN10

ln(10) :: 10 = power(E, LN10)

508

CHAPTER 64. MATH CONSTANTS 64.1. CONSTANTS

64.1.12 INVLN10

include std/mathcons.e

namespace mathcons

public constant INVLN10

1 / ln(10)

64.1.13 SQRT2

include std/mathcons.e

namespace mathcons

public constant SQRT2

sqrt(2)

64.1.14 HALFSQRT2

include std/mathcons.e

namespace mathcons

public constant HALFSQRT2

sqrt(2)/ 2

64.1.15 SQRT3

include std/mathcons.e

namespace mathcons

public constant SQRT3

Square root of 3

64.1.16 DEGREES TO RADIANS

include std/mathcons.e

namespace mathcons

public constant DEGREES_TO_RADIANS

Conversion factor: Degrees to Radians = PI / 180

64.1.17 RADIANS TO DEGREES

include std/mathcons.e

namespace mathcons

public constant RADIANS_TO_DEGREES

Conversion factor: Radians to Degrees = 180 / PI

64.1.18 EULER GAMMA

include std/mathcons.e

namespace mathcons

public constant EULER_GAMMA

Gamma (Euler Gamma)

509

CHAPTER 64. MATH CONSTANTS 64.1. CONSTANTS

64.1.19 SQRTE

include std/mathcons.e

namespace mathcons

public constant SQRTE

sqrt(e)

64.1.20 PINF

include std/mathcons.e

namespace mathcons

public constant PINF

Positive Infinity

64.1.21 MINF

include std/mathcons.e

namespace mathcons

public constant MINF

Negative Infinity

64.1.22 SQRT5

include std/mathcons.e

namespace mathcons

public constant SQRT5

sqrt(5)

510

Chapter 65
Random Numbers

65.0.23 rand

<built -in > function rand(object maximum)

returns a random integral value.

Parameters:

1. maximum : an atom, a cap on the value to return.

Returns:

An atom, from 1 to maximum.

Comments:

• The minimum value of maximum is 1.

• The maximum value that can possibly be returned is #FFFFFFFF (4 294 967 295)

• This function may be applied to an atom or to all elements of a sequence.

• In order to get reproducible results from this function, you should call set rand with a reproducible value prior.

Example 1:

s = rand ({10, 20, 30})

-- s might be: {5, 17, 23} or {9, 3, 12} etc.

See Also:

set rand, ceil

65.0.24 rand range

include std/rand.e

namespace random

public function rand_range(atom lo, atom hi)

returns a random integer from a specified inclusive integer range.

511

CHAPTER 65. RANDOM NUMBERS

Parameters:

1. lo : an atom, the lower bound of the range

2. hi : an atom, the upper bound of the range.

Returns:

An atom, randomly drawn between lo and hi inclusive.

Comments:

This function may be applied to an atom or to all elements of a sequence. In order to get reproducible results from this
function, you should call set rand with a reproducible value prior.

Example 1:

s = rand_range (18, 24)

-- s could be any of: 18, 19, 20, 21, 22, 23 or 24

See Also:

rand, set rand, rnd

65.0.25 rnd

include std/rand.e

namespace random

public function rnd()

returns a random floating point number in the range 0 to 1.

Parameters:

None.

Returns:

An atom, randomly drawn between 0.0 and 1.0 inclusive.

Comments:

In order to get reproducible results from this function, you should call set rand with a reproducible value prior to calling
this.

Example 1:

set_rand (1001)

s = rnd()

-- s is 0.6277338201

See Also:

rand, set rand, rand range

512

CHAPTER 65. RANDOM NUMBERS

65.0.26 rnd 1

include std/rand.e

namespace random

public function rnd_1 ()

returns a random floating point number in the range 0 to less than 1.

Parameters:

None.

Returns:

An atom, randomly drawn between 0.0 and a number less than 1.0

Comments:

In order to get reproducible results from this function, you should call set rand with a reproducible value prior to calling
this.

Example 1:

set_rand (1001)

s = rnd_1 ()

-- s is 0.6277338201

See Also:

rand, set rand, rand range

65.0.27 set rand

include std/rand.e

namespace random

public procedure set_rand(object seed)

resets the random number generator.

Parameters:

1. seed : an object. The generator uses this initialize itself for the next random number generated. This can be a
single integer or atom, or a sequence of two integers, or an empty sequence or any other sort of sequence.

Comments:

• Starting from a seed, the values returned by rand are reproducible. This is useful for demos and stress tests based
on random data. Normally the numbers returned by the rand function are totally unpredictable, and will be different
each time you run your program. Sometimes however you may wish to repeat the same series of numbers, perhaps
because you are trying to debug your program, or maybe you want the ability to generate the same output (for
example random picture) for your user upon request.

• Internally there are actually two seed values.

– When set rand is called with a single integer or atom, the two internal seeds are derived from the parameter.

513

CHAPTER 65. RANDOM NUMBERS

– When set rand is called with a sequence of exactly two integers or atoms the internal seeds are set to the
parameter values.

– When set rand is called with an empty sequence, the internal seeds are set to random values and are unpre-
dictable. This is how to reset the generator.

– When set rand is called with any other sequence, the internal seeds are set based on the length of the sequence
and the hashed value of the sequence.

• Aside from an empty seed parameter, this sets the generator to a known state and the random numbers generated
after come in a predicable order, though they still appear to be random.

Example 1:

1 sequence s, t

2 s = repeat(0, 3)

3 t = s

4

5 set_rand (12345)

6 s[1] = rand (10)

7 s[2] = rand (100)

8 s[3] = rand (1000)

9

10 set_rand (12345) -- same value for set_rand ()

11 t[1] = rand (10) -- same arguments to rand() as before

12 t[2] = rand (100)

13 t[3] = rand (1000)

14 -- at this point s and t will be identical

15 set_rand("") -- Reset the generator to an unknown seed.

16 t[1] = rand (10) -- Could be anything now , no way to predict it.

See Also:

rand

65.0.28 get rand

include std/rand.e

namespace random

public function get_rand ()

retrieves the current values of the random generator’s seeds.

Returns:

a sequence. A 2-element sequence containing the values of the two internal seeds.

Comments:

You can use this to save the current seed values so that you can later reset them back to a known state.

514

CHAPTER 65. RANDOM NUMBERS

Example 1:

1 sequence seeds

2 seeds = get_rand ()

3 some_func () -- Which might set the seeds to anything.

4 set_rand(seeds) -- reset them back to whatever they were

5 -- before calling ’some_func ()’.

See Also:

set rand

65.0.29 chance

include std/rand.e

namespace random

public function chance(atom my_limit , atom top_limit = 100)

simulates the probability of a desired outcome.

Parameters:

1. my limit : an atom. The desired chance of something happening.

2. top limit: an atom. The maximum chance of something happening. The default is 100.

Returns:

an integer. 1 if the desired chance happened otherwise 0.

Comments:

This simulates the chance of something happening. For example, if you wnat something to happen with a probablity of
25 times out of 100 times then you code chance(25) and if you want something to (most likely) occur 345 times out of
999 times, you code chance(345, 999).

Example 1:

1 -- 65% of the days are sunny , so ...

2 if chance (65) then

3 puts(1, "Today will be a sunny day")

4 elsif chance (40) then

5 -- And 40% of non -sunny days it will rain.

6 puts(1, "It will rain today")

7 else

8 puts(1, "Today will be a overcast day")

9 end if

See Also:

rnd, roll

515

CHAPTER 65. RANDOM NUMBERS

65.0.30 roll

include std/rand.e

namespace random

public function roll(object desired , integer sides = 6)

simulates the probability of a dice throw.

Parameters:

1. desired : an object. One or more desired outcomes.

2. sides: an integer. The number of sides on the dice. Default is 6.

Returns:

an integer. 0 if none of the desired outcomes occured, otherwise the face number that was rolled.

Comments:

The minimum number of sides is two and there is no maximum.

Example 1:

1 res = roll(1, 2)

2 --> Simulate a coin toss.

3 res = roll ({1 ,6})

4 --> Try for a 1 or a 6 from a standard die toss.

5 res = roll({1,2,3,4}, 20)

6 --> Looking for any number under 5 from a 20-sided die.

See Also:

rnd, chance

65.0.31 sample

include std/rand.e

namespace random

public function sample(sequence population , integer sample_size , integer sampling_method = 0)

selects a set of random samples from a population set.

Parameters:

1. population : a sequence. The set of items from which to take a sample.

2. sample size: an integer. The number of samples to take.

3. sampling method: an integer.

(a) When < 0, ”with-replacement” method used.

(b) When = 0, ”without-replacement” method used and a single set of samples returned.

(c) When > 0, ”without-replacement” method used and a sequence containing the set of samples (chosen items)
and the set unchosen items, is returned.

516

CHAPTER 65. RANDOM NUMBERS

Returns:

A sequence. When sampling method less than or equal to 0 then this is the set of samples, otherwise it returns a
two-element sequence; the first is the samples, and the second is the remainder of the population (in the original order).

Comments:

Selects a set of random samples from a population set. This can be done with either the ”with-replacement” or ”without-
replacement” methods. When using the ”with-replacement” method, after each sample is taken it is returned to the
population set so that it could possible be taken again. The ”without-replacement” method does not return the sample
so these items can only ever be chosen once.

• If sample size is less than 1 , an empty set is returned.

• When using ”without-replacement” method, if sample size is greater than or equal to the population count, the
entire population set is returned, but in a random order.

• When using ”with-replacement” method, if sample size can be any positive integer, thus it is possible to return
more samples than there are items in the population set as items can be chosen more than once.

Example 1:

1 -- without replacement

2

3 set_rand("example")

4 printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 1)})

5 --> "t"

6 printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 5)})

7 --> "flukq"

8 printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", -1)})

9 --> ""

10 printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 26)})

11 --> "kghrsxmjoeubaywlzftcpivqnd"

12 printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 25)})

13 --> "omntrqsbjguaikzywvxflpedc"

Example 2:

1 -- with replacement

2

3 set_rand("example")

4 printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 1, -1)})

5 --> "t"

6 printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 5, -1)})

7 --> "fzycn"

8 printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", -1, -1)})

9 --> ""

10 printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 26, -1)})

11 --> "keeamenuvvfyelqapucerghgfa"

12 printf(1, "%s\n", { sample("abcdefghijklmnopqrstuvwxyz", 45, -1)})

13 --> "orwpsaxuwuyrbstqqwfkykujukuzkkuxvzvzniinnpnxm"

517

CHAPTER 65. RANDOM NUMBERS

Example 3:

1 -- Deal 4 hands of 5 cards from a standard deck of cards.

2 sequence theDeck

3 sequence hands = {}

4 sequence rt

5 function new_deck(integer suits = 4, integer cards_per_suit = 13, integer wilds = 0)

6 sequence nd = {}

7 for i = 1 to suits do

8 for j = 1 to cards_per_suit do

9 nd = append(nd, {i,j})

10 end for

11 end for

12 for i = 1 to wilds do

13 nd = append(nd, {suits +1 , i})

14 end for

15 return nd

16 end function

17

18 theDeck = new_deck(4, 13, 2) -- Build the initial deck of cards

19 for i = 1 to 4 do

20 -- Pick out 5 cards and also return the remaining cards.

21 rt = sample(theDeck , 5, 1)

22 theDeck = rt[2] -- replace the ’deck ’ with the remaining cards.

23 hands = append(hands , rt[1])

24 end for

518

Chapter 66
Statistics

66.1 Routines

66.1.1 small

include std/stats.e

namespace stats

public function small(sequence data_set , integer ordinal_idx)

determines the k-th smallest value from the supplied set of numbers.

Parameters:

1. data set : The list of values from which the smallest value is chosen.

2. ordinal idx : The relative index of the desired smallest value.

Returns:

A sequence, The k-th smallest value, its index in the set.

Comments:

small is used to return a value based on its size relative to all the other elements in the sequence. When index is 1, the
smallest index is returned. Use index = length(data set) to return the highest.

If ordinal idx is less than one, or greater then length of data set, an empty sequence is returned.
The set of values does not have to be in any particular order. The values may be any Euphoria object.

Example 1:

1 small({4,5,6,8,5,4,3,"text"}, 3)

2 --> Ans: {4,1} (The 3rd smallest value)

3 small({4,5,6,8,5,4,3,"text"}, 1)

4 --> Ans: {3,7} (The 1st smallest value)

5 small({4,5,6,8,5,4,3,"text"}, 7)

6 --> Ans: {8,4} (The 7th smallest value)

7 small({"def", "qwe", "abc", "try"}, 2)

8 --> Ans: {"def", 1} (The 2nd smallest value)

9 small({1,2,3,4}, -1)

10 --> Ans: {} -- no-value

519

CHAPTER 66. STATISTICS 66.1. ROUTINES

11 small({1,2,3,4}, 10)

12 --> Ans: {} -- no-value

66.1.2 largest

include std/stats.e

namespace stats

public function largest(object data_set)

returns the largest of the data points that are atoms.

Parameters:

1. data set : a list of 1 or more numbers among which you want the largest.

Returns:

An object, either of:

• an atom (the largest value) if there is at least one atom item in the set

• if there is no largest value.

Comments:

Any data set element which is not an atom is ignored.

Example 1:

largest({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}) -- Ans: 8

largest({"just","text"}) -- Ans: {}

See Also:

range

66.1.3 smallest

include std/stats.e

namespace stats

public function smallest(object data_set)

returns the smallest of the data points.

Parameters:

1. data set : A list of 1 or more numbers for which you want the smallest. Note: only atom elements are included
and any sub-sequences elements are ignored.

520

CHAPTER 66. STATISTICS 66.1. ROUTINES

Returns:

An object, either of:

• an atom (the smallest value) if there is at least one atom item in the set

• if there is no largest value.

Comments:

Any data set element which is not an atom is ignored.

Example 1:

? smallest({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}) -- Ans: 1

? smallest({"just","text"}) -- Ans: {}

See Also:

range

66.1.4 range

include std/stats.e

namespace stats

public function range(object data_set)

determines a number of range statistics for the data set.

Parameters:

1. data set : a list of 1 or more numbers for which you want the range data.

Returns:

A sequence, empty if no atoms were found, else like Lowest, Highest, Range, Mid-range ,

Comments:

Any sequence element in data set is ignored.

Example 1:

? range({7,2,8,5,6,6,4,8,6,16,3,3,4,1,8,"text"}) -- Ans: {1, 16, 15, 8.5}

See Also:

smallest largest
Enums used to influence the results of some of these functions.

521

CHAPTER 66. STATISTICS 66.1. ROUTINES

66.1.5 enum

include std/stats.e

namespace stats

public enum

66.1.6 ST FULLPOP

include std/stats.e

namespace stats

ST_FULLPOP

The supplied data is the entire population.

66.1.7 ST SAMPLE

include std/stats.e

namespace stats

ST_SAMPLE

The supplied data is only a random sample of the population.

66.1.8 enum

include std/stats.e

namespace stats

public enum

66.1.9 ST ALLNUM

include std/stats.e

namespace stats

ST_ALLNUM

The supplied data consists of only atoms.

66.1.10 ST IGNSTR

include std/stats.e

namespace stats

ST_IGNSTR

Any sub-sequences (such as strings) in the supplied data are ignored.

66.1.11 ST ZEROSTR

include std/stats.e

namespace stats

ST_ZEROSTR

Any sub-sequences (such as strings) in the supplied data are assumed to have the value zero.

522

CHAPTER 66. STATISTICS 66.1. ROUTINES

66.1.12 stdev

include std/stats.e

namespace stats

public function stdev(sequence data_set , object subseq_opt = ST_ALLNUM ,

integer population_type = ST_SAMPLE)

returns the standard deviation based on the population.

Parameters:

1. data set : a list of 1 or more numbers for which you want the estimated standard deviation.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

3. population type : an integer. ST SAMPLE (the default) assumes that data set is a random sample of the total
population. ST FULLPOP means that data set is the entire population.

Returns:

An atom, the estimated standard deviation. An empty sequence means that there is no meaningful data to calculate
from.

Comments:

stdev is a measure of how values are different from the average.
The numbers in data set can either be the entire population of values or just a random subset. You indicate which in

the population type parameter. By default data set represents a sample and not the entire population. When using
this function with sample data, the result is an estimated standard deviation.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it
assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.
The equation for standard deviation is:

stdev(X) ==> SQRT(SUM(SQ(X{1..N} - MEAN)) / (N))

Example 1:

1 ? stdev({4,5,6,7,5,4,3,7}) -- Ans: 1.457737974

2 ? stdev({4,5,6,7,5,4,3,7} ,, ST_FULLPOP) -- Ans: 1.363589014

3 ? stdev({4,5,6,7,5,4,3,"text"} , ST_IGNSTR) -- Ans: 1.345185418

4 ? stdev({4,5,6,7,5,4,3,"text"}, ST_IGNSTR , ST_FULLPOP) -- Ans: 1.245399698

5 ? stdev({4,5,6,7,5,4,3,"text"} , 0) -- Ans: 2.121320344

6 ? stdev({4,5,6,7,5,4,3,"text"}, 0, ST_FULLPOP) -- Ans: 1.984313483

See Also:

average, avedev

523

CHAPTER 66. STATISTICS 66.1. ROUTINES

66.1.13 avedev

include std/stats.e

namespace stats

public function avedev(sequence data_set , object subseq_opt = ST_ALLNUM ,

integer population_type = ST_SAMPLE)

returns the average of the absolute deviations of data points from their mean.

Parameters:

1. data set : a list of 1 or more numbers for which you want the mean of the absolute deviations.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

3. population type : an integer. ST SAMPLE (the default) assumes that data set is a random sample of the total
population. ST FULLPOP means that data set is the entire population.

Returns:

An atom , the deviation from the mean.
An empty sequence, means that there is no meaningful data to calculate from.

Comments:

avedev is a measure of the variability in a data set. Its statistical properties are less well behaved than those of the
standard deviation, which is why it is used less.

The numbers in data set can either be the entire population of values or just a random subset. You indicate which in
the population type parameter. By default data set represents a sample and not the entire population. When using
this function with sample data, the result is an estimated deviation.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it
assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.
The equation for absolute average deviation is:

avedev(X) ==> SUM(ABS(X{1..N} - MEAN(X))) / N

Example 1:

1 ? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,7})

2 --> Ans: 1.966666667

3 ? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,7},, ST_FULLPOP)

4 --> Ans: 1.84375

5 ? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, ST_IGNSTR)

6 --> Ans: 1.99047619

7 ? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, ST_IGNSTR ,ST_FULLPOP)

8 --> Ans: 1.857777778

9 ? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, 0)

10 --> Ans: 2.225

11 ? avedev({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, 0, ST_FULLPOP)

12 --> Ans: 2.0859375

524

CHAPTER 66. STATISTICS 66.1. ROUTINES

See Also:

average, stdev

66.1.14 sum

include std/stats.e

namespace stats

public function sum(object data_set , object subseq_opt = ST_ALLNUM)

returns the sum of all the atoms in an object.

Parameters:

1. data set : Either an atom or a list of numbers to sum.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Returns:

An atom, the sum of the set.

Comments:

sum is used as a measure of the magnitude of a sequence of positive values.
If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it

assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.
The equation is:

sum(X) ==> SUM(X{1..N})

Example 1:

? sum({7,2,8.5,6,6,-4.8,6,6,3.341,-8,"text"}, 0) -- Ans: 32.041

See Also:

average

66.1.15 count

include std/stats.e

namespace stats

public function count(object data_set , object subseq_opt = ST_ALLNUM)

returns the count of all the atoms in an object.

525

CHAPTER 66. STATISTICS 66.1. ROUTINES

Parameters:

1. data set : either an atom or a list.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Comments:

This returns the number of numbers in data set

If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it
assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.

Returns:

An integer, the number of atoms in the set. When data set is an atom, 1 is returned.

Example 1:

? count({7,2,8.5,6,6,-4.8,6,6,3.341,-8,"text"}) -- Ans: 10

? count({"cat", "dog", "lamb", "cow", "rabbit"}) -- Ans: 0 (no atoms)

? count(5) -- Ans: 1

See Also:

average, sum

66.1.16 average

include std/stats.e

namespace stats

public function average(object data_set , object subseq_opt = ST_ALLNUM)

returns the average (mean) of the data points.

Parameters:

1. data set : A list of 1 or more numbers for which you want the mean.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Returns:

An object,

• (the empty sequence) if there are no atoms in the set.

• an atom (the mean) if there are one or more atoms in the set.

526

CHAPTER 66. STATISTICS 66.1. ROUTINES

Comments:

average is the theoretical probable value of a randomly selected item from the set.

The equation for average is:

average(X) ==> SUM(X{1..N}) / N

If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it
assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.

Example 1:

? average({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,"text"}, ST_IGNSTR) -- Ans: 5.13333333

See Also:

geomean, harmean, movavg, emovavg

66.1.17 geomean

include std/stats.e

namespace stats

public function geomean(object data_set , object subseq_opt = ST_ALLNUM)

returns the geometric mean of the atoms in a sequence.

Parameters:

1. data set : the values to take the geometric mean of.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Returns:

An atom, the geometric mean of the atoms in data set. If there is no atom to take the mean of, 1 is returned.

Comments:

The geometric mean of N atoms is the n-th root of their product. Signs are ignored.

This is useful to compute average growth rates.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it
assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.

527

CHAPTER 66. STATISTICS 66.1. ROUTINES

Example 1:

? geomean ({3, "abc", -2, 6}, ST_IGNSTR) -- prints out power (36 ,1/3) = 3 ,30192724889462669

? geomean ({1,2,3,4,5,6,7,8,9,10}) -- = 4.528728688

See Also:

average

66.1.18 harmean

include std/stats.e

namespace stats

public function harmean(sequence data_set , object subseq_opt = ST_ALLNUM)

returns the harmonic mean of the atoms in a sequence.

Parameters:

1. data set : the values to take the harmonic mean of.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Returns:

An atom, the harmonic mean of the atoms in data set.

Comments:

The harmonic mean is the inverse of the average of their inverses.

This is useful in engineering to compute equivalent capacities and resistances.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it
assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.

Example 1:

? harmean ({3, "abc", -2, 6}, ST_IGNSTR) -- = 0.

? harmean ({{2, 3, 4}) -- 3 / (1/2 + 1/3 + 1/4) = 2.769230769

See Also:

average

528

CHAPTER 66. STATISTICS 66.1. ROUTINES

66.1.19 movavg

include std/stats.e

namespace stats

public function movavg(object data_set , object period_delta)

returns the average (mean) of the data points for overlaping periods. This can be either a simple or weighted moving
average.

Parameters:

1. data set : a list of 1 or more numbers for which you want a moving average.

2. period delta : an object, either

• an integer representing the size of the period, or

• a list of weightings to apply to the respective period positions.

Returns:

A sequence, either the requested averages or if the Data sequence is empty or the supplied period is less than one.
If a list of weights was supplied, the result is a weighted average; otherwise, it is a simple average.

Comments:

A moving average is used to smooth out a set of data points over a period.
For example, given a period of 5:

1. the first returned element is the average of the first five data points [1..5],

2. the second returned element is the average of the second five data points [2..6],
and so on
until the last returned value is the average of the last 5 data points [$-4 .. $].

When period delta is an atom, it is rounded down to the width of the average. When it is a sequence, the width is
its length. If there are not enough data points, zeroes are inserted.

Note that only atom elements are included and any sub-sequence elements are ignored.

Example 1:

1 ? movavg({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8}, 10)

2 -- Ans: {5.8, 5.4, 5.5, 5.1, 4.7, 4.9}

3 ? movavg({7,2,8,5,6}, 2)

4 -- Ans: {4.5, 5, 6.5, 5.5}

5 ? movavg({7,2,8,5,6}, {0.5, 1.5})

6 -- Ans: {3.25, 6.5, 5.75, 5.75}

See Also:

average

66.1.20 emovavg

include std/stats.e

namespace stats

public function emovavg(object data_set , atom smoothing_factor)

returns the exponential moving average of a set of data points.

529

CHAPTER 66. STATISTICS 66.1. ROUTINES

Parameters:

1. data set : a list of 1 or more numbers for which you want a moving average.

2. smoothing factor : an atom, the smoothing factor, typically between 0 and 1.

Returns:

A sequence, made of the requested averages, or if data set is empty or the supplied period is less than one.

Comments:

A moving average is used to smooth out a set of data points over a period.
The formula used is:

Yi = Yi-1 + F * (Xi - Yi-1)

Note that only atom elements are included and any sub-sequences elements are ignored.
The smoothing factor controls how data is smoothed. 0 smooths everything to 0, and 1 means no smoothing at all.
Any value for smoothing factor outside the 0.0..1.0 range causes smoothing factor to be set to the periodic

factor (2/(N+1)).

Example 1:

1 ? emovavg({7,2,8,5,6}, 0.75)

2 -- Ans: {6.65 ,3.1625 ,6.790625 ,5.44765625 ,5.861914063}

3 ? emovavg({7,2,8,5,6}, 0.25)

4 -- Ans: {5.95 ,4.9625 ,5.721875 ,5.54140625 ,5.656054687}

5 ? emovavg({7,2,8,5,6}, -1)

6 -- Ans: {6.066666667 ,4.711111111 ,5.807407407 ,5.538271605 ,5.69218107}

See Also:

average

66.1.21 median

include std/stats.e

namespace stats

public function median(object data_set , object subseq_opt = ST_ALLNUM)

returns the mid point of the data points.

Parameters:

1. data set : a list of 1 or more numbers for which you want the mean.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Returns:

An object, either if there are no items in the set, or an atom (the median) otherwise.

530

CHAPTER 66. STATISTICS 66.1. ROUTINES

Comments:

median is the item for which half the items are below it and half are above it.
All elements are included; any sequence elements are assumed to have the value zero.
The equation for average is:

median(X) ==> sort(X)[N/2]

If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it
assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.

Example 1:

? median({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,4}) -- Ans: 5

See Also:

average, geomean, harmean, movavg, emovavg

66.1.22 raw frequency

include std/stats.e

namespace stats

public function raw_frequency(object data_set , object subseq_opt = ST_ALLNUM)

returns the frequency of each unique item in the data set.

Parameters:

1. data set : a list of 1 or more numbers for which you want the frequencies.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Returns:

A sequence. This will contain zero or more 2-element sub-sequences. The first element is the frequency count and the
second element is the data item that was counted. The returned values are in descending order, meaning that the highest
frequencies are at the beginning of the returned list.

Comments:

If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it
assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.

531

CHAPTER 66. STATISTICS 66.1. ROUTINES

Example 1:

? raw_frequency("the cat is the hatter")

This returns

{

{5,116},

{4,32},

{3,104},

{3,101},

{2,97},

{1,115},

{1,114},

{1,105},

{1,99}

}

66.1.23 mode

include std/stats.e

namespace stats

public function mode(sequence data_set , object subseq_opt = ST_ALLNUM)

returns the most frequent point(s) of the data set.

Parameters:

1. data set : a list of 1 or more numbers for which you want the mode.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Returns:

A sequence. The list of modal items in the data set.

Comments:

It is possible for the mode to return more than one item when more than one item in the set has the same highest frequency
count.

If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it
assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.

Example 1:

mode({7,2,8,5,6,6,4,8,6,6,3,3,4,1,8,4}) -- Ans: {6}

mode({8,2,8,5,6,6,4,8,6,6,3,3,4,1,8,4}) -- Ans: {8,6}

532

CHAPTER 66. STATISTICS 66.1. ROUTINES

See Also:

average, geomean, harmean, movavg, emovavg

66.1.24 central moment

include std/stats.e

namespace stats

public function central_moment(sequence data_set , object datum , integer order_mag = 1,

object subseq_opt = ST_ALLNUM)

returns the distance between a supplied value and the mean, to some supplied order of magnitude. This is used to get
a measure of the shape of a data set.

Parameters:

1. data set : a list of 1 or more numbers whose mean is used.

2. datum: either a single value or a list of values for which you require the central moments.

3. order mag: An integer. This is the order of magnitude required. Usually a number from 1 to 4, but can be anything.

4. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Returns:

An object. The same data type as datum. This is the set of calculated central moments.

Comments:

For each of the items in datum, its central moment is calculated as:

CM = power(ITEM - AVG , MAGNITUDE)

If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it
assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.

Example 1:

central_moment("the cat is the hatter", "the" ,1) --> {23.14285714 , 11.14285714 , 8.142857143}

central_moment("the cat is the hatter", ’t’ ,2) --> 535.5918367

central_moment("the cat is the hatter", ’t’ ,3) --> 12395.12536

See Also:

average

533

CHAPTER 66. STATISTICS 66.1. ROUTINES

66.1.25 sum central moments

include std/stats.e

namespace stats

public function sum_central_moments(object data_set , integer order_mag = 1,

object subseq_opt = ST_ALLNUM)

returns sum of the central moments of each item in a data set.

Parameters:

1. data set : a list of 1 or more numbers whose mean is used.

2. order mag: An integer. This is the order of magnitude required. Usually a number from 1 to 4, but can be anything.

3. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Returns:

An atom. The total of the central moments calculated for each of the items in data set.

Comments:

If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it
assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.

Example 1:

sum_central_moments("the cat is the hatter", 1) --> -8.526512829e-14

sum_central_moments("the cat is the hatter", 2) --> 19220.57143

sum_central_moments("the cat is the hatter", 3) --> -811341.551

sum_central_moments("the cat is the hatter", 4) --> 56824083.71

See Also:

central moment, average

66.1.26 skewness

include std/stats.e

namespace stats

public function skewness(object data_set , object subseq_opt = ST_ALLNUM)

returns a measure of the asymmetry of a data set. Usually the data set is a probablity distribution but it can be
anything. This value is used to assess how suitable the data set is in representing the required analysis. It can help detect
if there are too many extreme values in the data set.

534

CHAPTER 66. STATISTICS 66.1. ROUTINES

Parameters:

1. data set : a list of 1 or more numbers whose mean is used.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Returns:

An atom. The skewness measure of the data set.

Comments:

Generally speaking, a negative return indicates that most of the values are lower than the mean, while positive values
indicate that most values are greater than the mean. However this might not be the case when there are a few extreme
values on one side of the mean.

The larger the magnitude of the returned value, the more the data is skewed in that direction.
A returned value of zero indicates that the mean and median values are identical and that the data is symmetrical.
If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it

assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.

Example 1:

skewness("the cat is the hatter") --> -1.36166186

skewness("thecatisthehatter") --> 0.1093730315

See Also:

kurtosis

66.1.27 kurtosis

include std/stats.e

namespace stats

public function kurtosis(object data_set , object subseq_opt = ST_ALLNUM)

returns a measure of the spread of values in a dataset when compared to a normal probability curve.

Parameters:

1. data set : a list of 1 or more numbers whose kurtosis is required.

2. subseq opt : an object. When this is ST ALLNUM (the default) it means that data set is assumed to contain no
sub-sequences otherwise this gives instructions about how to treat sub-sequences. See comments for details.

Returns:

An object. If this is an atom it is the kurtosis measure of the data set. Othewise it is a sequence containing an error
integer. The return value 0 indicates that an empty dataset was passed, 1 indicates that the standard deviation is zero
(all values are the same).

535

CHAPTER 66. STATISTICS 66.1. ROUTINES

Comments:

Generally speaking, a negative return indicates that most of the values are further from the mean, while positive values
indicate that most values are nearer to the mean.

The larger the magnitude of the returned value, the more the data is ’peaked’ or ’flatter’ in that direction.
If the data can contain sub-sequences, such as strings, you need to let the the function know about this otherwise it

assumes every value in data set is an number. If that is not the case then the function will crash. So it is important that
if it can possibly contain sub-sequences that you tell this function what to do with them. Your choices are to ignore them
or assume they have the value zero. To ignore them, use ST IGNSTR as the subseq opt parameter value otherwise use
ST ZEROSTR. However, if you know that data set only contains numbers use the default subseq opt value, ST ALLNUM.

Note It is faster if the data only contains numbers.

Example 1:

kurtosis("thecatisthehatter") --> -1.737889192

See Also:

skewness

536

Chapter 67
Euphoria Database (EDS)

67.1 Error Status Constants

67.1.1 enum

include std/eds.e

namespace eds

public enum

67.1.2 DB OK

include std/eds.e

namespace eds

DB_OK

67.1.3 DB OPEN FAIL

include std/eds.e

namespace eds

DB_OPEN_FAIL

67.1.4 DB EXISTS ALREADY

include std/eds.e

namespace eds

DB_EXISTS_ALREADY

67.1.5 DB LOCK FAIL

include std/eds.e

namespace eds

DB_LOCK_FAIL

537

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.2. LOCK TYPE CONSTANTS

67.1.6 DB BAD NAME

include std/eds.e

namespace eds

DB_BAD_NAME

67.1.7 DB FATAL FAIL

include std/eds.e

namespace eds

DB_FATAL_FAIL

67.2 Lock Type Constants

67.2.1 enum

include std/eds.e

namespace eds

public enum

67.2.2 DB LOCK NO

include std/eds.e

namespace eds

DB_LOCK_NO

67.2.3 DB LOCK SHARED

include std/eds.e

namespace eds

DB_LOCK_SHARED

67.2.4 DB LOCK EXCLUSIVE

include std/eds.e

namespace eds

DB_LOCK_EXCLUSIVE

67.2.5 DB LOCK READ ONLY

include std/eds.e

namespace eds

DB_LOCK_READ_ONLY

538

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.3. ERROR CODE CONSTANTS

67.3 Error Code Constants

67.3.1 enum

include std/eds.e

namespace eds

public enum

67.3.2 MISSING END

include std/eds.e

namespace eds

MISSING_END

67.3.3 NO DATABASE

include std/eds.e

namespace eds

NO_DATABASE

67.3.4 BAD SEEK

include std/eds.e

namespace eds

BAD_SEEK

67.3.5 NO TABLE

include std/eds.e

namespace eds

NO_TABLE

67.3.6 DUP TABLE

include std/eds.e

namespace eds

DUP_TABLE

67.3.7 BAD RECNO

include std/eds.e

namespace eds

BAD_RECNO

539

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.4. INDEXES FOR CONNECTION OPTION STRUCTURE.

67.3.8 INSERT FAILED

include std/eds.e

namespace eds

INSERT_FAILED

67.3.9 LAST ERROR CODE

include std/eds.e

namespace eds

LAST_ERROR_CODE

67.3.10 BAD FILE

include std/eds.e

namespace eds

BAD_FILE

67.4 Indexes for Connection Option Structure.

67.4.1 enum

include std/eds.e

namespace eds

public enum

67.4.2 CONNECT LOCK

include std/eds.e

namespace eds

CONNECT_LOCK

67.4.3 CONNECT TABLES

include std/eds.e

namespace eds

CONNECT_TABLES

67.4.4 CONNECT FREE

include std/eds.e

namespace eds

CONNECT_FREE

540

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.5. DATABASE CONNECTION OPTIONS

67.5 Database Connection Options

67.5.1 DISCONNECT

include std/eds.e

namespace eds

public constant DISCONNECT

Disconnect a connected database

67.5.2 LOCK METHOD

include std/eds.e

namespace eds

public constant LOCK_METHOD

Locking method to use

67.5.3 INIT TABLES

include std/eds.e

namespace eds

public constant INIT_TABLES

The initial number of tables to reserve space for when creating a database.

67.5.4 INIT FREE

include std/eds.e

namespace eds

public constant INIT_FREE

The initial number of free space pointers to reserve space for when creating a database.

67.5.5 CONNECTION

include std/eds.e

namespace eds

public constant CONNECTION

Fetch the details about the alias

67.6 Variables

67.6.1 db fatal id

include std/eds.e

namespace eds

public integer db_fatal_id

This is an Exception handler.
Set this to a valid routine id value for a procedure that will be called whenever the library detects a serious error. Your

procedure will be passed a single text string that describes the error. It may also call db get errors to get more detail
about the cause of the error.

541

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.7. ROUTINES

67.7 Routines

67.7.1 db get errors

include std/eds.e

namespace eds

public function db_get_errors(integer clearing = 1)

fetches the most recent set of errors recorded by the library.

Parameters:

1. clearing : if zero the set of errors is not reset, otherwise it will be cleared out. The default is to clear the set.

Returns:

A sequence, each element is a set of four fields.

1. Error Code.

2. Error Text.

3. Name of library routine that recorded the error.

4. Parameters passed to that routine.

Comments:

• A number of library routines can detect errors. If the routine is a function, it usually returns an error code. However,
procedures that detect an error can not do that. Instead, they record the error details and you can query that after
calling the library routine.

• Both functions and procedures that detect errors record the details in the Last Error Set, which is fetched by this
function.

Example 1:

1 db_replace_data(recno , new_data)

2 errs = db_get_errors ()

3 if length(errs) != 0 then

4 display_errors(errs)

5 abort (1)

6 end if

67.7.2 db dump

include std/eds.e

namespace eds

public procedure db_dump(object file_id , integer low_level_too = 0)

prints the current database in readable form to file fn.

542

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.8. MANAGING DATABASES

Parameters:

1. fn : the destination file for printing the current Euphoria database;

2. low level too : a boolean. If true, a byte-by-byte binary dump is presented as well; otherwise this step is skipped.
If omitted, false is assumed.

Errors:

If the current database is not defined, an error will occur.

Comments:

• All records in all tables are shown.

• If low level too is non-zero, then a low-level byte-by-byte dump is also shown. The low-level dump will only be
meaningful to someone who is familiar with the internal format of a Euphoria database.

Example 1:

1 if db_open("mydata", DB_LOCK_SHARED) != DB_OK then

2 puts(2, "Couldn ’t open the database !\n")

3 abort (1)

4 end if

5 fn = open("db.txt", "w")

6 db_dump(fn) -- Simple output

7 db_dump("lowlvl_db.txt", 1) -- Full low -level dump created.

67.7.3 check free list

include std/eds.e

namespace eds

public procedure check_free_list ()

detects corruption of the free list in a Euphoria database.

Comments:

This is a debug routine used by RDS to detect corruption of the free list. Users do not normally call this.

67.8 Managing Databases

67.8.1 db connect

include std/eds.e

namespace eds

public function db_connect(sequence dbalias , sequence path = "", sequence dboptions = {})

defines a symbolic name for a database and its default attributes.

543

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.8. MANAGING DATABASES

Parameters:

1. dbalias : a sequence. This is the symbolic name that the database can be referred to by.

2. path : a sequence, the path to the file that will contain the database.

3. dboptions: a sequence. Contains the set of attributes for the database. The default is meaning it will use the
various EDS default values.

Returns:

An integer, status code, either DB OK if creation successful or anything else on an error.

Comments:

• This does not create or open a database. It only associates a symbolic name with a database path. This name can
then be used in the calls to db create, db open, and db select instead of the physical database name.

• If the file in the path does not have an extention, ".edb" will be added automatically.

• The dboptions can contain any of the options detailed below. These can be given as a single string of the
form "option=value, option=value, ..." or as as sequence containing option-value pairs, option,value,

option,value, ... Note: The options can be in any order.

• The options are:

– LOCK METHOD : an integer specifying which type of access can be granted to the database. This must be one
of DB LOCK NO, DB LOCK EXCLUSIVE, DB LOCK SHARDED or DB LOCK READ ONLY.

– INIT TABLES : an integer giving the initial number of tables to reserve space for. The default is 5 and the
minimum is 1.

– INIT FREE : an integer giving the initial amount of free space pointers to reserve space for. The default is 5
and the minimum is 0.

• If a symbolic name has already been defined for a database, you can get it’s full path and options by calling this
function with dboptions set to CONNECTION. The returned value is a sequence of two elements. The first is
the full path name and the second is a list of the option values. These options are indexed by [CONNECT LOCK],
[CONNECT TABLES], and [CONNECT FREE].

• If a symbolic name has already been defined for a database, you remove the symbolic name by calling this function
with dboptions set to DISCONNECT.

Example 1:

db_connect("myDB", "/usr/data/myapp/customer.edb", {{ LOCK_METHOD ,DB_LOCK_NO},

{INIT_TABLES ,1}})

db_open("myDB")

Example 2:

db_connect("myDB", "/usr/data/myapp/customer.edb",

sprintf("init_tables =1, lock_method =%d",DB_LOCK_NO))

db_open("myDB")

544

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.8. MANAGING DATABASES

Example 3:

db_connect("myDB", "/usr/data/myapp/customer.edb",

sprintf("init_tables =1, lock_method =%d",DB_LOCK_NO))

db_connect("myDB",,CONNECTION) --> {"/ usr/data/myapp/customer.edb", {0,1,1}}

db_connect("myDB",,DISCONNECT) -- The name ’myDB ’ is removed from EDS.

See Also:

db create, db open, db select

67.8.2 db create

1 include std/eds.e

2 namespace eds

3 public function db_create(sequence path , integer lock_method = DB_LOCK_NO ,

4 integer init_tables = DEF_INIT_TABLES ,

5 integer init_free = DEF_INIT_FREE)

creates a new database given a file path and a lock method.

Parameters:

1. path : a sequence, the path to the file that will contain the database.

2. lock method : an integer specifying which type of access can be granted to the database. The value of lock method

can be either DB LOCK NO (no lock) or DB LOCK EXCLUSIVE (exclusive lock).

3. init tables : an integer giving the initial number of tables to reserve space for. The default is 5 and the minimum
is 1 .

4. init free : an integer giving the initial amount of free space pointers to reserve space for. The default is 5 and
the minimum is 0 .

Returns:

An integer, status code, either DB OK if creation successful or anything else on an error.

Comments:

On success, the newly created database becomes the current database to which all other database operations will apply.
If the file in the path does not have an extention, .edb will be added automatically.
A version number is stored in the database file so future versions of the database software can recognize the format,

and possibly read it and deal with it in some way.
If the database already exists, it will not be overwritten. db create will return DB EXISTS ALREADY.

Example 1:

if db_create("mydata", DB_LOCK_NO) != DB_OK then

puts(2, "Couldn ’t create the database !\n")

abort (1)

end if

545

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.8. MANAGING DATABASES

See Also:

db open, db select

67.8.3 db open

include std/eds.e

namespace eds

public function db_open(sequence path , integer lock_method = DB_LOCK_NO)

opens an existing Euphoria database.

Parameters:

1. path : a sequence, the path to the file containing the database

2. lock method : an integer specifying which sort of access can be granted to the database. The types of lock that
you can use are:

(a) DB LOCK NO : (no lock) – The default

(b) DB LOCK SHARED : (shared lock for read-only access)

(c) DB LOCK EXCLUSIVE : (for read and write access).

Returns:

An integer, status code, either DB OK if creation successful or anything else on an error.
The return codes are:

1 public constant

2 DB_OK = 0 -- success

3 DB_OPEN_FAIL = -1 -- could not open the file

4 DB_LOCK_FAIL = -3 -- could not lock the file in the

5 -- manner requested

Comments:

DB LOCK SHARED is only supported on Unix platforms. It allows you to read the database, but not write anything to it. If
you request DB LOCK SHARED on Windows it will be treated as if you had asked for DB LOCK EXCLUSIVE.

If the lock fails, your program should wait a few seconds and try again. Another process might be currently accessing
the database.

Example 1:

1 tries = 0

2 while 1 do

3 err = db_open("mydata", DB_LOCK_SHARED)

4 if err = DB_OK then

5 exit

6 elsif err = DB_LOCK_FAIL then

7 tries += 1

8 if tries > 10 then

9 puts(2, "too many tries , giving up\n")

10 abort (1)

11 else

12 sleep (5)

546

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.8. MANAGING DATABASES

13 end if

14 else

15 puts(2, "Couldn ’t open the database !\n")

16 abort (1)

17 end if

18 end while

See Also:

db create, db select

67.8.4 db select

include std/eds.e

namespace eds

public function db_select(sequence path , integer lock_method = - 1)

chooses a new, already open, database to be the current database.

Parameters:

1. path : a sequence, the path to the database to be the new current database.

2. lock method : an integer. Optional locking method.

Returns:

An integer, DB OK on success or an error code.

Comments:

• Subsequent database operations will apply to this database. path is the path of the database file as it was originally
opened with db open or db create.

• When you create (db create) or open (db open) a database, it automatically becomes the current database. Use
db select when you want to switch back and forth between open databases, perhaps to copy records from one to
the other. After selecting a new database, you should select a table within that database using db select table.

• If the lock method is omitted and the database has not already been opened, this function will fail. However, if
lock method is a valid lock type for db open and the database is not open yet, this function will attempt to open
it. It may still fail if the database cannot be opened.

Example 1:

if db_select("employees") != DB_OK then

puts(2, "Could not select employees database\n")

end if

Example 2:

if db_select("customer", DB_LOCK_SHARED) != DB_OK then

puts(2, "Could not open or select Customer database\n")

end if

547

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.9. MANAGING TABLES

See Also:

db open, db select

67.8.5 db close

include std/eds.e

namespace eds

public procedure db_close ()

unlocks and closes the current database.

Comments:

Call this procedure when you are finished with the current database. Any lock will be removed, allowing other processes
to access the database file. The current database becomes undefined.

67.9 Managing Tables

67.9.1 db select table

include std/eds.e

namespace eds

public function db_select_table(sequence name)

Parameters:

1. name : a sequence which defines the name of the new current table.

On success, the table with name given by name becomes the current table.

Returns:

An integer, either DB OK on success or DB OPEN FAIL otherwise.

Errors:

An error occurs if the current database is not defined.

Comments:

All record-level database operations apply automatically to the current table.

Example 1:

if db_select_table("salary") != DB_OK then

puts(2, "Couldn ’t find salary table !\n")

abort (1)

end if

See Also:

db table list

548

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.9. MANAGING TABLES

67.9.2 db current table

include std/eds.e

namespace eds

public function db_current_table ()

gets the name of currently selected table.

Parameters:

1. None.

Returns:

A sequence, the name of the current table. An empty string means that no table is currently selected.

Example 1:

s = db_current_table ()

See Also:

db select table, db table list

67.9.3 db create table

include std/eds.e

namespace eds

public function db_create_table(sequence name , integer init_records = DEF_INIT_RECORDS)

creates a new table within the current database.

Parameters:

1. name : a sequence, the name of the new table.

2. init records : The number of records to initially reserve space for. (Default is 50)

Returns:

An integer, either DB OK on success or DB EXISTS ALREADY on failure.

Errors:

An error occurs if the current database is not defined.

Comments:

• The supplied name must not exist already on the current database.

• The table that you create will initially have zero records. However it will reserve some space for a number of records,
which will improve the initial data load for the table.

• It becomes the current table.

549

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.9. MANAGING TABLES

Example 1:

if db_create_table("my_new_table") != DB_OK then

puts(2, "Could not create my_new_table !\n")

end if

See Also:

db select table, db table list

67.9.4 db delete table

include std/eds.e

namespace eds

public procedure db_delete_table(sequence name)

deletes a table in the current database.

Parameters:

1. name : a sequence, the name of the table to delete.

Errors:

An error occurs if the current database is not defined.

Comments:

If there is no table with the name given by name, then nothing happens. On success, all records are deleted and all space
used by the table is freed up. If the table was the current table, the current table becomes undefined.

See Also:

db table list, db select table, db clear table

67.9.5 db clear table

include std/eds.e

namespace eds

public procedure db_clear_table(sequence name , integer init_records = DEF_INIT_RECORDS)

clears a table of all its records, in the current database.

Parameters:

1. name : a sequence, the name of the table to clear.

Errors:

An error occurs if the current database is not defined.

Comments:

If there is no table with the name given by name, then nothing happens. On success, all records are deleted and all space
used by the table is freed up. If this is the current table, after this operation it will still be the current table.

550

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.9. MANAGING TABLES

See Also:

db table list, db select table, db delete table

67.9.6 db rename table

include std/eds.e

namespace eds

public procedure db_rename_table(sequence name , sequence new_name)

renames a table in the current database.

Parameters:

1. name : a sequence, the name of the table to rename

2. new name : a sequence, the new name for the table

Errors:

• An error occurs if the current database is not defined.

• If name does not exist on the current database, or if new name does exist on the current database, an error will
occur.

Comments:

The table to be renamed can be the current table, or some other table in the current database.

See Also:

db table list

67.9.7 db table list

include std/eds.e

namespace eds

public function db_table_list ()

lists all tables in the current database.

Returns:

A sequence, of all the table names in the current database. Each element of this sequence is a sequence, the name of a
table.

Errors:

An error occurs if the current database is undefined.

Example 1:

sequence names = db_table_list ()

for i = 1 to length(names) do

puts(1, names[i] & ’\n’)

end for

551

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.10. MANAGING RECORDS

See Also:

db select table, db create table

67.10 Managing Records

67.10.1 db find key

include std/eds.e

namespace eds

public function db_find_key(object key , object table_name = current_table_name)

finds the record in the current table with supplied key.

Parameters:

1. key : the identifier of the record to be looked up.

2. table name : optional name of table to find key in

Returns:

An integer, either greater or less than zero:

• If above zero, the record identified by key was found on the current table, and the returned integer is its record
number.

• If less than zero, the record was not found. The returned integer is the opposite of what the record number would
have been, had the record been found.

• If equal to zero, an error occured.

Errors:

If the current table is not defined, it returns 0 .

Comments:

A fast binary search is used to find the key in the current table. The number of comparisons is proportional to the log of
the number of records in the table. The key is unique–a table is more like a dictionary than like a spreadsheet.

You can select a range of records by searching for the first and last key values in the range. If those key values don’t
exist, you’ll at least get a negative value showing io:where they would be, if they existed.

For example, suppose you want to know which records have keys greater than "GGG" and less than "MMM". If -5 is
returned for key "GGG", it means a record with "GGG" as a key would be inserted as record number 5 . -27 for "MMM"

means a record with "MMM" as its key would be inserted as record number 27. This quickly tells you that all records, >=
5 and < 27 qualify.

Example 1:

1 rec_num = db_find_key("Millennium")

2 if rec_num > 0 then

3 ? db_record_key(rec_num)

4 ? db_record_data(rec_num)

5 else

6 puts(2, "Not found , but if you insert it ,\n")

552

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.10. MANAGING RECORDS

7

8 printf(2, "it will be #%d\n", -rec_num)

9 end if

See Also:

db insert, db replace data, db delete record, db get recid

67.10.2 db insert

include std/eds.e

namespace eds

public function db_insert(object key , object data , object table_name = current_table_name)

inserts a new record into the current table.

Parameters:

1. key : an object, the record key, which uniquely identifies it inside the current table

2. data : an object, associated to key.

3. table name : optional table name to insert record into

Returns:

An integer, either DB OK on success or an error code on failure.

Comments:

Within a table, all keys must be unique. db insert will fail with DB EXISTS ALREADY if a record already exists on current
table with the same key value.

Both key and data can be any Euphoria data objects, atoms or sequences.

Example 1:

if db_insert("Smith", {"Peter", 100, 34.5}) != DB_OK then

puts(2, "insert failed !\n")

end if

See Also:

db replace data, db delete record

67.10.3 db delete record

include std/eds.e

namespace eds

public procedure db_delete_record(integer key_location , object table_name = current_table_name)

deletes record number key location from the current table.

553

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.10. MANAGING RECORDS

Parameters:

1. key location : a positive integer, designating the record to delete.

2. table name : optional table name to delete record from.

Errors:

If the current table is not defined, or key location is not a valid record index, an error will occur. Valid record indexes
are between 1 and the number of records in the table.

Example 1:

db_delete_record (55)

See Also:

db find key

67.10.4 db replace data

include std/eds.e

namespace eds

public procedure db_replace_data(integer key_location , object data ,

object table_name = current_table_name)

replaces, the current table, the data portion of a record with new data.

Parameters:

1. key location: an integer, the index of the record the data is to be altered.

2. data: an object , the new value associated to the key of the record.

3. table name: optional table name of record to replace data in.

Comments:

key location must be from 1 to the number of records in the current table. data is an Euphoria object of any kind,
atom or sequence.

Example 1:

db_replace_data (67, {"Peter", 150, 34.5})

See Also:

db find key

554

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.10. MANAGING RECORDS

67.10.5 db table size

include std/eds.e

namespace eds

public function db_table_size(object table_name = current_table_name)

gets the size (number of records) of the default table.

Parameters:

1. table name : optional table name to get the size of.

Returns An integer, the current number of records in the current table. If a value less than zero is returned, it means
that an error occured.

Errors:

If the current table is undefined, an error will occur.

Example 1:

1 -- look at all records in the current table

2 for i = 1 to db_table_size () do

3 if db_record_key(i) = 0 then

4 puts(1, "0 key found\n")

5 exit

6 end if

7 end for

See Also:

db replace data

67.10.6 db record data

include std/eds.e

namespace eds

public function db_record_data(integer key_location , object table_name = current_table_name)

returns the data in a record queried by position.

Parameters:

1. key location : the index of the record the data of which is being fetched.

2. table name : optional table name to get record data from.

Returns:

An object, the data portion of requested record.

Note:

This function calls fatal and returns a value of -1 if an error prevented the correct data being returned.

555

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.10. MANAGING RECORDS

Comments:

Each record in a Euphoria database consists of a key portion and a data portion. Each of these can be any Euphoria atom
or sequence.

Errors:

If the current table is not defined, or if the record index is invalid, an error will occur.

Example 1:

puts(1, "The 6th record has data value: ")

? db_record_data (6)

See Also:

db find key, db replace data

67.10.7 db fetch record

include std/eds.e

namespace eds

public function db_fetch_record(object key , object table_name = current_table_name)

returns the data for the record with supplied key.

Parameters:

1. key : the identifier of the record to be looked up.

2. table name : optional name of table to find key in

Returns:

An integer,

• If less than zero, the record was not found. The returned integer is the opposite of what the record number would
have been, had the record been found.

• If equal to zero, an error occured. A sequence, the data for the record.

Errors:

If the current table is not defined, it returns 0.

Comments:

Each record in a Euphoria database consists of a key portion and a data portion. Each of these can be any Euphoria atom
or sequence.

Note:

This function does not support records that data consists of a single non-sequence value. In those cases you will need to
use db find key and db record data.

556

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.10. MANAGING RECORDS

Example 1:

printf(1, "The record[’%s’] has data value :\n", {"foo"})

? db_fetch_record("foo")

See Also:

db find key, db record data

67.10.8 db record key

include std/eds.e

namespace eds

public function db_record_key(integer key_location , object table_name = current_table_name)

returns the key of a record given an index.

Parameters:

1. key location : an integer, the index of the record the key is being requested.

2. table name : optional table name to get record key from.

Returns An object, the key of the record being queried by index.

Note:

This function calls fatal and returns a value of -1 if an error prevented the correct data being returned.

Errors:

If the current table is not defined, or if the record index is invalid, an error will occur.

Comments:

Each record in a Euphoria database consists of a key portion and a data portion. Each of these can be any Euphoria atom
or sequence.

Example 1:

puts(1, "The 6th record has key value: ")

? db_record_key (6)

See Also:

db record data

67.10.9 db compress

include std/eds.e

namespace eds

public function db_compress ()

compresses the current database.

557

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.10. MANAGING RECORDS

Returns:

An integer, either DB OK on success or an error code on failure.

Comments:

The current database is copied to a new file such that any blocks of unused space are eliminated. If successful, the return
value will be set to DB OK, and the new compressed database file will retain the same name. The current table will be
undefined. As a backup, the original, uncompressed file will be renamed with an extension of .t0 (or .t1, .t2, ...,

.t99). In the highly unusual case that the compression is unsuccessful, the database will be left unchanged, and no
backup will be made.

When you delete items from a database, you create blocks of free space within the database file. The system keeps
track of these blocks and tries to use them for storing new data that you insert. db compress will copy the current
database without copying these free areas. The size of the database file may therefore be reduced. If the backup filenames
reach .t99 you will have to delete some of them.

Example 1:

if db_compress () != DB_OK then

puts(2, "compress failed !\n")

end if

67.10.10 db current

include std/eds.e

namespace eds

public function db_current ()

gets name of currently selected database.

Parameters:

1. None.

Returns:

A sequence, the name of the current database. An empty string means that no database is currently selected.

Comments:

The actual name returned is the path as supplied to the db open routine.

Example 1:

s = db_current_database ()

See Also:

db select

558

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.10. MANAGING RECORDS

67.10.11 db cache clear

include std/eds.e

namespace eds

public procedure db_cache_clear ()

forces the database index cache to be cleared.

Parameters:

1. None

Comments:

• This is not normally required to the run. You might run it to set up a predetermined state for performance timing,
or to release some memory back to the application.

Example 1:

db_cache_clear () -- Clear the cache.

67.10.12 db set caching

include std/eds.e

namespace eds

public function db_set_caching(atom new_setting)

sets the key cache behavior.

Parameters:

1. integer : 0 will turn of caching, 1 will turn it back on.

Returns:

An integer, the previous setting of the option.

Comments:

Initially, the cache option is turned on. This means that when possible, the keys of a table are kept in RAM rather than
read from disk each time db select table is called. For most databases, this will improve performance when you have
more than one table in it.

When caching is turned off, the current cache contents is totally cleared.

Example 1:

x = db_set_caching (0) -- Turn off key caching.

559

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.10. MANAGING RECORDS

67.10.13 db replace recid

include std/eds.e

namespace eds

public procedure db_replace_recid(integer recid , object data)

replaces, in the current database, the data portion of a record with new data.

Parameters:

1. recid : an atom, the recid of the record to be updated.

2. data : an object, the new value of the record.

Comments:

This can be used to quickly update records that have already been located by calling db get recid. This operation is faster
than using db replace data

• recid must be fetched using db get recid first.

• data is an Euphoria object of any kind, atom or sequence.

• The recid does not have to be from the current table.

• This does no error checking. It assumes the database is open and valid.

Example 1:

rid = db_get_recid("Peter")

rec = db_record_recid(rid)

rec [2][3] *= 1.10

db_replace_recid(rid , rec [2])

See Also:

db replace data, db find key, db get recid

67.10.14 db record recid

include std/eds.e

namespace eds

public function db_record_recid(integer recid)

returns the key and data in a record queried by recid.

Parameters:

1. recid : the recid of the required record, which has been previously fetched using db get recid.

Returns:

An sequence, the first element is the key and the second element is the data portion of requested record.

560

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.10. MANAGING RECORDS

Comments:

• This is much faster than calling db record key and db record data.

• This does no error checking. It assumes the database is open and valid.

• This function does not need the requested record to be from the current table. The recid can refer to a record in
any table.

Example 1:

rid = db_get_recid("SomeKey")

? db_record_recid(rid)

See Also:

db get recid, db replace recid

67.10.15 db get recid

include std/eds.e

namespace eds

public function db_get_recid(object key , object table_name = current_table_name)

returns the unique record identifier (recid) value for the record.

Parameters:

1. key : the identifier of the record to be looked up.

2. table name : optional name of table to find key in

Returns:

An atom, either greater or equal to zero:

• If above zero, it is a recid.

• If less than zero, the record wasn’t found.

• If equal to zero, an error occured.

Errors:

If the table is not defined, an error is raised.

Comments:

A recid is a number that uniquely identifies a record in the database. No two records in a database has the same recid

value. They can be used instead of keys to quickly refetch a record, as they avoid the overhead of looking for a matching
record key. They can also be used without selecting a table first, as the recid is unique to the database and not just a
table. However, they only remain valid while a database is open and so long as it does not get compressed. Compressing
the database will give each record a new recid value.

Because it is faster to fetch a record with a recid rather than with its key, these are used when you know you have
to refetch a record.

561

CHAPTER 67. EUPHORIA DATABASE (EDS) 67.10. MANAGING RECORDS

Example 1:

1 rec_num = db_get_recid("Millennium")

2 if rec_num > 0 then

3 ? db_record_recid(rec_num) -- fetch key and data.

4 else

5 puts(2, "Not found\n")

6 end if

See Also:

db insert, db replace data, db delete record, db find key

562

Chapter 68
Prime Numbers

68.1 Routines

68.1.1 calc primes

include std/primes.e

namespace primes

public function calc_primes(integer approx_limit , atom time_limit_p = 10)

returns all the prime numbers below a threshold, with a cap on computation time.

Parameters:

1. approx limit : an integer, This is not the upper limit but the last prime returned is the next prime after or on this
value.

2. time out p : an atom, the maximum number of seconds that this function can run for. The default is 10 (ten)
seconds.

Returns:

A sequence, made of prime numbers in increasing order. The last value is the next prime number that falls on or after
the value of approx limit.

Comments:

• The approx limit argument does not represent the largest value to return. The largest value returned will be the
next prime number on or after

• The returned sequence contains all the prime numbers less than its last element.

• If the function times out, it may not hold all primes below approx limit, but only the largest ones will be absent.
If the last element returned is less than approx limit then the function timed out.

• To disable the timeout, simply give it a negative value.

563

CHAPTER 68. PRIME NUMBERS 68.1. ROUTINES

Example 1:

? calc_primes (1000 , 5)

-- On a very slow computer , you may only get all primes up to say 719.

-- On a faster computer , the last element printed out will be 1009.

-- This call will never take longer than 5 seconds.

See Also:

next prime prime list

68.1.2 next prime

include std/primes.e

namespace primes

public function next_prime(integer n, object fail_signal_p = - 1, atom time_out_p = 1)

returns the next prime number on or after the supplied number.

Parameters:

1. n : an integer, the starting point for the search

2. fail signal p : an integer, used to signal error. Defaults to -1.

Returns:

An integer, which is prime only if it took less than one second to determine the next prime greater or equal to n.

Comments:

The default value of -1 will alert you about an invalid returned value, since a prime not less than n is expected. However,
you can pass another value for this parameter.

Example 1:

? next_prime (997)

-- On a very slow computer , you might get -997, but 1009 is expected.

See Also:

calc primes

68.1.3 prime list

include std/primes.e

namespace primes

public function prime_list(integer top_prime_p = 0)

returns a list of prime numbers.

564

CHAPTER 68. PRIME NUMBERS 68.1. ROUTINES

Parameters:

1. top prime p : The list will end with the prime less than or equal to this value. If top prime p is zero, the current
list of calculated primes is returned.

Returns:

An sequence, a list of prime numbers from 2 to <= top prime p

Example 1:

sequence pList = prime_list (1000)

-- pList will now contain all the primes from 2 up to the largest less than or

-- equal to 1000, which is 997.

See Also:

calc primes, next prime

565

Chapter 69
Flags

69.1 Routines

69.1.1 which bit

include std/flags.e

namespace flags

public function which_bit(object theValue)

tests if the supplied value has only a single bit on in its representation.

Parameters:

1. theValue : an object to test.

Returns:

An integer, either 0 if it contains multiple bits, zero bits or is an invalid value, otherwise the bit number set. The
right-most bit is position 1 and the leftmost bit is position 32.

Example 1:

1 ? which_bit (2) --> 2

2 ? which_bit (0) --> 0

3 ? which_bit (3) --> 0

4 ? which_bit (4) --> 3

5 ? which_bit (17) --> 0

6 ? which_bit (1.7) --> 0

7 ? which_bit (-2) --> 0

8 ? which_bit("one") --> 0

9 ? which_bit (0 x80000000) --> 32

69.1.2 flags to string

include std/flags.e

namespace flags

public function flags_to_string(object flag_bits , sequence flag_names ,

integer expand_flags = 0)

returns a list of strings that represent the human-readable identities of the supplied flag or flags.

566

CHAPTER 69. FLAGS 69.1. ROUTINES

Parameters:

1. flag bits : Either a single 32-bit set of flags (a flag value), or a list of such flag values. The function returns the
names for these flag values.

2. flag names : A sequence of two-element sub-sequences. Each sub-sequence is contains FlagValue, FlagName,
where FlagName is a string and FlagValue is the set of bits that set the flag on.

3. expand flags: An integer. 0 (the default) means that the flag values in flag bits are not broken down to
their single-bit values. For example: #0c returns the name of #0c and not the names for #08 and #04. When
expand flags is non-zero then each bit in the flag bits parameter is scanned for a matching name.

Returns:

A sequence. This contains the name or names for each supplied flag value or values.

Comments:

• The number of strings in the returned value depends on expand flags is non-zero and whether flags bits is an
atom or sequence.

• When flag bits is an atom, you get returned a sequence of strings, one for each matching name (according to
expand flags option).

• When flag bits is a sequence, it is assumed to represent a list of atomic flags. That is, #1, #4 is a set of two
flags for which you want their names. In this case, you get returned a sequence that contains one sequence for each
element in flag bits, which in turn contain the matching name or names.

• When a flag’s name can not be found in flag names, this function returns the name of ”?”.

Example 1:

1 include std/console.e

2 sequence s

3 s = {

4 {#00000000 , "WS_OVERLAPPED"},

5 {#80000000 , "WS_POPUP"},

6 {#40000000 , "WS_CHILD"},

7 {#20000000 , "WS_MINIMIZE"},

8 {#10000000 , "WS_VISIBLE"},

9 {#08000000 , "WS_DISABLED"},

10 {#44000000 , "WS_CLIPPINGCHILD"},

11 {#04000000 , "WS_CLIPSIBLINGS"},

12 {#02000000 , "WS_CLIPCHILDREN"},

13 {#01000000 , "WS_MAXIMIZE"},

14 {#00 C00000 , "WS_CAPTION"},

15 {#00800000 , "WS_BORDER"},

16 {#00400000 , "WS_DLGFRAME"},

17 {#00100000 , "WS_HSCROLL"},

18 {#00200000 , "WS_VSCROLL"},

19 {#00080000 , "WS_SYSMENU"},

20 {#00040000 , "WS_THICKFRAME"},

21 {#00020000 , "WS_MINIMIZEBOX"},

22 {#00010000 , "WS_MAXIMIZEBOX"},

23 {#00300000 , "WS_SCROLLBARS"},

24 {#00 CF0000 , "WS_OVERLAPPEDWINDOW"},

25 $

567

CHAPTER 69. FLAGS 69.1. ROUTINES

26 }

27 display(flags_to_string({#0 C20000 ,2,9,0}, s,1))

28 --> {

29 --> "WS_BORDER",

30 --> "WS_DLGFRAME",

31 --> "WS_MINIMIZEBOX"

32 --> },

33 --> {

34 --> "?"

35 --> },

36 --> {

37 --> "?"

38 --> },

39 --> {

40 --> "WS_OVERLAPPED"

41 --> }

42 --> }

43 display(flags_to_string(#80000000 , s))

44 --> {

45 --> "WS_POPUP"

46 --> }

47 display(flags_to_string(#00 C00000 , s))

48 --> {

49 --> "WS_CAPTION"

50 --> }

51 display(flags_to_string(#44000000 , s))

52 --> {

53 --> "WS_CLIPPINGCHILD"

54 --> }

55 display(flags_to_string(#44000000 , s, 1))

56 --> {

57 --> "WS_CHILD",

58 --> "WS_CLIPSIBLINGS"

59 --> }

60 display(flags_to_string(#00000000 , s))

61 --> {

62 --> "WS_OVERLAPPED"

63 --> }

64 display(flags_to_string(#00 CF0000 , s))

65 --> {

66 --> "WS_OVERLAPPEDWINDOW"

67 --> }

68 display(flags_to_string(#00 CF0000 , s, 1))

69 --> {

70 --> "WS_BORDER",

71 --> "WS_DLGFRAME",

72 --> "WS_SYSMENU",

73 --> "WS_THICKFRAME",

74 --> "WS_MINIMIZEBOX",

75 --> "WS_MAXIMIZEBOX"

76 --> }

568

Chapter 70
Hashing Algorithms

70.1 Type Constants

70.1.1 enum

include std/hash.e

namespace stdhash

public enum

70.2 Routines

70.2.1 hash

<built -in > function hash(object source , atom algo)

calculates a hash value for a key using the algorithm algo.

Parameters:

1. source : Any Euphoria object

2. algo : A code indicating which algorithm to use.

• HSIEH30 uses Hsieh. Returns a 30-bit (a Euphoria integer). Fast and good dispersion

• HSIEH32 uses Hsieh. Returns a 32-bit value. Fast and very good dispersion

• ADLER32 uses Adler. Very fast and reasonable dispersion, especially for small strings

• FLETCHER32 uses Fletcher. Very fast and good dispersion

• MD5 uses MD5 (not implemented yet) Slower but very good dispersion. Suitable for signatures.

• SHA256 uses SHA256 (not implemented yet) Slow but excellent dispersion. Suitable for signatures. More secure
than MD5.

• 0 and above (integers and decimals) and non-integers less than zero use the cyclic variant (hash = hash *

algo + c). This is a fast and good to excellent dispersion depending on the value of algo. Decimals give
better dispersion but are slightly slower.

569

CHAPTER 70. HASHING ALGORITHMS 70.2. ROUTINES

Returns:

An atom, Except for the HSIEH30, MD5 and SHA256 algorithms, this is a 32-bit integer.
An integer, Except for the HSIEH30 algorithms, this is a 30-bit integer.
A sequence, MD5 returns a 4-element sequence of integers
SHA256 returns a 8-element sequence of integers.

Comments:

• For algo values from zero to less than one, that actual value used is (algo + 69096).

Example 1:

1 ? hash("The quick brown fox jumps over the lazy dog", 0) --> 3071488335

2 ? hash("The quick brown fox jumps over the lazy dog", 99) --> 4122557553

3 ? hash("The quick brown fox jumps over the lazy dog", 99.94) --> 95918096

4 ? hash("The quick brown fox jumps over the lazy dog", -99.94) --> 4175585990

5 ? hash("The quick brown fox jumps over the lazy dog", HSIEH30) --> 96435427

6 ? hash("The quick brown fox jumps over the lazy dog", HSIEH32) --> 96435427

7 ? hash("The quick brown fox jumps over the lazy dog", ADLER32) --> 1541148634

8 ? hash("The quick brown fox jumps over the lazy dog", FLETCHER32) --> 1730140417

9 ? hash (123, 99) --> 1188623852

10 ? hash (1.23 , 99) --> 3808916725

11 ? hash({1, {2,3, {4,5,6}, 7}, 8.9}, 99) --> 526266621

570

Chapter 71
Map (Hash Table)

A map is a special array, often called an associative array or dictionary; in a map the data values (any Euphoria object)
are indexed by keys (also any Euphoria object).

When programming think in terms of key:value pairs. For example we can code things like this:

custrec = new() -- Create a new map

put(custrec , "Name", "Joe Blow")

put(custrec , "Address", "555 High Street")

put(custrec , "Phone", 555675632)

This creates three elements in the map, and they are indexed by "Name", "Address" and "Phone", meaning that to
get the data associated with those keys we can code:

object data = get(custrec , "Phone")

-- data now set to 555675632

Note that only one instance of a given key can exist in a given map, meaning for example, we could not have two
separate "Name" values in the above custrec map.

Maps automatically grow to accommodate all the elements placed into it.
Associative arrays can be implemented in many different ways, depending on what efficiency trade-offs have been made.

This implementation allows you to specify how many items you expect the map to hold, or simply start with the default
size.

As the number of items in the map grows, the map may increase its size to accommodate larger numbers of items.

71.1 Operation Codes for Put

71.1.1 enum

include std/map.e

namespace map

public enum

71.2 Types

71.2.1 map

include std/map.e

namespace map

public type map(object m)

571

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

defines the datatype ’map’.

Comments:

Used when declaring a map variable.

Example 1:

map SymbolTable = new() -- Create a new map to hold the symbol table.

71.3 Routines

71.3.1 calc hash

include std/map.e

namespace map

public function calc_hash(object key_p , integer max_hash_p)

calculates a Hashing value from the supplied data.

Parameters:

1. key p : The data for which you want a hash value calculated.

2. max hash p : The returned value will be no larger than this value.

Returns:

An integer, the value of which depends only on the supplied data.

Comments:

This is used whenever you need a single number to represent the data you supply. It can calculate the number based on
all the data you give it, which can be an atom or sequence of any value.

Example 1:

integer h1

-- calculate a hash value and ensure it will be a value from 1 to 4097.

h1 = calc_hash(symbol_name , 4097)

71.3.2 threshold

include std/map.e

namespace map

public function threshold(integer new_value_p = 0)

deprecated.

Parameters:

1. new value p : unused value.

572

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Returns:

Zero..

71.3.3 type of

include std/map.e

namespace map

public function type_of(map the_map_p)

deprecated

Parameters:

1. m : A map

Returns:

Zero.

71.3.4 rehash

include std/map.e

namespace map

public procedure rehash(map the_map_p , integer requested_size_p = 0)

changes the width (that is the number of buckets) of a map.

Parameters:

1. m : the map to resize

2. requested size p : a lower limit for the new size.

Comments:

If requested size p is not greater than zero, a new width is automatically derived from the current one.

See Also:

statistics, optimize

71.3.5 new

include std/map.e

namespace map

public function new(integer initial_size_p = DEFAULT_SIZE)

creates a new map data structure.

Parameters:

1. initial size p : An estimate of how many initial elements will be stored in the map.

573

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Returns:

An empty map.

Comments:

A new object of type map is created. The resources allocated for the map will be automatically cleaned up if the reference
count of the returned value drops to zero, or if passed in a call to delete.

Example 1:

map m = new() -- m is now an empty map

x = new() -- the resources for the map previously stored in x are released automatically

delete(m) -- the resources for the map are released

71.3.6 new extra

include std/map.e

namespace map

public function new_extra(object the_map_p , integer initial_size_p = 8)

returns either the supplied map or a new map.

Parameters:

1. the map p : An object, that could be an existing map

2. initial size p : An estimate of how many initial elements will be stored in a new map.

Returns:

A map, If m is an existing map then it is returned otherwise this returns a new empty map.

Comments:

This is used to return a new map if the supplied variable isn’t already a map.

Example 1:

map m = new_extra(foo()) -- If foo() returns a map it is used , otherwise

-- a new map is created.

71.3.7 compare

include std/map.e

namespace map

public function compare(map map_1_p , map map_2_p , integer scope_p = ’d’)

compares two maps to test equality.

574

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Parameters:

1. map 1 p : A map

2. map 2 p : A map

3. scope p : An integer that specifies what to compare.

• ’k’ or ’K’ to only compare keys.

• ’v’ or ’V’ to only compare values.

• ’d’ or ’D’ to compare both keys and values. This is the default.

Returns:

An integer,

• -1 if they are not equal.

• 0 if they are literally the same map.

• 1 if they contain the same keys and/or values.

Example 1:

map map_1_p = foo()

map map_2_p = bar()

if compare(map_1_p , map_2_p , ’k’) >= 0 then

... -- two maps have the same keys

71.3.8 has

include std/map.e

namespace map

public function has(map the_map_p , object key)

checks whether map has a given key.

Parameters:

1. the map p : the map to inspect

2. the key p : an object to be looked up

Returns:

An integer, 0 if not present, 1 if present.

Example 1:

1 map the_map_p

2 the_map_p = new()

3 put(the_map_p , "name", "John")

4 ? has(the_map_p , "name") -- 1

5 ? has(the_map_p , "age") -- 0

575

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

See Also:

get

71.3.9 get

include std/map.e

namespace map

public function get(map the_map_p , object key , object default = 0)

retrieves the value associated to a key in a map.

Parameters:

1. the map p : the map to inspect

2. the key p : an object, the the key p being looked tp

3. default value p : an object, a default value returned if the key p not found. The default is 0.

Returns:

An object, the value that corresponds to the key p in the map p. If the key p is not in the map p, default value p

is returned instead.

Example 1:

1 map ages

2 ages = new()

3 put(ages , "Andy", 12)

4 put(ages , "Budi", 13)

5

6 integer age

7 age = get(ages , "Budi", -1)

8 if age = -1 then

9 puts(1, "Age unknown")

10 else

11 printf(1, "The age is %d", age)

12 end if

See Also:

has

71.3.10 nested get

include std/map.e

namespace map

public function nested_get(map the_map_p , sequence the_keys_p , object default_value_p = 0)

returns the value given a nested key.

Comments:

Returns the value that corresponds to the object the keys p in the nested map the map p. the keys p is a sequence of
keys. If any key is not in the map, the object default value p is returned instead.

576

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

71.3.11 put

include std/map.e

namespace map

public procedure put(map the_map_p , object key , object val , object op = PUT ,

object deprecated = 0)

adds or updates an entry on a map.

Parameters:

1. the map p : the map where an entry is being added or updated

2. the key p : an object, the the key p to look up

3. the value p : an object, the value to add, or to use for updating.

4. operation : an integer, indicating what is to be done with the value p. Defaults to PUT.

5. trigger p : Deprecated. This parameter defaults to zero and is not used.

Comments:

• The operation parameter can be used to modify the existing value. Valid operations are:

• – PUT – This is the default, and it replaces any value in there already

– ADD – Equivalent to using the += operator

– SUBTRACT – Equivalent to using the -= operator

– MULTIPLY – Equivalent to using the *= operator

– DIVIDE – Equivalent to using the /= operator

– APPEND – Appends the value to the existing data

– CONCAT – Equivalent to using the &= operator

– LEAVE – If it already exists, the current value is left unchanged otherwise the new value is added to the map.

Example 1:

1 map ages

2 ages = new()

3 put(ages , "Andy", 12)

4 put(ages , "Budi", 13)

5 put(ages , "Budi", 14)

6

7 -- ages now contains 2 entries: "Andy" => 12, "Budi" => 14

See Also:

remove, has, nested put

71.3.12 nested put

include std/map.e

namespace map

public procedure nested_put(map the_map_p , sequence the_keys_p , object the_value_p ,

integer operation_p = PUT , object deprecated_trigger_p = 0)

adds or updates an entry on a map.

577

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Parameters:

1. the map p : the map where an entry is being added or updated

2. the keys p : a sequence of keys for the nested maps

3. the value p : an object, the value to add, or to use for updating.

4. operation p : an integer, indicating what is to be done with value. Defaults to PUT.

5. deprecated trigger p : Deprecated. This parameter defaults to zero and is not used.

Comments:

Valid operations are:

• PUT – This is the default, and it replaces any value in there already

• ADD – Equivalent to using the += operator

• SUBTRACT – Equivalent to using the -= operator

• MULTIPLY – Equivalent to using the *= operator

• DIVIDE – Equivalent to using the /= operator

• APPEND – Appends the value to the existing data

• CONCAT – Equivalent to using the &= operator

• If existing entry with the same key is already in the map, the value of the entry is updated.

Example 1:

1 map city_population

2 city_population = new()

3 nested_put(city_population , {"United States", "California", "Los Angeles"},

4 3819951)

5 nested_put(city_population , {"Canada", "Ontario", "Toronto"},

6 2503281)

See Also:

put

71.3.13 include std/console.e

include std/map.e

namespace map

include std/console.e

removes an entry with given key from a map.

Parameters:

1. the map p : the map to operate on

2. key : an object, the key to remove.

578

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Comments:

• If key is not on the map p, the the map p is returned unchanged.

• If you need to remove all entries, see clear

Example 1:

1 map the_map_p

2 the_map_p = new()

3 put(the_map_p , "Amy", 66.9)

4 remove(the_map_p , "Amy")

5 -- the_map_p is now an empty map again

See Also:

clear, has

71.3.14 remove

include std/map.e

namespace map

public procedure remove(map the_map_p , object key)

71.3.15 clear

include std/map.e

namespace map

public procedure clear(map the_map_p)

removes all entries in a map.

Parameters:

1. the map p : the map to operate on

Comments:

• This is much faster than removing each entry individually.

• If you need to remove just one entry, see remove

Example 1:

1 map the_map_p

2 the_map_p = new()

3 put(the_map_p , "Amy", 66.9)

4 put(the_map_p , "Betty", 67.8)

5 put(the_map_p , "Claire", 64.1)

6 ...

7 clear(the_map_p)

8 -- the_map_p is now an empty map again

579

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

See Also:

remove, has

71.3.16 size

include std/map.e

namespace map

public function size(map the_map_p)

returns the number of entries in a map.

Parameters:

the map p : the map being queried

Returns:

An integer, the number of entries it has.

Comments:

For an empty map, size will be zero

Example 1:

map the_map_p

put(the_map_p , 1, "a")

put(the_map_p , 2, "b")

? size(the_map_p) -- outputs 2

See Also:

statistics

71.3.17 enum

include std/map.e

namespace map

public enum

71.3.18 statistics

include std/map.e

namespace map

public function statistics(map the_map_p)

retrieves characteristics of a map.

Parameters:

1. the map p : the map being queried

580

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Returns:

A sequence, of 7 integers:

• NUM ENTRIES – number of entries

• NUM IN USE – number of buckets in use

• NUM BUCKETS – number of buckets

• LARGEST BUCKET – size of largest bucket

• SMALLEST BUCKET – size of smallest bucket

• AVERAGE BUCKET – average size for a bucket

• STDEV BUCKET – standard deviation for the bucket length series

Example 1:

sequence s = statistics(mymap)

printf(1, "The average size of the buckets is %d", s[AVERAGE_BUCKET])

71.3.19 keys

include std/map.e

namespace map

public function keys(map the_map_p , integer sorted_result = 0)

returns all keys in a map.

Parameters:

1. the map p: the map being queried

2. sorted result: optional integer. 0 [default] means do not sort the output and 1 means to sort the output before
returning.

Returns:

A sequence made of all the keys in the map.

Comments:

If sorted result is not used, the order of the keys returned is not predicable.

Example 1:

1 map the_map_p

2 the_map_p = new()

3 put(the_map_p , 10, "ten")

4 put(the_map_p , 20, "twenty")

5 put(the_map_p , 30, "thirty")

6 put(the_map_p , 40, "forty")

7

8 sequence keys

9 keys = keys(the_map_p) -- keys might be {20 ,40 ,10 ,30} or some other order

10 keys = keys(the_map_p , 1) -- keys will be {10 ,20 ,30 ,40}

581

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

See Also:

has, values, pairs

71.3.20 values

include std/map.e

namespace map

public function values(map the_map , object keys = 0, object default_values = 0)

returns values, without their keys, from a map.

Parameters:

1. the map : the map being queried

2. keys : optional, key list of values to return.

3. default values : optional default values for keys list

Returns:

A sequence, of all values stored in the map.

Comments:

• The order of the values returned may not be the same as the putting order.

• Duplicate values are not removed.

• You use the keys parameter to return a specific set of values from the map. They are returned in the same order
as the keys parameter. If no default values is given and one is needed, 0 will be used.

• If default values is an atom, it represents the default value for all values in keys.

• If default values is a sequence, and its length is less than keys, then the last item in default values is used
for the rest of the keys.

Example 1:

1 map the_map_p

2 the_map_p = new()

3 put(the_map_p , 10, "ten")

4 put(the_map_p , 20, "twenty")

5 put(the_map_p , 30, "thirty")

6 put(the_map_p , 40, "forty")

7

8 sequence values

9 values = values(the_map_p)

10 -- values might be {" twenty","forty","ten","thirty "}

11 -- or some other order

582

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Example 2:

1 map the_map_p

2 the_map_p = new()

3 put(the_map_p , 10, "ten")

4 put(the_map_p , 20, "twenty")

5 put(the_map_p , 30, "thirty")

6 put(the_map_p , 40, "forty")

7

8 sequence values

9 values = values(the_map_p , { 10, 50, 30, 9000 })

10 -- values WILL be { "ten", 0, "thirty", 0 }

11 values = values(the_map_p , { 10, 50, 30, 9000 }, {-1,-2,-3,-4})

12 -- values WILL be { "ten", -2, "thirty", -4 }

See Also:

get, keys, pairs

71.3.21 pairs

include std/map.e

namespace map

public function pairs(map the_map , integer sorted_result = 0)

returns all key:value pairs in a map.

Parameters:

1. the map p : the map to get the data from

2. sorted result : optional integer. 0 [default] means do not sort the output and 1 means to sort the output before
returning.

Returns:

A sequence, of all key:value pairs stored in the map p. Each pair is a sub-sequence in the form key, value

Comments:

If sorted result is not used, the order of the values returned is not predicable.

Example 1:

1 map the_map_p

2

3 the_map_p = new()

4 put(the_map_p , 10, "ten")

5 put(the_map_p , 20, "twenty")

6 put(the_map_p , 30, "thirty")

7 put(the_map_p , 40, "forty")

8

9 sequence keyvals

10 keyvals = pairs(the_map_p)

11 -- might be {{20," twenty "},{40," forty "},{10,"ten"},{30," thirty "}}

583

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

12

13 keyvals = pairs(the_map_p , 1)

14 -- will be {{10," ten"},{20," twenty "},{30," thirty "},{40," forty "}}

See Also:

get, keys, values

71.3.22 optimize

include std/map.e

namespace map

public procedure optimize(map the_map_p , integer deprecated_max_p = 0,

atom deprecated_grow_p = 0)

rehashes a map to increase performance. This procedure is deprecated in favor of rehash.

Parameters:

1. the map p : the map being optimized

2. deprecated max p : unused

3. deprecated grow p : unused.

Comments:

This rehashes the map until either the maximum bucket size is less than the desired maximum or the maximum bucket
size is less than the largest size statistically expected (mean + 3 standard deviations).

See Also:

statistics, rehash

71.3.23 load map

include std/map.e

namespace map

public function load_map(object input_file_name)

loads a map from a file.

Parameters:

1. file name p : The file to load from. This file may have been created by the save map function. This can either be
a name of a file or an already opened file handle.

Returns:

Either a map, with all the entries found in file name p, or -1 if the file failed to open, or -2 if the file is incorrectly
formatted.

584

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Comments:

If file name p is an already opened file handle, this routine will read from that file and not close it. Otherwise, the
named file will be opened and closed by this routine.

The input file can be either one created by the save map function or a manually created or edited text file. See
save map for details about the required layout of the text file.

Example 1:

1 include std/error.e

2

3 object loaded

4 map AppOptions

5 sequence SavedMap = "c:\\ myapp \\ options.txt"

6

7 loaded = load_map(SavedMap)

8 if equal(loaded , -1) then

9 crash("Map ’%s’ failed to open", SavedMap)

10 end if

11

12 -- By now we know that it was loaded and a new map created ,

13 -- so we can assign it to a ’map ’ variable.

14 AppOptions = loaded

15 if get(AppOptions , "verbose", 1) = 3 then

16 ShowIntructions ()

17 end if

See Also:

new, save map

71.3.24 enum

include std/map.e

namespace map

public enum

71.3.25 save map

include std/map.e

namespace map

public function save_map(map the_map_ , object file_name_p , integer type_ = SM_TEXT)

saves a map to a file.

Parameters:

1. m : a map.

2. file name p : Either a sequence, the name of the file to save to, or an open file handle as returned by open().

3. type : an integer. SM TEXT for a human-readable format (default), SM RAW for a smaller and faster format, but
not human-readable.

585

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Returns:

An integer, the number of keys saved to the file, or -1 if the save failed.

Comments:

If file name p is an already opened file handle, this routine will write to that file and not close it. Otherwise, the named
file will be created and closed by this routine.

The SM TEXT type saves the map keys and values in a text format which can be read and edited by standard text
editor. Each entry in the map is saved as a KEY/VALUE pair in the form

key = value

Note that if the ’key’ value is a normal string value, it can be enclosed in double quotes. If it is not thus quoted, the first
character of the key determines its Euphoria value type. A dash or digit implies an atom, an left-brace implies a sequence,
an alphabetic character implies a text string that extends to the next equal ’=’ symbol, and anything else is ignored.

Note that if a line contains a double-dash, then all text from the double-dash to the end of the line will be ignored.
This is so you can optionally add comments to the saved map. Also, any blank lines are ignored too.

All text after the ’=’ symbol is assumed to be the map item’s value data.

Because some map data can be rather long, it is possible to split the text into multiple lines, which will be considered
by load map as a single logical line. If an line ends with a comma (,) or a dollar sign ($), then the next actual line is
appended to the end of it. After all these physical lines have been joined into one logical line, all combinations of ‘”,$”‘
and ‘,$‘ are removed.

For example:

one = {" first",

"second",

"third",

$

}

second = "A long text ",$

"line that has been",$

" split into three lines"

third = {" first",

"second",

"third "}

is equivalent to

one = {" first","second","third"}

second = "A long text line that has been split into three lines"

third = {" first","second","third"}

The SM RAW type saves the map in an efficient manner. It is generally smaller than the text format and is faster to
process, but it is not human readable and standard text editors can not be used to edit it. In this format, the file will
contain three serialized sequences:

1. Header sequence: integer:format version, string: date and time of save (YYMMDDhhmmss), sequence: euphoria
version major, minor, revision, patch

2. Keys. A list of all the keys

3. Values. A list of the corresponding values for the keys.

586

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Example 1:

1 include std/error.e

2

3 map AppOptions

4 if save_map(AppOptions , "c:\m"yapp\options.txt") = -1

5 crash("Failed to save application options")

6 end if

7

8 if save_map(AppOptions , "c:\m"yapp\options.dat", SM_RAW) = -1

9 crash("Failed to save application options")

10 end if

See Also:

load map

71.3.26 copy

include std/map.e

namespace map

public function copy(map source_map , object dest_map = 0, integer put_operation = PUT)

duplicates a map.

Parameters:

1. source map : map to copy from

2. dest map : optional, map to copy to

3. put operation : optional, operation to use when dest map is used. The default is PUT.

Returns:

If dest map was not provided, an exact duplicate of source map otherwise dest map, which does not have to be empty,
is returned with the new values copied from source map, according to the put operation value.

Example 1:

1 map m1 = new()

2 put(m1 , 1, "one")

3 put(m1 , 2, "two")

4

5 map m2 = copy(m1)

6 printf(1, "%s, %s\n", { get(m2, 1), get(m2, 2) })

7 -- one , two

8

9 put(m1 , 1, "one hundred")

10 printf(1, "%s, %s\n", { get(m1, 1), get(m1, 2) })

11 -- one hundred , two

12

13 printf(1, "%s, %s\n", { get(m2, 1), get(m2, 2) })

14 -- one , two

587

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Example 2:

1 map m1 = new()

2 map m2 = new()

3

4 put(m1 , 1, "one")

5 put(m1 , 2, "two")

6 put(m2 , 3, "three")

7

8 copy(m1, m2)

9

10 ? keys(m2)

11 -- { 1, 2, 3 }

Example 3:

1 map m1 = new()

2 map m2 = new()

3

4 put(m1 , "XY", 1)

5 put(m1 , "AB", 2)

6 put(m2 , "XY", 3)

7

8 pairs(m1) --> { {"AB", 2}, {"XY", 1} }

9 pairs(m2) --> { {"XY", 3} }

10

11 -- Add same keys ’ values.

12 copy(m1, m2, ADD)

13

14 pairs(m2) --> { {"AB", 2}, {"XY", 4} }

See Also:

put

71.3.27 new from kvpairs

include std/map.e

namespace map

public function new_from_kvpairs(sequence kv_pairs)

converts a set of key:value pairs to a map.

Parameters:

1. kv pairs : A seqeuence containing any number of subsequences that have the format KEY, VALUE. These are
loaded into a new map which is then returned by this function.

Returns:

A map, containing the data from kv pairs

588

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Example 1:

1 map m1 = new_from_kvpairs({

2 { "application", "Euphoria" },

3 { "version", "4.0" },

4 { "genre", "programming language" },

5 { "crc", 0x4F71AE10 }

6 })

7

8 v = map:get(m1 , "application") --> "Euphoria"

71.3.28 new from string

include std/map.e

namespace map

public function new_from_string(sequence kv_string)

converts a set of key:value pairs contained in a string to a map.

Parameters:

1. kv string : A string containing any number of lines that have the format KEY=VALUE. These are loaded into a
new map which is then returned by this function.

Returns:

A map, containing the data from kv string

Comments:

This function actually calls keyvalues to convert the string to key-value pairs, which are then used to create the map.

Example 1:

Given that a file called ”xyz.config” contains the lines ...

application = Euphoria ,

version = 4.0,

genre = "programming language",

crc = 4F71AE10

1 map m1 = new_from_string(read_file("xyz.config", TEXT_MODE))

2

3 printf(1, "%s\n", {map:get(m1, "application")}) --> "Euphoria"

4 printf(1, "%s\n", {map:get(m1, "genre")}) --> "programming language"

5 printf(1, "%s\n", {map:get(m1, "version")}) --> "4.0"

6 printf(1, "%s\n", {map:get(m1, "crc")}) --> "4 F71AE10"

71.3.29 for each

include std/map.e

namespace map

public function for_each(map source_map , integer user_rid , object user_data = 0,

integer in_sorted_order = 0, integer signal_boundary = 0)

calls a user-defined routine for each of the items in a map.

589

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

Parameters:

1. source map : The map containing the data to process

2. user rid: The routine id of a user defined processing function

3. user data: An object. Optional. This is passed, unchanged to each call of the user defined routine. By default,
zero (0) is used.

4. in sorted order: An integer. Optional. If non-zero the items in the map are processed in ascending key sequence
otherwise the order is undefined. By default they are not sorted.

5. signal boundary: A integer; 0 (the default) means that the user routine is not called if the map is empty and
when the last item is passed to the user routine, the Progress Code is not negative.

Returns:

An integer: 0 means that all the items were processed, and anything else is whatever was returned by the user routine to
abort the for each process.

Comments:

• The user defined routine is a function that must accept four parameters.

1. Object: an Item Key

2. Object: an Item Value

3. Object: The user data value. This is never used by for each itself, merely passed to the user routine.

4. Integer: Progress code.

– The abs value of the progress code is the ordinal call number. That is 1 means the first call, 2 means the
second call, etc ...

– If the progress code is negative, it is also the last call to the routine.

– If the progress code is zero, it means that the map is empty and thus the item key and value cannot be
used.

– note that if signal boundary is zero, the Progress Code is never less than 1.

• The user routine must return 0 to get the next map item. Anything else will cause for each to stop running, and
is returned to whatever called for each.

• Note that any changes that the user routine makes to the map do not affect the order or number of times the
routine is called. for each takes a copy of the map keys and data before the first call to the user routine and uses
the copied data to call the user routine.

Example 1:

1 include std/map.e

2 include std/math.e

3 include std/io.e

4

5 function Process_A(object k, object v, object d, integer pc)

6 writefln("[] = []", {k, v})

7 return 0

8 end function

9

10 function Process_B(object k, object v, object d, integer pc)

11 if pc = 0 then

590

CHAPTER 71. MAP (HASH TABLE) 71.3. ROUTINES

12 writefln("The map is empty")

13 else

14 integer c

15 c = abs(pc)

16 if c = 1 then

17 writefln(" ---[]---", {d}) -- Write the report title.

18 end if

19 writefln("[]: [:15] = []", {c, k, v})

20 if pc < 0 then

21 writefln(repeat(’-’, length(d) + 6), {}) -- Write the report end.

22 end if

23 end if

24 return 0

25 end function

26

27 map m1 = new()

28 map:put(m1 , "application", "Euphoria")

29 map:put(m1 , "version", "4.0")

30 map:put(m1 , "genre", "programming language")

31 map:put(m1 , "crc", "4F71AE10")

32

33 -- Unsorted

34 map:for_each(m1 , routine_id("Process_A"))

35 -- Sorted

36 map:for_each(m1 , routine_id("Process_B"), "List of Items", 1)

The output from the first call could be...

application = Euphoria

version = 4.0

genre = programming language

crc = 4F71AE10

The output from the second call should be...

---List of Items ---

1: application = Euphoria

2: crc = 4F71AE10

3: genre = programming language

4: version = 4.0

591

Chapter 72
Stack

72.1 Constants

72.2 Stack types

72.2.1 FIFO

include std/stack.e

namespace stack

public constant FIFO

FIFO: like people standing in line: first item in is first item out

72.2.2 FILO

include std/stack.e

namespace stack

public constant FILO

FILO: like for a stack of plates : first item in is last item out

72.3 Types

72.3.1 stack

include std/stack.e

namespace stack

public type stack(object obj_p)

A stack is a sequence of objects with some internal data.

72.4 Routines

72.4.1 new

include std/stack.e

namespace stack

public function new(integer typ = FILO)

592

CHAPTER 72. STACK 72.4. ROUTINES

creates a new stack.

Parameters:

1. stack type : an integer, defining the semantics of the stack. The default is FILO.

Returns:

An empty stack, note that the variable storing the stack must not be an integer. The resources allocated for the stack
will be automatically cleaned up if the reference count of the returned value drops to zero, or if passed in a call to delete.

Comments:

There are two sorts of stacks, designated by the types FIFO and FILO:

• A FIFO stack is one where the first item to be pushed is popped first. People standing in queue form a FIFO stack.

• A FILO stack is one where the item pushed last is popped first. A column of coins is of the FILO kind.

See Also:

is empty

72.4.2 is empty

include std/stack.e

namespace stack

public function is_empty(stack sk)

determines whether a stack is empty.

Parameters:

1. sk : the stack being queried.

Returns:

An integer, 1 if the stack is empty, else 0.

See Also:

size

72.4.3 size

include std/stack.e

namespace stack

public function size(stack sk)

returns how many elements a stack has.

Parameters:

1. sk : the stack being queried.

593

CHAPTER 72. STACK 72.4. ROUTINES

Returns:

An integer, the number of elements in sk.

72.4.4 at

include std/stack.e

namespace stack

public function at(stack sk, integer idx = 1)

fetches a value from the stack without removing it from the stack.

Parameters:

1. sk : the stack being queried

2. idx : an integer, the place to inspect. The default is 1 (top item).

Returns:

An object, the idx-th item of the stack.

Errors:

If the supplied value of idx does not correspond to an existing element, an error occurs.

Comments:

• For FIFO stacks (queues), the top item is the oldest item in the stack.

• For FILO stacks, the top item is the newest item in the stack.

idx can be less than 1, in which case it refers relative to the end item. Thus, 0 stands for the end element.

Example 1:

1 stack sk = new(FILO)

2

3 push(sk, 5)

4 push(sk, "abc")

5 push(sk, 2.3)

6

7 at(sk , 0) --> 5

8 at(sk , -1) --> "abc"

9 at(sk , 1) --> 2.3

10 at(sk , 2) --> "abc"

Example 2:

1 stack sk = new(FIFO)

2

3 push(sk, 5)

4 push(sk, "abc")

5 push(sk, 2.3)

6 at(sk , 0) --> 2.3

7 at(sk , -1) --> "abc"

594

CHAPTER 72. STACK 72.4. ROUTINES

8 at(sk , 1) --> 5

9 at(sk , 2) --> "abc"

See Also:

size, top, peek top, peek end

72.4.5 push

include std/stack.e

namespace stack

public procedure push(stack sk, object value)

adds something to a stack.

Parameters:

1. sk : the stack to augment

2. value : an object, the value to push.

Comments:

value appears at the end of FIFO stacks and the top of FILO stacks. The size of the stack increases by one.

Example 1:

1 stack sk = new(FIFO)

2

3 push(sk ,5)

4 push(sk,"abc")

5 push(sk, 2.3)

6 top(sk) --> 5

7 last(sk) --> 2.3

Example 2:

1 stack sk = new(FILO)

2

3 push(sk ,5)

4 push(sk,"abc")

5 push(sk, 2.3)

6 top(sk) --> 2.3

7 last(sk) --> 5

See Also:

pop, top

595

CHAPTER 72. STACK 72.4. ROUTINES

72.4.6 top

include std/stack.e

namespace stack

public function top(stack sk)

retrieve the top element on a stack.

Parameters:

1. sk : the stack to inspect.

Returns:

An object, the top element on a stack.

Comments:

This call is equivalent to at(sk,1).

Example 1:

1 stack sk = new(FILO)

2

3 push(sk, 5)

4 push(sk, "abc")

5 push(sk, 2.3)

6

7 top(sk) --> 2.3

Example 2:

1 stack sk = new(FIFO)

2

3 push(sk, 5)

4 push(sk, "abc")

5 push(sk, 2.3)

6

7 top(sk) --> 5

See Also:

at, pop, peek top, last

72.4.7 last

include std/stack.e

namespace stack

public function last(stack sk)

retrieves the end element on a stack.

596

CHAPTER 72. STACK 72.4. ROUTINES

Parameters:

1. sk : the stack to inspect.

Returns:

An object, the end element on a stack.

Comments:

This call is equivalent to at(sk,0).

Example 1:

1 stack sk = new(FILO)

2

3 push(sk ,5)

4 push(sk,"abc")

5 push(sk, 2.3)

6

7 last(sk) --> 5

Example 2:

1 stack sk = new(FIFO)

2

3 push(sk ,5)

4 push(sk,"abc")

5 push(sk, 2.3)

6

7 last(sk) --> 2.3

See Also:

at, pop, peek end, top

72.4.8 pop

include std/stack.e

namespace stack

public function pop(stack sk, integer idx = 1)

removes an object from a stack.

Parameters:

1. sk : the stack to pop

2. idx : integer. The n-th item to pick from the stack. The default is 1.

Returns:

An item, from the stack, which is also removed from the stack.

597

CHAPTER 72. STACK 72.4. ROUTINES

Errors:

• If the stack is empty, an error occurs.

• If the idx is greater than the number of items in the stack, an error occurs.

Comments:

• For FIFO stacks (queues), the top item is the oldest item in the stack.

• For FILO stacks, the top item is the newest item in the stack.

When idx is omitted the ’top’ of the stack is removed and returned. When idx is supplied, it represents the n-th item
from the top to be removed and returned. Thus an idx of 2 returns the 2nd item from the top, a value of 3 returns the
3rd item from the top, and so on.

Example 1:

1 stack sk = new(FIFO)

2 push(sk, 1)

3 push(sk, 2)

4 push(sk, 3)

5 ? size(sk) -- 3

6 ? pop(sk) -- 1

7 ? size(sk) -- 2

8 ? pop(sk) -- 2

9 ? size(sk) -- 1

10 ? pop(sk) -- 3

11 ? size(sk) -- 0

12 ? pop(sk) -- *error*

Example 2:

1 stack sk = new(FILO)

2 push(sk, 1)

3 push(sk, 2)

4 push(sk, 3)

5 ? size(sk) -- 3

6 ? pop(sk) -- 3

7 ? size(sk) -- 2

8 ? pop(sk) -- 2

9 ? size(sk) -- 1

10 ? pop(sk) -- 1

11 ? size(sk) -- 0

12 ? pop(sk) -- *error*

Example 3:

1 stack sk = new(FILO)

2 push(sk, 1)

3 push(sk, 2)

4 push(sk, 3)

5 push(sk, 4)

6 -- stack contains {1,2,3,4} (oldest to newest)

7 ? size(sk) -- 4

598

CHAPTER 72. STACK 72.4. ROUTINES

8 ? pop(sk, 2) -- Pluck out the 2nd newest item .. 3

9 ? size(sk) -- 3

10 -- stack now contains {1,2,4}

Example 4:

1 stack sk = new(FIFO)

2 push(sk, 1)

3 push(sk, 2)

4 push(sk, 3)

5 push(sk, 4)

6 -- stack contains {1,2,3,4} (oldest to newest)

7 ? size(sk) -- 4

8 ? pop(sk, 2) -- Pluck out the 2nd oldest item .. 2

9 ? size(sk) -- 3

10 -- stack now contains {1,3,4}

See Also:

push, top, is empty

72.4.9 peek top

include std/stack.e

namespace stack

public function peek_top(stack sk, integer idx = 1)

gets an object, relative to the top, from a stack.

Parameters:

1. sk : the stack to get from.

2. idx : integer. The n-th item to get from the stack. The default is 1.

Returns:

An item, from the stack, which is not removed from the stack.

Errors:

• If the stack is empty, an error occurs.

• If the idx is greater than the number of items in the stack, an error occurs.

Comments:

This is identical to pop except that it does not remove the item.

• For FIFO stacks (queues), the top item is the oldest item in the stack.

• For FILO stacks, the top item is the newest item in the stack.

When idx is omitted the ’top’ of the stack is returned. When idx is supplied, it represents the n-th item from the top
to be returned. Thus an idx of 2 returns the 2nd item from the top, a value of 3 returns the 3rd item from the top, and
so on.

599

CHAPTER 72. STACK 72.4. ROUTINES

Example 1:

1 stack sk = new(FIFO)

2 push(sk, 1)

3 push(sk, 2)

4 push(sk, 3)

5 ? peek_top(sk) -- 1

6 ? peek_top(sk ,2) -- 2

7 ? peek_top(sk ,3) -- 3

8 ? peek_top(sk ,4) -- *error*

9 ? peek_top(sk, size(sk)) -- 3 (end item)

Example 2:

1 stack sk = new(FILO)

2 push(sk, 1)

3 push(sk, 2)

4 push(sk, 3)

5 ? peek_top(sk) -- 3

6 ? peek_top(sk ,2) -- 2

7 ? peek_top(sk ,3) -- 1

8 ? peek_top(sk ,4) -- *error*

9 ? peek_top(sk, size(sk)) -- 1 (end item)

See Also:

pop, top, is empty, size, peek end

72.4.10 peek end

include std/stack.e

namespace stack

public function peek_end(stack sk, integer idx = 1)

gets an object, relative to the end, from a stack.

Parameters:

1. sk : the stack to get from.

2. idx : integer. The n-th item from the end to get from the stack. The default is 1.

Returns:

An item, from the stack, which is not removed from the stack.

Errors:

• If the stack is empty, an error occurs.

• If the idx is greater than the number of items in the stack, an error occurs.

600

CHAPTER 72. STACK 72.4. ROUTINES

Comments:

• For FIFO stacks (queues), the end item is the newest item in the stack.

• For FILO stacks, the end item is the oldest item in the stack.

When idx is omitted the ’end’ of the stack is returned. When idx is supplied, it represents the n-th item from the
end to be returned. Thus an idx of 2 returns the 2nd item from the end, a value of 3 returns the 3rd item from the end,
and so on.

Example 1:

1 stack sk = new(FIFO)

2 push(sk, 1)

3 push(sk, 2)

4 push(sk, 3)

5 ? peek_end(sk) -- 3

6 ? peek_end(sk ,2) -- 2

7 ? peek_end(sk ,3) -- 1

8 ? peek_end(sk ,4) -- *error*

9 ? peek_end(sk, size(sk)) -- 3 (top item)

Example 2:

1 stack sk = new(FILO)

2 push(sk, 1)

3 push(sk, 2)

4 push(sk, 3)

5 ? peek_end(sk) -- 1

6 ? peek_end(sk ,2) -- 2

7 ? peek_end(sk ,3) -- 3

8 ? peek_end(sk ,4) -- *error*

9 ? peek_end(sk, size(sk)) -- 3 (top item)

See Also:

pop, top, is empty, size, peek top

72.4.11 swap

include std/stack.e

namespace stack

public procedure swap(stack sk)

swaps the top two elements of a stack.

Parameters:

1. sk : the stack to swap.

Returns:

A copy, of the original stack, with the top two elements swapped.

601

CHAPTER 72. STACK 72.4. ROUTINES

Comments:

• For FIFO stacks (queues), the top item is the oldest item in the stack.

• For FILO stacks, the top item is the newest item in the stack.

Errors:

If the stack has less than two elements, an error occurs.

Example 1:

1 stack sk = new(FILO)

2

3 push(sk, 5)

4 push(sk, "abc")

5 push(sk, 2.3)

6 push(sk, "")

7

8 ? peek_top(sk, 1) --> ""

9 ? peek_top(sk, 2) --> 2.3

10

11 swap(sk)

12

13 ? peek_top(sk, 1) --> 2.3

14 ? peek_top(sk, 2) --> ""

Example 2:

1 stack sk = new(FIFO)

2

3 push(sk, 5)

4 push(sk, "abc")

5 push(sk, 2.3)

6 push(sk, "")

7

8 peek_top(sk, 1) --> 5

9 peek_top(sk, 2) --> "abc"

10

11 swap(sk)

12

13 peek_top(sk, 1) --> "abc"

14 peek_top(sk, 2) --> 5

72.4.12 dup

include std/stack.e

namespace stack

public procedure dup(stack sk)

repeats the top element of a stack.

Parameters:

1. sk : the stack.

602

CHAPTER 72. STACK 72.4. ROUTINES

Comments:

• For FIFO stacks (queues), the top item is the oldest item in the stack.

• For FILO stacks, the top item is the newest item in the stack.

Side Effect:

The value of top is pushed onto the stack, thus the stack size grows by one.

Errors:

If the stack has no elements, an error occurs.

Example 1:

1 stack sk = new(FILO)

2

3 push(sk ,5)

4 push(sk,"abc")

5 push(sk, "")

6

7 dup(sk)

8

9 peek_top(sk ,1) --> ""

10 peek_top(sk ,2) --> "abc"

11 size(sk) --> 3

12

13 dup(sk)

14

15 peek_top(sk ,1) --> ""

16 peek_top(sk ,2) --> ""

17 peek_top(sk ,3) --> "abc"

18 size(sk) --> 4

Example 1:

1 stack sk = new(FIFO)

2

3 push(sk, 5)

4 push(sk, "abc")

5 push(sk, "")

6

7 dup(sk)

8

9 peek_top(sk, 1) --> 5

10 peek_top(sk, 2) --> "abc"

11 size(sk) --> 3

12

13 dup(sk)

14

15 peek_top(sk, 1) --> 5

16 peek_top(sk, 2) --> 5

17 peek_top(sk, 3) --> "abc"

18 size(sk) --> 4

603

CHAPTER 72. STACK 72.4. ROUTINES

72.4.13 set

include std/stack.e

namespace stack

public procedure set(stack sk, object val , integer idx = 1)

updates a value on the stack.

Parameters:

1. sk : the stack being queried

2. val : an object, the value to place on the stack

3. idx : an integer, the place to inspect. The default is 1 (the top item)

Errors:

If the supplied value of idx does not correspond to an existing element, an error occurs.

Comments:

• For FIFO stacks (queues), the top item is the oldest item in the stack.

• For FILO stacks, the top item is the newest item in the stack.

idx can be less than one, in which case it refers to an element relative to the end of the stack. Thus 0 stands for the
end element.

See Also:

size, top

72.4.14 clear

include std/stack.e

namespace stack

public procedure clear(stack sk)

wipes out a stack.

Parameters:

1. sk : the stack to clear.

Side Effect:

The stack contents is emptied.

See Also:

new, is empty

604

Chapter 73
Scientific Notation Parsing

73.1 Parsing routines

The parsing functions require a sequence containing a correctly formed scientific notation representation of a number. The
general pattern is an optional negative sign (-), a number, usually with a decimal point, followed by an upper case or lower
case ’e’, then optionally a plus (+) or a minus (-) sign, and an integer. There should be no spaces or other characters.
The following are valid numbers:

1e0

3.1415e-2

-9.0E+3

This library evaluates scientific notation to the highest level of precision possible using Euphoria atoms. An atom in 32-bit
euphoria can have up to 16 digits of precision (19 in 64-bit euphoria). A number represented by scientific notation could
contain up to 17 (or 20) digits. The 17th (or 20th) supplied digit may have an effect upon the value of the atom due to
rounding errors in the calculations.

This does not mean that if the 17th (or 20th) digit is 5 or higher, you should include it. The calculations are much
more complicated, because a decimal fraction has to be converted to a binary fraction, and there is not really a one-to-one
correspondence between the decimal digits and the bits in the resulting atom. The 18th or higher digit, however, will never
have an effect on the resulting atom.

The biggest and smallest (magnitude) atoms possible are:

32-bit:

1.7976931348623157e+308

4.9406564584124654e-324

73.2 Floating Point Types

73.2.1 floating point

include std/scinot.e

public enum type floating_point

73.2.2 NATIVE

include std/scinot.e

enum type floating_point NATIVE

605

CHAPTER 73. SCIENTIFIC NOTATION PARSING 73.2. FLOATING POINT TYPES

NATIVE Use whatever is the appropriate format based upon the version of euphoria being used (DOUBLE for 32-bit,
EXTENDED for 64-bit)

73.2.3 DOUBLE

include std/scinot.e

enum type floating_point DOUBLE

DOUBLE:

Description IEEE 754 double (64-bit) floating point format. The native 32-bit euphoria floating point representation.

73.2.4 EXTENDED

include std/scinot.e

enum type floating_point EXTENDED

The native 64-bit euphoria floating point reprepresentation.

73.2.5 bits to bytes

include std/scinot.e

public function bits_to_bytes(sequence bits)

Takes a sequence of bits (all elements either 0 or 1) and converts it into a sequence of bytes.

Parameters:

1. bits : sequence of ones and zeroes

Returns a sequence of 8-bit integers

73.2.6 bytes to bits

include std/scinot.e

public function bytes_to_bits(sequence bytes)

Converts a sequence of bytes (all elements integers between 0 and 255) and converts it into a sequence of bits.

Parameters:

1. bytes : sequence of values from 0-255

Returns:

Sequence of bits (ones and zeroes)

73.2.7 scientific to float

include std/scinot.e

public function scientific_to_float(sequence s, floating_point fp = NATIVE)

Takes a string reprepresentation of a number in scientific notation and the requested precision (DOUBLE or EX-
TENDED) and returns a sequence of bytes in the raw format of an IEEE 754 double or extended precision floating point
number. This value can be passed to the euphoria library function, float64 to atom or float80 to atom, respectively.

606

CHAPTER 73. SCIENTIFIC NOTATION PARSING 73.2. FLOATING POINT TYPES

Parameters:

1. s : string representation of a number, e.g., ”1.23E4”

2. fp : the required precision for the ultimate representation

(a) DOUBLE Use IEEE 754, the euphoria representation used in 32-bit euphoria

(b) EXTENDED Use Extended Floating Point, the euphoria representation in 64-bit euphoria

Returns:

Sequence of bytes that represents the physical form of the converted floating point number.

Note:

Does not check if the string exceeds IEEE 754 double precision limits.

73.2.8 scientific to atom

include std/scinot.e

public function scientific_to_atom(sequence s, floating_point fp = NATIVE)

Takes a string reprepresentation of a number in scientific notation and returns an atom.

Parameters:

1. s : string representation of a number (such as ”1.23E4”).

2. fp : the required precision for the ultimate representation.

(a) DOUBLE Use IEEE 754, the euphoria representation used in 32-bit Euphoria.

(b) EXTENDED Use Extended Floating Point, the euphoria representation in 64-bit Euphoria.

Returns:

Euphoria atom floating point number.

607

Chapter 74
Core Sockets

74.1 Error Information

74.1.1 error code

include std/socket.e

namespace sockets

public function error_code ()

gets the error code.

Returns:

Integer OK on no error, otherwise any one of the ERR constants to follow.

74.1.2 OK

include std/socket.e

namespace sockets

public constant OK

No error occurred.

74.1.3 ERR ACCESS

include std/socket.e

namespace sockets

public constant ERR_ACCESS

Permission has been denied. This can happen when using a send to call on a broadcast address without setting the
socket option SO BROADCAST. Another, possibly more common, reason is you have tried to bind an address that is
already exclusively bound by another application.

May occur on a Unix Domain Socket when the socket directory or file could not be accessed due to security.

74.1.4 ERR ADDRINUSE

include std/socket.e

namespace sockets

public constant ERR_ADDRINUSE

608

CHAPTER 74. CORE SOCKETS 74.1. ERROR INFORMATION

Address is already in use.

74.1.5 ERR ADDRNOTAVAIL

include std/socket.e

namespace sockets

public constant ERR_ADDRNOTAVAIL

The specified address is not a valid local IP address on this computer.

74.1.6 ERR AFNOSUPPORT

include std/socket.e

namespace sockets

public constant ERR_AFNOSUPPORT

Address family not supported by the protocol family.

74.1.7 ERR AGAIN

include std/socket.e

namespace sockets

public constant ERR_AGAIN

Kernel resources to complete the request are temporarly unavailable.

74.1.8 ERR ALREADY

include std/socket.e

namespace sockets

public constant ERR_ALREADY

Operation is already in progress.

74.1.9 ERR CONNABORTED

include std/socket.e

namespace sockets

public constant ERR_CONNABORTED

Software has caused a connection to be aborted.

74.1.10 ERR CONNREFUSED

include std/socket.e

namespace sockets

public constant ERR_CONNREFUSED

Connection was refused.

609

CHAPTER 74. CORE SOCKETS 74.1. ERROR INFORMATION

74.1.11 ERR CONNRESET

include std/socket.e

namespace sockets

public constant ERR_CONNRESET

An incomming connection was supplied however it was terminated by the remote peer.

74.1.12 ERR DESTADDRREQ

include std/socket.e

namespace sockets

public constant ERR_DESTADDRREQ

Destination address required.

74.1.13 ERR FAULT

include std/socket.e

namespace sockets

public constant ERR_FAULT

Address creation has failed internally.

74.1.14 ERR HOSTUNREACH

include std/socket.e

namespace sockets

public constant ERR_HOSTUNREACH

No route to the host specified could be found.

74.1.15 ERR INPROGRESS

include std/socket.e

namespace sockets

public constant ERR_INPROGRESS

A blocking call is inprogress.

74.1.16 ERR INTR

include std/socket.e

namespace sockets

public constant ERR_INTR

A blocking call was cancelled or interrupted.

74.1.17 ERR INVAL

include std/socket.e

namespace sockets

public constant ERR_INVAL

An invalid sequence of command calls were made, for instance trying to accept before an actual listen was called.

610

CHAPTER 74. CORE SOCKETS 74.1. ERROR INFORMATION

74.1.18 ERR IO

include std/socket.e

namespace sockets

public constant ERR_IO

An I/O error occurred while making the directory entry or allocating the inode. (Unix Domain Socket).

74.1.19 ERR ISCONN

include std/socket.e

namespace sockets

public constant ERR_ISCONN

Socket is already connected.

74.1.20 ERR ISDIR

include std/socket.e

namespace sockets

public constant ERR_ISDIR

An empty pathname was specified. (Unix Domain Socket).

74.1.21 ERR LOOP

include std/socket.e

namespace sockets

public constant ERR_LOOP

Too many symbolic links were encountered. (Unix Domain Socket).

74.1.22 ERR MFILE

include std/socket.e

namespace sockets

public constant ERR_MFILE

The queue is not empty upon routine call.

74.1.23 ERR MSGSIZE

include std/socket.e

namespace sockets

public constant ERR_MSGSIZE

Message is too long for buffer size. This would indicate an internal error to Euphoria as Euphoria sets a dynamic buffer
size.

74.1.24 ERR NAMETOOLONG

include std/socket.e

namespace sockets

public constant ERR_NAMETOOLONG

Component of the path name exceeded 255 characters or the entire path exceeded 1023 characters. (Unix Domain
Socket).

611

CHAPTER 74. CORE SOCKETS 74.1. ERROR INFORMATION

74.1.25 ERR NETDOWN

include std/socket.e

namespace sockets

public constant ERR_NETDOWN

The network subsystem is down or has failed

74.1.26 ERR NETRESET

include std/socket.e

namespace sockets

public constant ERR_NETRESET

Network has dropped it’s connection on reset.

74.1.27 ERR NETUNREACH

include std/socket.e

namespace sockets

public constant ERR_NETUNREACH

Network is unreachable.

74.1.28 ERR NFILE

include std/socket.e

namespace sockets

public constant ERR_NFILE

Not a file. (Unix Domain Sockets).

74.1.29 ERR NOBUFS

include std/socket.e

namespace sockets

public constant ERR_NOBUFS

No buffer space is available.

74.1.30 ERR NOENT

include std/socket.e

namespace sockets

public constant ERR_NOENT

Named socket does not exist. (Unix Domain Socket).

74.1.31 ERR NOTCONN

include std/socket.e

namespace sockets

public constant ERR_NOTCONN

Socket is not connected.

612

CHAPTER 74. CORE SOCKETS 74.1. ERROR INFORMATION

74.1.32 ERR NOTDIR

include std/socket.e

namespace sockets

public constant ERR_NOTDIR

Component of the path prefix is not a directory. (Unix Domain Socket).

74.1.33 ERR NOTINITIALISED

include std/socket.e

namespace sockets

public constant ERR_NOTINITIALISED

Socket system is not initialized (Windows only)

74.1.34 ERR NOTSOCK

include std/socket.e

namespace sockets

public constant ERR_NOTSOCK

The descriptor is not a socket.

74.1.35 ERR OPNOTSUPP

include std/socket.e

namespace sockets

public constant ERR_OPNOTSUPP

Operation is not supported on this type of socket.

74.1.36 ERR PROTONOSUPPORT

include std/socket.e

namespace sockets

public constant ERR_PROTONOSUPPORT

Protocol not supported.

74.1.37 ERR PROTOTYPE

include std/socket.e

namespace sockets

public constant ERR_PROTOTYPE

Protocol is the wrong type for the socket.

74.1.38 ERR ROFS

include std/socket.e

namespace sockets

public constant ERR_ROFS

The name would reside on a read-only file system. (Unix Domain Socket).

613

CHAPTER 74. CORE SOCKETS 74.2. SOCKET BACKEND CONSTANTS

74.1.39 ERR SHUTDOWN

include std/socket.e

namespace sockets

public constant ERR_SHUTDOWN

The socket has been shutdown. Possibly a send/receive call after a shutdown took place.

74.1.40 ERR SOCKTNOSUPPORT

include std/socket.e

namespace sockets

public constant ERR_SOCKTNOSUPPORT

Socket type is not supported.

74.1.41 ERR TIMEDOUT

include std/socket.e

namespace sockets

public constant ERR_TIMEDOUT

Connection has timed out.

74.1.42 ERR WOULDBLOCK

include std/socket.e

namespace sockets

public constant ERR_WOULDBLOCK

The operation would block on a socket marked as non-blocking.

74.2 Socket Backend Constants

These values are used by the Euphoria backend to pass information to this library. The TYPE constants are used to
identify to the info function which family of constants are being retrieved (AF protocols, socket types, and socket options,
respectively).

74.2.1 ESOCK UNDEFINED VALUE

include std/socket.e

namespace sockets

public constant ESOCK_UNDEFINED_VALUE

when a particular constant was not defined by C,the backend returns this value

74.2.2 ESOCK UNKNOWN FLAG

include std/socket.e

namespace sockets

public constant ESOCK_UNKNOWN_FLAG

if the backend doesn’t recognize the flag in question

614

CHAPTER 74. CORE SOCKETS 74.3. SOCKET TYPE EUPHORIA CONSTANTS

74.2.3 ESOCK TYPE AF

include std/socket.e

namespace sockets

public constant ESOCK_TYPE_AF

74.2.4 ESOCK TYPE TYPE

include std/socket.e

namespace sockets

public constant ESOCK_TYPE_TYPE

74.2.5 ESOCK TYPE OPTION

include std/socket.e

namespace sockets

public constant ESOCK_TYPE_OPTION

74.3 Socket Type Euphoria Constants

These values are used to retrieve the known values for family and sock type parameters of the create function from the
Euphoria backend. (The reason for doing it this way is to retrieve the values defined in C, instead of duplicating them
here.) These constants are guarranteed to never change, and to be the same value across platforms.

74.3.1 EAF UNSPEC

include std/socket.e

namespace sockets

public constant EAF_UNSPEC

Address family is unspecified

74.3.2 EAF UNIX

include std/socket.e

namespace sockets

public constant EAF_UNIX

Local communications

74.3.3 EAF INET

include std/socket.e

namespace sockets

public constant EAF_INET

IPv4 Internet protocols

615

CHAPTER 74. CORE SOCKETS 74.3. SOCKET TYPE EUPHORIA CONSTANTS

74.3.4 EAF INET6

include std/socket.e

namespace sockets

public constant EAF_INET6

IPv6 Internet protocols

74.3.5 EAF APPLETALK

include std/socket.e

namespace sockets

public constant EAF_APPLETALK

Appletalk

74.3.6 EAF BTH

include std/socket.e

namespace sockets

public constant EAF_BTH

Bluetooth (currently Windows-only)

74.3.7 ESOCK STREAM

include std/socket.e

namespace sockets

public constant ESOCK_STREAM

Provides sequenced, reliable, two-way, connection-based byte streams. An out-of-band data transmission mechanism
may be supported.

74.3.8 ESOCK DGRAM

include std/socket.e

namespace sockets

public constant ESOCK_DGRAM

Supports datagrams (connectionless, unreliable messages of a fixed maximum length).

74.3.9 ESOCK RAW

include std/socket.e

namespace sockets

public constant ESOCK_RAW

Provides raw network protocol access.

74.3.10 ESOCK RDM

include std/socket.e

namespace sockets

public constant ESOCK_RDM

Provides a reliable datagram layer that does not guarantee ordering.

616

CHAPTER 74. CORE SOCKETS 74.4. SOCKET TYPE CONSTANTS

74.3.11 ESOCK SEQPACKET

include std/socket.e

namespace sockets

public constant ESOCK_SEQPACKET

Obsolete and should not be used in new programs

74.4 Socket Type Constants

These values are passed as the family and sock type parameters of the create function. They are OS-dependent.

74.4.1 AF UNSPEC

include std/socket.e

namespace sockets

public constant AF_UNSPEC

Address family is unspecified

74.4.2 AF UNIX

include std/socket.e

namespace sockets

public constant AF_UNIX

Local communications

74.4.3 AF INET

include std/socket.e

namespace sockets

public constant AF_INET

IPv4 Internet protocols

74.4.4 AF INET6

include std/socket.e

namespace sockets

public constant AF_INET6

IPv6 Internet protocols

74.4.5 AF APPLETALK

include std/socket.e

namespace sockets

public constant AF_APPLETALK

Appletalk

617

CHAPTER 74. CORE SOCKETS 74.5. SELECT ACCESSOR CONSTANTS

74.4.6 AF BTH

include std/socket.e

namespace sockets

public constant AF_BTH

Bluetooth (currently Windows-only)

74.4.7 SOCK STREAM

include std/socket.e

namespace sockets

public constant SOCK_STREAM

Provides sequenced, reliable, two-way, connection-based byte streams. An out-of-band data transmission mechanism
may be supported.

74.4.8 SOCK DGRAM

include std/socket.e

namespace sockets

public constant SOCK_DGRAM

Supports datagrams (connectionless, unreliable messages of a fixed maximum length).

74.4.9 SOCK RAW

include std/socket.e

namespace sockets

public constant SOCK_RAW

Provides raw network protocol access.

74.4.10 SOCK RDM

include std/socket.e

namespace sockets

public constant SOCK_RDM

Provides a reliable datagram layer that does not guarantee ordering.

74.4.11 SOCK SEQPACKET

include std/socket.e

namespace sockets

public constant SOCK_SEQPACKET

Obsolete and should not be used in new programs

74.5 Select Accessor Constants

Use with the result of select.

618

CHAPTER 74. CORE SOCKETS 74.6. SHUTDOWN OPTIONS

74.5.1 enum

include std/socket.e

namespace sockets

public enum

74.5.2 SELECT SOCKET

include std/socket.e

namespace sockets

SELECT_SOCKET

The socket

74.5.3 SELECT IS READABLE

include std/socket.e

namespace sockets

SELECT_IS_READABLE

Boolean (1/0) value indicating the readability.

74.5.4 SELECT IS WRITABLE

include std/socket.e

namespace sockets

SELECT_IS_WRITABLE

Boolean (1/0) value indicating the writeability.

74.5.5 SELECT IS ERROR

include std/socket.e

namespace sockets

SELECT_IS_ERROR

Boolean (1/0) value indicating the error state.

74.6 Shutdown Options

Pass one of the following to the method parameter of shutdown.

74.6.1 SD SEND

include std/socket.e

namespace sockets

public constant SD_SEND

Shutdown the send operations.

619

CHAPTER 74. CORE SOCKETS 74.7. SOCKET OPTIONS

74.6.2 SD RECEIVE

include std/socket.e

namespace sockets

public constant SD_RECEIVE

Shutdown the receive operations.

74.6.3 SD BOTH

include std/socket.e

namespace sockets

public constant SD_BOTH

Shutdown both send and receive operations.

74.7 Socket Options

Pass to the optname parameter of the functions get option and set option.
These options are highly OS specific and are normally not needed for most socket communication. They are provided

here for your convenience. If you should need to set socket options, please refer to your OS reference material.
There may be other values that your OS defines and some defined here are not supported on all operating systems.

74.7.1 Socket Options In Common

74.7.2 SOL SOCKET

include std/socket.e

namespace sockets

public constant SOL_SOCKET

74.7.3 SO DEBUG

include std/socket.e

namespace sockets

public constant SO_DEBUG

74.7.4 SO ACCEPTCONN

include std/socket.e

namespace sockets

public constant SO_ACCEPTCONN

74.7.5 SO REUSEADDR

include std/socket.e

namespace sockets

public constant SO_REUSEADDR

620

CHAPTER 74. CORE SOCKETS 74.7. SOCKET OPTIONS

74.7.6 SO KEEPALIVE

include std/socket.e

namespace sockets

public constant SO_KEEPALIVE

74.7.7 SO DONTROUTE

include std/socket.e

namespace sockets

public constant SO_DONTROUTE

74.7.8 SO BROADCAST

include std/socket.e

namespace sockets

public constant SO_BROADCAST

74.7.9 SO LINGER

include std/socket.e

namespace sockets

public constant SO_LINGER

74.7.10 SO SNDBUF

include std/socket.e

namespace sockets

public constant SO_SNDBUF

74.7.11 SO RCVBUF

include std/socket.e

namespace sockets

public constant SO_RCVBUF

74.7.12 SO SNDLOWAT

include std/socket.e

namespace sockets

public constant SO_SNDLOWAT

74.7.13 SO RCVLOWAT

include std/socket.e

namespace sockets

public constant SO_RCVLOWAT

621

CHAPTER 74. CORE SOCKETS 74.7. SOCKET OPTIONS

74.7.14 SO SNDTIMEO

include std/socket.e

namespace sockets

public constant SO_SNDTIMEO

74.7.15 SO RCVTIMEO

include std/socket.e

namespace sockets

public constant SO_RCVTIMEO

74.7.16 SO ERROR

include std/socket.e

namespace sockets

public constant SO_ERROR

74.7.17 SO TYPE

include std/socket.e

namespace sockets

public constant SO_TYPE

74.7.18 SO OOBINLINE

include std/socket.e

namespace sockets

public constant SO_OOBINLINE

74.7.19 Windows Socket Options

74.7.20 SO USELOOPBACK

include std/socket.e

namespace sockets

public constant SO_USELOOPBACK

74.7.21 SO DONTLINGER

include std/socket.e

namespace sockets

public constant SO_DONTLINGER

74.7.22 SO REUSEPORT

include std/socket.e

namespace sockets

public constant SO_REUSEPORT

622

CHAPTER 74. CORE SOCKETS 74.7. SOCKET OPTIONS

74.7.23 SO CONNDATA

include std/socket.e

namespace sockets

public constant SO_CONNDATA

74.7.24 SO CONNOPT

include std/socket.e

namespace sockets

public constant SO_CONNOPT

74.7.25 SO DISCDATA

include std/socket.e

namespace sockets

public constant SO_DISCDATA

74.7.26 SO DISCOPT

include std/socket.e

namespace sockets

public constant SO_DISCOPT

74.7.27 SO CONNDATALEN

include std/socket.e

namespace sockets

public constant SO_CONNDATALEN

74.7.28 SO CONNOPTLEN

include std/socket.e

namespace sockets

public constant SO_CONNOPTLEN

74.7.29 SO DISCDATALEN

include std/socket.e

namespace sockets

public constant SO_DISCDATALEN

74.7.30 SO DISCOPTLEN

include std/socket.e

namespace sockets

public constant SO_DISCOPTLEN

623

CHAPTER 74. CORE SOCKETS 74.7. SOCKET OPTIONS

74.7.31 SO OPENTYPE

include std/socket.e

namespace sockets

public constant SO_OPENTYPE

74.7.32 SO MAXDG

include std/socket.e

namespace sockets

public constant SO_MAXDG

74.7.33 SO MAXPATHDG

include std/socket.e

namespace sockets

public constant SO_MAXPATHDG

74.7.34 SO SYNCHRONOUS ALTERT

include std/socket.e

namespace sockets

public constant SO_SYNCHRONOUS_ALTERT

74.7.35 SO SYNCHRONOUS NONALERT

include std/socket.e

namespace sockets

public constant SO_SYNCHRONOUS_NONALERT

74.7.36 LINUX Socket Options

74.7.37 SO SNDBUFFORCE

include std/socket.e

namespace sockets

public constant SO_SNDBUFFORCE

74.7.38 SO RCVBUFFORCE

include std/socket.e

namespace sockets

public constant SO_RCVBUFFORCE

74.7.39 SO NO CHECK

include std/socket.e

namespace sockets

public constant SO_NO_CHECK

624

CHAPTER 74. CORE SOCKETS 74.7. SOCKET OPTIONS

74.7.40 SO PRIORITY

include std/socket.e

namespace sockets

public constant SO_PRIORITY

74.7.41 SO BSDCOMPAT

include std/socket.e

namespace sockets

public constant SO_BSDCOMPAT

74.7.42 SO PASSCRED

include std/socket.e

namespace sockets

public constant SO_PASSCRED

74.7.43 SO PEERCRED

include std/socket.e

namespace sockets

public constant SO_PEERCRED

74.7.44 - Security levels - as per NRL IPv6 - do not actually do anything

74.7.45 SO SECURITY AUTHENTICATION

include std/socket.e

namespace sockets

public constant SO_SECURITY_AUTHENTICATION

74.7.46 SO SECURITY ENCRYPTION TRANSPORT

include std/socket.e

namespace sockets

public constant SO_SECURITY_ENCRYPTION_TRANSPORT

74.7.47 SO SECURITY ENCRYPTION NETWORK

include std/socket.e

namespace sockets

public constant SO_SECURITY_ENCRYPTION_NETWORK

74.7.48 SO BINDTODEVICE

include std/socket.e

namespace sockets

public constant SO_BINDTODEVICE

625

CHAPTER 74. CORE SOCKETS 74.7. SOCKET OPTIONS

74.7.49 LINUX Socket Filtering Options

74.7.50 SO ATTACH FILTER

include std/socket.e

namespace sockets

public constant SO_ATTACH_FILTER

74.7.51 SO DETACH FILTER

include std/socket.e

namespace sockets

public constant SO_DETACH_FILTER

74.7.52 SO PEERNAME

include std/socket.e

namespace sockets

public constant SO_PEERNAME

74.7.53 SO TIMESTAMP

include std/socket.e

namespace sockets

public constant SO_TIMESTAMP

74.7.54 SCM TIMESTAMP

include std/socket.e

namespace sockets

public constant SCM_TIMESTAMP

74.7.55 SO PEERSEC

include std/socket.e

namespace sockets

public constant SO_PEERSEC

74.7.56 SO PASSSEC

include std/socket.e

namespace sockets

public constant SO_PASSSEC

74.7.57 SO TIMESTAMPNS

include std/socket.e

namespace sockets

public constant SO_TIMESTAMPNS

626

CHAPTER 74. CORE SOCKETS 74.8. SEND FLAGS

74.7.58 SCM TIMESTAMPNS

include std/socket.e

namespace sockets

public constant SCM_TIMESTAMPNS

74.7.59 SO MARK

include std/socket.e

namespace sockets

public constant SO_MARK

74.7.60 SO TIMESTAMPING

include std/socket.e

namespace sockets

public constant SO_TIMESTAMPING

74.7.61 SCM TIMESTAMPING

include std/socket.e

namespace sockets

public constant SCM_TIMESTAMPING

74.7.62 SO PROTOCOL

include std/socket.e

namespace sockets

public constant SO_PROTOCOL

74.7.63 SO DOMAIN

include std/socket.e

namespace sockets

public constant SO_DOMAIN

74.7.64 SO RXQ OVFL

include std/socket.e

namespace sockets

public constant SO_RXQ_OVFL

74.8 Send Flags

Pass to the flags parameter of send and receive

627

CHAPTER 74. CORE SOCKETS 74.8. SEND FLAGS

74.8.1 MSG OOB

include std/socket.e

namespace sockets

public constant MSG_OOB

Sends out-of-band data on sockets that support this notion (e.g., of type SOCK STREAM); the underlying protocol
must also support out-of-band data.

74.8.2 MSG PEEK

include std/socket.e

namespace sockets

public constant MSG_PEEK

This flag causes the receive operation to return data from the beginning of the receive queue without removing that
data from the queue. Thus, a subsequent receive call will return the same data.

74.8.3 MSG DONTROUTE

include std/socket.e

namespace sockets

public constant MSG_DONTROUTE

Do not use a gateway to send out the packet, only send to hosts on directly connected networks. This is usually used
only by diagnostic or routing programs. This is only defined for protocol families that route; packet sockets do not.

74.8.4 MSG TRYHARD

include std/socket.e

namespace sockets

public constant MSG_TRYHARD

74.8.5 MSG CTRUNC

include std/socket.e

namespace sockets

public constant MSG_CTRUNC

Indicates that some control data were discarded due to lack of space in the buffer for ancillary data.

74.8.6 MSG PROXY

include std/socket.e

namespace sockets

public constant MSG_PROXY

74.8.7 MSG TRUNC

include std/socket.e

namespace sockets

public constant MSG_TRUNC

Indicates that the trailing portion of a datagram was discarded because the datagram was larger than the buffer
supplied.

628

CHAPTER 74. CORE SOCKETS 74.8. SEND FLAGS

74.8.8 MSG DONTWAIT

include std/socket.e

namespace sockets

public constant MSG_DONTWAIT

Enables non-blocking operation; if the operation would block, EAGAIN or EWOULDBLOCK is returned.

74.8.9 MSG EOR

include std/socket.e

namespace sockets

public constant MSG_EOR

Terminates a record (when this notion is supported, as for sockets of type SOCK SEQPACKET).

74.8.10 MSG WAITALL

include std/socket.e

namespace sockets

public constant MSG_WAITALL

This flag requests that the operation block until the full request is satisfied. However, the call may still return less
data than requested if a signal is caught, an error or disconnect occurs, or the next data to be received is of a different
type than that returned.

74.8.11 MSG FIN

include std/socket.e

namespace sockets

public constant MSG_FIN

74.8.12 MSG SYN

include std/socket.e

namespace sockets

public constant MSG_SYN

74.8.13 MSG CONFIRM

include std/socket.e

namespace sockets

public constant MSG_CONFIRM

Tell the link layer that forward progress happened: you got a successful reply from the other side. If the link layer doesn’t
get this it will regularly reprobe the neighbor (e.g., via a unicast ARP). Only valid on SOCK DGRAM and SOCK RAW
sockets and currently only implemented for IPv4 and IPv6.

74.8.14 MSG RST

include std/socket.e

namespace sockets

public constant MSG_RST

629

CHAPTER 74. CORE SOCKETS 74.9. SERVER AND CLIENT SIDES

74.8.15 MSG ERRQUEUE

include std/socket.e

namespace sockets

public constant MSG_ERRQUEUE

Indicates that no data was received but an extended error from the socket error queue.

74.8.16 MSG NOSIGNAL

include std/socket.e

namespace sockets

public constant MSG_NOSIGNAL

Requests not to send SIGPIPE on errors on stream oriented sockets when the other end breaks the connection. The
EPIPE error is still returned.

74.8.17 MSG MORE

include std/socket.e

namespace sockets

public constant MSG_MORE

The caller has more data to send. This flag is used with TCP sockets to obtain the same effect as the TCP CORK
socket option, with the difference that this flag can be set on a per-call basis.

74.9 Server and Client Sides

74.9.1 enum

include std/socket.e

namespace sockets

export enum

74.9.2 SOCKET SOCKET

include std/socket.e

namespace sockets

SOCKET_SOCKET

Accessor index for socket handle of a socket type

74.9.3 SOCKET SOCKADDR IN

include std/socket.e

namespace sockets

SOCKET_SOCKADDR_IN

Accessor index for the sockaddr in pointer of a socket type

630

CHAPTER 74. CORE SOCKETS 74.9. SERVER AND CLIENT SIDES

74.9.4 socket

include std/socket.e

namespace sockets

public type socket(object o)

Socket type

74.9.5 create

include std/socket.e

namespace sockets

public function create(integer family , integer sock_type , integer protocol)

creates a new socket.

Parameters:

1. family: an integer

2. sock type: an integer, the type of socket to create

3. protocol: an integer, the communication protocol being used

family options:

• AF UNIX

• AF INET

• AF INET6

• AF APPLETALK

• AF BTH

sock type options:

• SOCK STREAM

• SOCK DGRAM

• SOCK RAW

• SOCK RDM

• SOCK SEQPACKET

Returns:

An object, an atom, representing an integer code on failure, else a sequence representing a valid socket id.

Comments:

On Windows you must have Windows Sockets version 2.2 or greater installed. This means at least Windows 2000
Professional or Windows 2000 Server.

Example 1:

socket = create(AF_INET , SOCK_STREAM , 0)

631

CHAPTER 74. CORE SOCKETS 74.9. SERVER AND CLIENT SIDES

74.9.6 close

include std/socket.e

namespace sockets

public function close(socket sock)

closes a socket.

Parameters:

1. sock: the socket to close

Returns:

An integer, 0 on success and -1 on error.

Comments:

It may take several minutes for the OS to declare the socket as closed.

74.9.7 shutdown

include std/socket.e

namespace sockets

public function shutdown(socket sock , atom method = SD_BOTH)

partially or fully close a socket.

Parameters:

1. sock : the socket to shutdown

2. method : the way used to close the socket

Returns:

An integer, 0 on success and -1 on error.

Comments:

Three constants are defined that can be sent to method:

• SD SEND – shutdown the send operations.

• SD RECEIVE – shutdown the receive operations.

• SD BOTH – shutdown both send and receive operations.

It may take several minutes for the OS to declare the socket as closed.

74.9.8 select

include std/socket.e

namespace sockets

public function select(object sockets_read , object sockets_write , object sockets_err ,

integer timeout = 0, integer timeout_micro = 0)

determines the read, write and error status of one or more sockets.

632

CHAPTER 74. CORE SOCKETS 74.9. SERVER AND CLIENT SIDES

Parameters:

1. sockets read : either one socket or a sequence of sockets to check for reading.

2. sockets write : either one socket or a sequence of sockets to check for writing.

3. sockets err : either one socket or a sequence of sockets to check for errors.

4. timeout : maximum time to wait to determine a sockets status, seconds part

5. timeout micro : maximum time to wait to determine a sockets status, microsecond part

Returns:

A sequence, of the same size of all unique sockets containing socket, read status, write status, error status

for each socket passed 2 to the function. Note that the sockets returned are not guaranteed to be in any particular order.

Comments:

Using select, you can check to see if a socket has data waiting and is read to be read, if a socket can be written to and if
a socket has an error status.

select allows for fine-grained control over your sockets; it allows you to specify that a given socket only be checked
for reading or for only reading and writing, etc.

74.9.9 send

include std/socket.e

namespace sockets

public function send(socket sock , sequence data , atom flags = 0)

sends TCP data to a socket connected remotely.

Parameters:

1. sock : the socket to send data to

2. data : a sequence of atoms, what to send

3. flags : flags (see Send Flags)

Returns:

An integer, the number of characters sent, or -1 for an error.

74.9.10 receive

include std/socket.e

namespace sockets

public function receive(socket sock , atom flags = 0)

receives data from a bound socket.

Parameters:

1. sock : the socket to get data from

2. flags : flags (see Send Flags)

633

CHAPTER 74. CORE SOCKETS 74.9. SERVER AND CLIENT SIDES

Returns:

A sequence, either a full string of data on success, or an atom indicating the error code.

Comments:

This function will not return until data is actually received on the socket, unless the flags parameter contains MSG DONTWAIT.
MSG DONTWAIT only works on Linux kernels 2.4 and above. To be cross-platform you should use select to determine

if a socket is readable, i.e. has data waiting.

74.9.11 get option

include std/socket.e

namespace sockets

public function get_option(socket sock , integer level , integer optname)

gets options for a socket.

Parameters:

1. sock : the socket

2. level : an integer, the option level

3. optname : requested option (See Socket Options)

Returns:

An object, either:

• On error, ”ERROR”,error code.

• On success, either an atom or a sequence containing the option value, depending on the option.

Comments:

Primarily for use in multicast or more advanced socket applications. Level is the option level, and option name is the
option for which values are being sought. Level is usually SOL SOCKET.

Returns:

An atom, On error, an atom indicating the error code.
A sequence or atom, On success, either an atom or a sequence containing the option value.

See Also:

get option

74.9.12 set option

include std/socket.e

namespace sockets

public function set_option(socket sock , integer level , integer optname , object val)

sets options for a socket.

634

CHAPTER 74. CORE SOCKETS 74.10. CLIENT SIDE ONLY

Parameters:

1. sock : an atom, the socket id

2. level : an integer, the option level

3. optname : requested option (See Socket Options)

4. val : an object, the new value for the option

Returns:

An integer, 0 on success, -1 on error.

Comments:

Primarily for use in multicast or more advanced socket applications. Level is the option level, and option name is the
option for which values are being set. Level is usually SOL SOCKET.

See Also:

get option

74.10 Client Side Only

74.10.1 connect

include std/socket.e

namespace sockets

public function connect(socket sock , sequence address , integer port = - 1)

establishes an outgoing connection to a remote computer. Only works with TCP sockets.

Parameters:

1. sock : the socket

2. address : ip address to connect, optionally with :PORT at the end

3. port : port number

Returns:

An integer, 0 for success and non-zero on failure. See the ERR * constants for supported values.

Comments:

address can contain a port number. If it does not, it has to be supplied to the port parameter.

Example 1:

success = connect(sock , "11.1.1.1") -- uses default port 80

success = connect(sock , "11.1.1.1:110") -- uses port 110

success = connect(sock , "11.1.1.1", 345) -- uses port 345

635

CHAPTER 74. CORE SOCKETS 74.11. SERVER SIDE ONLY

74.11 Server Side Only

74.11.1 bind

include std/socket.e

namespace sockets

public function bind(socket sock , sequence address , integer port = - 1)

joins a socket to a specific local internet address and port so later calls only need to provide the socket.

Parameters:

1. sock : the socket

2. address : the address to bind the socket to

3. port : optional, if not specified you must include :PORT in the address parameter.

Returns:

An integer, 0 on success and -1 on failure.

Example 1:

1 -- Bind to all interfaces on the default port 80.

2 success = bind(socket , "0.0.0.0")

3 -- Bind to all interfaces on port 8080.

4 success = bind(socket , "0.0.0.0:8080")

5 -- Bind only to the 243.17.33.19 interface on port 345.

6 success = bind(socket , "243.17.33.19", 345)

74.11.2 listen

include std/socket.e

namespace sockets

public function listen(socket sock , integer backlog)

starts monitoring a connection. Only works with TCP sockets.

Parameters:

1. sock : the socket

2. backlog : the number of connection requests that can be kept waiting before the OS refuses to hear any more.

Returns:

An integer, 0 on success and an error code on failure.

Comments:

Once the socket is created and bound, this will indicate to the operating system that you are ready to being listening for
connections.

The value of backlog is strongly dependent on both the hardware and the amount of time it takes the program to
process each connection request.

This function must be executed after bind.

636

CHAPTER 74. CORE SOCKETS 74.12. UDP ONLY

74.11.3 accept

include std/socket.e

namespace sockets

public function accept(socket sock)

produces a new socket for an incoming connection.

Parameters:

1. sock: the server socket

Returns:

An atom, on error
A sequence, socket client, sequence client ip address on success.

Comments:

Using this function allows communication to occur on a ”side channel” while the main server socket remains available for
new connections.

accept must be called after bind and listen.

74.12 UDP Only

74.12.1 send to

include std/socket.e

namespace sockets

public function send_to(socket sock , sequence data , sequence address , integer port = - 1,

atom flags = 0)

sends a UDP packet to a given socket.

Parameters:

1. sock: the server socket

2. data: the data to be sent

3. ip: the ip where the data is to be sent to (ip:port) is acceptable

4. port: the port where the data is to be sent on (if not supplied with the ip)

5. flags : flags (see Send Flags)

Returns:

An integer status code.

See Also:

receive from

637

CHAPTER 74. CORE SOCKETS 74.13. INFORMATION

74.12.2 receive from

include std/socket.e

namespace sockets

public function receive_from(socket sock , atom flags = 0)

receives a UDP packet from a given socket.

Parameters:

1. sock: the server socket

2. flags : flags (see Send Flags)

Returns:

A sequence containing client ip, client port, data or an atom error code.

See Also:

send to

74.13 Information

74.13.1 service by name

include std/socket.e

namespace sockets

public function service_by_name(sequence name , object protocol = 0)

gets service information by name.

Parameters:

1. name : service name.

2. protocol : protocol. Default is not to search by protocol.

Returns:

A sequence, containing official protocol name, protocol, port number or an atom indicating the error code.

Example 1:

object result = getservbyname("http")

-- result = { "http", "tcp", 80 }

See Also:

service by port

638

CHAPTER 74. CORE SOCKETS 74.13. INFORMATION

74.13.2 service by port

include std/socket.e

namespace sockets

public function service_by_port(integer port , object protocol = 0)

gets service information by port number.

Parameters:

1. port : port number.

2. protocol : protocol. Default is not to search by protocol.

Returns:

A sequence, containing official protocol name, protocol, port number or an atom indicating the error code.

Example 1:

object result = getservbyport (80)

-- result = { "http", "tcp", 80 }

See Also:

service by name

74.13.3 info

include std/socket.e

namespace sockets

public function info(integer Type)

gets constant definitions from the backend.

Parameters:

1. type : The type of information requested.

Returns:

A sequence, containing the list of definitions from the backend. The resulting list can be indexed into using the Euphoria
constants. Or an atom indicating an error.

Example 1:

object result = info(ESOCK_TYPE_AF)

-- result = { AF_UNIX , AF_INET , AF_INET6 , AF_APPLETALK , AF_BTH , AF_UNSPEC }

See Also:

Socket Options, Socket Backend Constants, Socket Type Euphoria Constants

639

Chapter 75
Common Internet Routines

75.1 IP Address Handling

75.1.1 is inetaddr

include std/net/common.e

namespace common

public function is_inetaddr(sequence address)

Checks if x is an IP address in the form (#.#.#.#[:#])

Parameters:

1. address : the address to check

Returns:

An integer, 1 if x is an inetaddr, 0 if it is not

Comments:

Some ip validation algorithms do not allow 0.0.0.0. We do here because many times you will want to bind to 0.0.0.0.
However, you cannot connect to 0.0.0.0 of course.

With sockets, normally binding to 0.0.0.0 means bind to all interfaces that the computer has.

75.1.2 parse ip address

include std/net/common.e

namespace common

public function parse_ip_address(sequence address , integer port = - 1)

Converts a text ”address:port” into ”address”, port format.

Parameters:

1. address : ip address to connect, optionally with :PORT at the end

2. port : optional, if not specified you may include :PORT in the address parameter otherwise the default port 80 is
used.

640

CHAPTER 75. COMMON INTERNET ROUTINES 75.2. URL PARSING

Comments:

If port is supplied, it overrides any ”:PORT” value in the input address.

Returns:

A sequence, of two elements: ”address” and integer port number.

Example 1:

addr = parse_ip_address("11.1.1.1") --> {"11.1.1.1" , 80} -- default port

addr = parse_ip_address("11.1.1.1:110") --> {"11.1.1.1" , 110}

addr = parse_ip_address("11.1.1.1", 345) --> {"11.1.1.1" , 345}

75.2 URL Parsing

75.2.1 URL ENTIRE

include std/net/common.e

namespace common

public constant URL_ENTIRE

75.2.2 URL PROTOCOL

include std/net/common.e

namespace common

public constant URL_PROTOCOL

75.2.3 URL HTTP DOMAIN

include std/net/common.e

namespace common

public constant URL_HTTP_DOMAIN

75.2.4 URL HTTP PATH

include std/net/common.e

namespace common

public constant URL_HTTP_PATH

75.2.5 URL HTTP QUERY

include std/net/common.e

namespace common

public constant URL_HTTP_QUERY

641

CHAPTER 75. COMMON INTERNET ROUTINES 75.2. URL PARSING

75.2.6 URL MAIL ADDRESS

include std/net/common.e

namespace common

public constant URL_MAIL_ADDRESS

75.2.7 URL MAIL USER

include std/net/common.e

namespace common

public constant URL_MAIL_USER

75.2.8 URL MAIL DOMAIN

include std/net/common.e

namespace common

public constant URL_MAIL_DOMAIN

75.2.9 URL MAIL QUERY

include std/net/common.e

namespace common

public constant URL_MAIL_QUERY

75.2.10 parse url

include std/net/common.e

namespace common

public function parse_url(sequence url)

Parse a common URL. Currently supported URLs are http(s), ftp(s), gopher(s) and mailto.

Parameters:

1. url : url to be parsed

Returns:

A sequence, containing the URL details. You should use the URL constants to access the values of the returned sequence.
You should first check the protocol (URL PROTOCOL) that was returned as the data contained in the return value can
be of different lengths.

On a parse error, -1 will be returned.

Example 1:

1 object url_data = parse_url("http :// john.com/index.html?name=jeff")

2 -- url_data = {

3 -- "http :// john.com/index.html?name=jeff", -- URL_ENTIRE

4 -- "http", -- URL_PROTOCOL

5 -- "john.com", -- URL_DOMAIN

642

CHAPTER 75. COMMON INTERNET ROUTINES 75.2. URL PARSING

6 -- "/index.html", -- URL_PATH

7 -- "?name=jeff" -- URL_QUERY

8 -- }

9

10 url_data = parse_url("mailto:john@mail.doe.com?subject=Hello %20 John %20Doe")

11 -- url_data = {

12 -- "mailto:john@mail.doe.com?subject=Hello %20 John %20 Doe",

13 -- "mailto",

14 -- "john@mail.doe.com",

15 -- "john",

16 -- "mail.doe.com",

17 -- "? subject=Hello %20 John %20 Doe"

18 -- }

643

Chapter 76
DNS

76.1 Constants

76.1.1 enum

include std/net/dns.e

namespace dns

public enum

76.1.2 enum

include std/net/dns.e

namespace dns

public enum

76.1.3 DNS QUERY STANDARD

include std/net/dns.e

namespace dns

public constant DNS_QUERY_STANDARD

76.1.4 DNS QUERY ACCEPT TRUNCATED RESPONSE

include std/net/dns.e

namespace dns

public constant DNS_QUERY_ACCEPT_TRUNCATED_RESPONSE

76.1.5 DNS QUERY USE TCP ONLY

include std/net/dns.e

namespace dns

public constant DNS_QUERY_USE_TCP_ONLY

644

CHAPTER 76. DNS 76.1. CONSTANTS

76.1.6 DNS QUERY NO RECURSION

include std/net/dns.e

namespace dns

public constant DNS_QUERY_NO_RECURSION

76.1.7 DNS QUERY BYPASS CACHE

include std/net/dns.e

namespace dns

public constant DNS_QUERY_BYPASS_CACHE

76.1.8 DNS QUERY NO WIRE QUERY

include std/net/dns.e

namespace dns

public constant DNS_QUERY_NO_WIRE_QUERY

76.1.9 DNS QUERY NO LOCAL NAME

include std/net/dns.e

namespace dns

public constant DNS_QUERY_NO_LOCAL_NAME

76.1.10 DNS QUERY NO HOSTS FILE

include std/net/dns.e

namespace dns

public constant DNS_QUERY_NO_HOSTS_FILE

76.1.11 DNS QUERY NO NETBT

include std/net/dns.e

namespace dns

public constant DNS_QUERY_NO_NETBT

76.1.12 DNS QUERY WIRE ONLY

include std/net/dns.e

namespace dns

public constant DNS_QUERY_WIRE_ONLY

76.1.13 DNS QUERY RETURN MESSAGE

include std/net/dns.e

namespace dns

public constant DNS_QUERY_RETURN_MESSAGE

645

CHAPTER 76. DNS 76.1. CONSTANTS

76.1.14 DNS QUERY TREAT AS FQDN

include std/net/dns.e

namespace dns

public constant DNS_QUERY_TREAT_AS_FQDN

76.1.15 DNS QUERY DONT RESET TTL VALUES

include std/net/dns.e

namespace dns

public constant DNS_QUERY_DONT_RESET_TTL_VALUES

76.1.16 DNS QUERY RESERVED

include std/net/dns.e

namespace dns

public constant DNS_QUERY_RESERVED

76.1.17 NS C IN

include std/net/dns.e

namespace dns

public constant NS_C_IN

76.1.18 NS C ANY

include std/net/dns.e

namespace dns

public constant NS_C_ANY

76.1.19 NS KT RSA

include std/net/dns.e

namespace dns

public constant NS_KT_RSA

76.1.20 NS KT DH

include std/net/dns.e

namespace dns

public constant NS_KT_DH

76.1.21 NS KT DSA

include std/net/dns.e

namespace dns

public constant NS_KT_DSA

646

CHAPTER 76. DNS 76.1. CONSTANTS

76.1.22 NS KT PRIVATE

include std/net/dns.e

namespace dns

public constant NS_KT_PRIVATE

76.1.23 NS T A

include std/net/dns.e

namespace dns

public constant NS_T_A

76.1.24 NS T NS

include std/net/dns.e

namespace dns

public constant NS_T_NS

76.1.25 NS T PTR

include std/net/dns.e

namespace dns

public constant NS_T_PTR

76.1.26 NS T MX

include std/net/dns.e

namespace dns

public constant NS_T_MX

76.1.27 NS T AAAA

include std/net/dns.e

namespace dns

public constant NS_T_AAAA

76.1.28 NS T A6

include std/net/dns.e

namespace dns

public constant NS_T_A6

76.1.29 NS T ANY

include std/net/dns.e

namespace dns

public constant NS_T_ANY

647

CHAPTER 76. DNS 76.2. GENERAL ROUTINES

76.2 General Routines

76.2.1 host by name

include std/net/dns.e

namespace dns

public function host_by_name(sequence name)

Get the host information by name.

Parameters:

1. name : host name

Returns:

A sequence, containing

1 {

2 official name ,

3 { alias1 , alias2 , ... },

4 { ip1 , ip2 , ... },

5 address_type

6 }

Example 1:

1 object data = host_by_name("www.google.com")

2 -- data = {

3 -- "www.l.google.com",

4 -- {

5 -- "www.google.com"

6 -- },

7 -- {

8 -- "74.125.93.104" ,

9 -- "74.125.93.147" ,

10 -- ...

11 -- },

12 -- 2

13 -- }

76.2.2 host by addr

include std/net/dns.e

namespace dns

public function host_by_addr(sequence address)

Get the host information by address.

Parameters:

1. address : host address

648

CHAPTER 76. DNS 76.2. GENERAL ROUTINES

Returns:

A sequence, containing

1 {

2 official name ,

3 { alias1 , alias2 , ... },

4 { ip1 , ip2 , ... },

5 address_type

6 }

Example 1:

1 object data = host_by_addr("74.125.93.147")

2 -- data = {

3 -- "www.l.google.com",

4 -- {

5 -- "www.google.com"

6 -- },

7 -- {

8 -- "74.125.93.104" ,

9 -- "74.125.93.147" ,

10 -- ...

11 -- },

12 -- 2

13 -- }

649

Chapter 77
HTTP Client

77.1 Error Codes

77.1.1 enum

include std/net/http.e

namespace http

public enum

Increments by - 1

77.2 Constants

77.2.1 enum

include std/net/http.e

namespace http

public enum

77.2.2 enum

include std/net/http.e

namespace http

public enum

77.2.3 ENCODE NONE

include std/net/http.e

namespace http

ENCODE_NONE

No encoding is necessary

650

CHAPTER 77. HTTP CLIENT 77.3. CONFIGURATION ROUTINES

77.2.4 ENCODE BASE64

include std/net/http.e

namespace http

ENCODE_BASE64

Use Base64 encoding

77.3 Configuration Routines

77.3.1 set proxy server

include std/net/http.e

namespace http

public procedure set_proxy_server(sequence ip, integer port)

Configure http client to use a proxy server

Parameters:

• proxy ip - IP address of the proxy server

• proxy port - Port of the proxy server

77.4 Get/Post Routines

77.4.1 http post

include std/net/http.e

namespace http

public function http_post(sequence url , object data , object headers = 0,

natural follow_redirects = 10, natural timeout = 15)

Post data to a HTTP resource.

Parameters:

• url - URL to send post request to

• data - Form data (described later)

• headers - Additional headers added to request

• follow redirects - Maximum redirects to follow

• timeout - Maximum number of seconds to wait for a response

Returns:

An integer error code or a 2 element sequence. Element 1 is a sequence of key/value pairs representing the result header
information. element 2 is the body of the result.

If result is a negative integer, that represents a local error condition.
If result is a positive integer, that represents a HTTP error value from the server.

651

CHAPTER 77. HTTP CLIENT 77.4. GET/POST ROUTINES

Data Sequence:

This sequence should contain key value pairs representing the expected form elements of the called URL. For a simple
url-encoded form:

{ {"name", "John Doe"}, {"age", "22"}, {"city", "Small Town"}}

All Keys and Values should be a sequence.
If the post requires multipart form encoding then the sequence is a little different. The first element of the data

sequence must be MULTIPART FORM DATA (??). All subsequent field values should be key/value pairs as described
above except for a field representing a file upload. In that case the sequence should be:

FIELD-NAME, FILE-VALUE, FILE-NAME, MIME-TYPE, ENCODING-TYPE

Encoding type can be

• ENCODE NONE

• ENCODE BASE64

An example for a multipart form encoded post request data sequence

1 {

2 { "name", "John Doe" },

3 { "avatar", file_content , "me.png", "image/png", ENCODE_BASE64 },

4 { "city", "Small Town" }

5 }

See Also:

http get

77.4.2 http get

include std/net/http.e

namespace http

public function http_get(sequence url , object headers = 0, natural follow_redirects = 10,

natural timeout = 15)

Get a HTTP resource.

Returns:

An integer error code or a 2 element sequence. Element 1 is a sequence of key/value pairs representing the result header
information. Element 2 is the body of the result.

If result is a negative integer, that represents a local error condition.
If result is a positive integer, that represents a HTTP error value from the server.

Example:

1 include std/console.e -- for display ()

2 include std/net/http.e

3

4 object result = http_get("http :// example.com")

5 if atom(result) then

6 printf(1, "Web error: %d\n", result)

7 abort (1)

8 end if

9

10 display(result [1]) -- header key/value pairs

11 printf(1, "Content: %s\n", { result [2] })

652

CHAPTER 77. HTTP CLIENT 77.4. GET/POST ROUTINES

See Also:

http post

653

Chapter 78
URL handling

78.1 Parsing

78.1.1 parse querystring

include std/net/url.e

namespace url

public function parse_querystring(object query_string)

Parse a query string into a map

Parameters:

1. query string: Query string to parse

Returns:

map containing the key/value pairs

Example 1:

map qs = parse_querystring("name=John&age =18")

printf(1, "%s is %s years old\n", { map:get(qs, "name"), map:get(qs, "age) })

78.2 URL Parse Accessor Constants

Use with the result of parse.

Notes:

If the host name, port, path, username, password or query string are not part of the URL they will be returned as an
integer value of zero.

654

CHAPTER 78. URL HANDLING 78.2. URL PARSE ACCESSOR CONSTANTS

78.2.1 enum

include std/net/url.e

namespace url

public enum

78.2.2 URL PROTOCOL

include std/net/url.e

namespace url

URL_PROTOCOL

The protocol of the URL

78.2.3 URL HOSTNAME

include std/net/url.e

namespace url

URL_HOSTNAME

The hostname of the URL

78.2.4 URL PORT

include std/net/url.e

namespace url

URL_PORT

The TCP port that the URL will connect to

78.2.5 URL PATH

include std/net/url.e

namespace url

URL_PATH

The protocol-specific pathname of the URL

78.2.6 URL USER

include std/net/url.e

namespace url

URL_USER

The username of the URL

78.2.7 URL PASSWORD

include std/net/url.e

namespace url

URL_PASSWORD

The password the URL

655

CHAPTER 78. URL HANDLING 78.2. URL PARSE ACCESSOR CONSTANTS

78.2.8 URL QUERY STRING

include std/net/url.e

namespace url

URL_QUERY_STRING

The HTTP query string

78.2.9 parse

include std/net/url.e

namespace url

public function parse(sequence url , integer querystring_also = 0)

Parse a URL returning its various elements.

Parameters:

1. url: URL to parse

2. querystring also: Parse the query string into a map also?

Returns:

A multi-element sequence containing:

1. protocol

2. host name

3. port

4. path

5. user name

6. password

7. query string

Or, zero if the URL could not be parsed.

Notes:

If the host name, port, path, username, password or query string are not part of the URL they will be returned as an
integer value of zero.

Example 1:

1 sequence parsed =

2 parse("http :// user:pass@www.debian.org :80/ index.html?name=John&age=39")

3 -- parsed is

4 -- {

5 -- "http",

6 -- "www.debian.org",

7 -- 80,

8 -- "/index.html",

9 -- "user",

656

CHAPTER 78. URL HANDLING 78.3. URL ENCODING AND DECODING

10 -- "pass",

11 -- "name=John&age =39"

12 -- }

78.3 URL encoding and decoding

78.3.1 encode

include std/net/url.e

namespace url

public function encode(sequence what , sequence spacecode = "+")

Converts all non-alphanumeric characters in a string to their percent-sign hexadecimal representation, or plus sign for
spaces.

Parameters:

1. what : the string to encode

2. spacecode : what to insert in place of a space

Returns:

A sequence, the encoded string.

Comments:

spacecode defaults to + as it is more correct, however, some sites want %20 as the space encoding.

Example 1:

puts(1, encode("Fred & Ethel"))

-- Prints "Fred +%26+ Ethel"

See Also:

decode

78.3.2 decode

include std/net/url.e

namespace url

public function decode(sequence what)

Convert all encoded entities to their decoded counter parts

Parameters:

1. what: what value to decode

Returns:

A decoded sequence

657

CHAPTER 78. URL HANDLING 78.3. URL ENCODING AND DECODING

Example 1:

puts(1, decode("Fred +%26+ Ethel"))

-- Prints "Fred & Ethel"

See Also:

encode

658

Chapter 79
Dynamic Linking to External Code

79.1 C Type Constants

These C type constants are used when defining external C functions in a shared library file.

Example 1:

See define c proc

See Also:

define c proc, define c func, define c var

79.1.1 C CHAR

include std/dll.e

namespace dll

public constant C_CHAR

char 8-bits

79.1.2 C BYTE

include std/dll.e

namespace dll

public constant C_BYTE

byte 8-bits

79.1.3 C UCHAR

include std/dll.e

namespace dll

public constant C_UCHAR

unsigned char 8-bits

659

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.1. C TYPE CONSTANTS

79.1.4 C UBYTE

include std/dll.e

namespace dll

public constant C_UBYTE

ubyte 8-bits

79.1.5 C SHORT

include std/dll.e

namespace dll

public constant C_SHORT

short 16-bits

79.1.6 C WORD

include std/dll.e

namespace dll

public constant C_WORD

word 16-bits

79.1.7 C USHORT

include std/dll.e

namespace dll

public constant C_USHORT

unsigned short 16-bits

79.1.8 C INT

include std/dll.e

namespace dll

public constant C_INT

int 32-bits

79.1.9 C BOOL

include std/dll.e

namespace dll

public constant C_BOOL

bool 32-bits

79.1.10 C UINT

include std/dll.e

namespace dll

public constant C_UINT

unsigned int 32-bits

660

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.1. C TYPE CONSTANTS

79.1.11 C LONG

include std/dll.e

namespace dll

public constant C_LONG

long 32-bits except on 64-bit Unix, where it is 64-bits

79.1.12 C ULONG

include std/dll.e

namespace dll

public constant C_ULONG

unsigned long 32-bits except on 64-bit Unix, where it is 64-bits

79.1.13 C SIZE T

include std/dll.e

namespace dll

public constant C_SIZE_T

size t unsigned long 32-bits except on 64-bit Unix, where it is 64-bits

79.1.14 C POINTER

include std/dll.e

namespace dll

public constant C_POINTER

any valid pointer

79.1.15 C LONGLONG

include std/dll.e

namespace dll

public constant C_LONGLONG

longlong 64-bits

79.1.16 C LONG PTR

include std/dll.e

namespace dll

public constant C_LONG_PTR

signed integer sizeof pointer

79.1.17 C HANDLE

include std/dll.e

namespace dll

public constant C_HANDLE

handle sizeof pointer

661

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.1. C TYPE CONSTANTS

79.1.18 C HWND

include std/dll.e

namespace dll

public constant C_HWND

hwnd sizeof pointer

79.1.19 C DWORD

include std/dll.e

namespace dll

public constant C_DWORD

dword 32-bits

79.1.20 C WPARAM

include std/dll.e

namespace dll

public constant C_WPARAM

wparam sizeof pointer

79.1.21 C LPARAM

include std/dll.e

namespace dll

public constant C_LPARAM

lparam sizeof pointer

79.1.22 C HRESULT

include std/dll.e

namespace dll

public constant C_HRESULT

hresult 32-bits

79.1.23 C FLOAT

include std/dll.e

namespace dll

public constant C_FLOAT

float 32-bits

79.1.24 C DOUBLE

include std/dll.e

namespace dll

public constant C_DOUBLE

double 64-bits

662

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.2. EXTERNAL EUPHORIA TYPE CONSTANTS

79.1.25 C DWORDLONG

include std/dll.e

namespace dll

public constant C_DWORDLONG

dwordlong 64-bits

79.2 External Euphoria Type Constants

These are used for arguments to and the return value from a Euphoria shared library file (.dll, .so, or .dylib).

79.2.1 E INTEGER

include std/dll.e

namespace dll

public constant E_INTEGER

integer

79.2.2 E ATOM

include std/dll.e

namespace dll

public constant E_ATOM

atom

79.2.3 E SEQUENCE

include std/dll.e

namespace dll

public constant E_SEQUENCE

sequence

79.2.4 E OBJECT

include std/dll.e

namespace dll

public constant E_OBJECT

object

79.2.5 sizeof

<built -in > function sizeof(atom data_type)

Parameters:

1. data type A C data type constant

Returns the size, in bytes of the specified data type.

663

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.3. CONSTANTS

79.3 Constants

79.3.1 NULL

include std/dll.e

namespace dll

public constant NULL

C’s NULL pointer

79.4 Routines

79.4.1 open dll

include std/dll.e

namespace dll

public function open_dll(sequence file_name)

opens a Windows dynamic link library (.dll) file, or a Unix shared library (.so) file.

Parameters:

1. file name : a sequence, the name of the shared library to open or a sequence of filename’s to try to open.

Returns:

An atom, actually a 32-bit address. 0 is returned if the .dll can not be found.

Errors:

The length of file name (or any filename contained therein) should not exceed 1 024 characters.

Comments:

file name can be a relative or an absolute file name. Most operating systems will use the normal search path for locating
non-relative files.

file name can be a list of file names to try. On different Linux platforms especially, the filename will not al-
ways be the same. For instance, you may wish to try opening libmylib.so, libmylib.so.1, libmylib.so.1.0,

libmylib.so.1.0.0. If given a sequence of file names to try, the first successful library loaded will be returned. If no
library could be loaded then zero will be returned after exhausting the entire list of file names.

The value returned by open dll can be passed to define c proc, define c func, or define c var.
You can open the same .dll or .so file multiple times. No extra memory is used and you will get the same number

returned each time.
Euphoria will close the .dll or .so for you automatically at the end of execution.

Example 1:

1 atom user32

2 user32 = open_dll("user32.dll")

3 if user32 = 0 then

4 puts(1, "Couldn ’t open user32.dll!\n")

5 end if

664

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.4. ROUTINES

Example 2:

1 atom mysql_lib

2 mysql_lib = open_dll ({"libmysqlclient.so", "libmysqlclient.so.15",

3 "libmysqlclient.so .15.0"})

4 if mysql_lib = 0 then

5 puts(1, "Couldn ’t find the mysql client library\n")

6 end if

See Also:

define c func, define c proc, define c var, c func, c proc

79.4.2 define c var

include std/dll.e

namespace dll

public function define_c_var(atom lib , sequence variable_name)

gets the address of a symbol in a shared library or in RAM.

Parameters:

1. lib : an atom, the address of a Unix .so or Windows .dll, as returned by open dll.

2. variable name : a sequence, the name of a public C variable defined within the library.

Returns:

An atom, the memory address of variable name.

Comments:

Once you have the address of a C variable, and you know its type, you can use peek and poke to read or write the value of
the variable. You can in the same way obtain the address of a C function and pass it to any external routine that requires
a callback address.

Example 1:

see .../euphoria/demo/linux/mylib.ex

See Also:

c proc, define c func, c func, open dll

79.4.3 define c proc

include std/dll.e

namespace dll

public function define_c_proc(object lib , object routine_name , sequence arg_types)

defines the characteristics of either a C function, or a machine-code routine that you wish to call as a procedure from
your Euphoria program.

665

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.4. ROUTINES

Parameters:

1. lib : an object, either an entry point returned as an atom by open dll, or "" to denote a routine the RAM address
is known.

2. routine name : an object, either the name of a procedure in a shared object or the machine address of the procedure.

3. argtypes : a sequence of type constants.

Returns:

A small integer, known as a routine id, will be returned.

Errors:

The length of name should not exceed 1 024 characters.

Comments:

Use the returned routine id as the first argument to c proc when you wish to call the routine from Euphoria.
A returned value of -1 indicates that the procedure could not be found or linked to.
On Windows you can add a ’+’ character as a prefix to the procedure name. This tells Euphoria that the function

uses the cdecl calling convention. By default, Euphoria assumes that C routines accept the stdcall convention.
When defining a machine code routine, lib must be the empty sequence, "" or , and routine name indicates the

address of the machine code routine. You can poke the bytes of machine code into a block of memory reserved using
allocate. On Windows the machine code routine is normally expected to follow the stdcall calling convention, but if you
wish to use the cdecl convention instead you can code ’+’, address instead of address.

argtypes is made of type constants, which describe the C types of arguments to the procedure. They may be used
to define machine code parameters as well.

The C function that you define could be one created by the Euphoria To C Translator, in which case you can pass
Euphoria data to it, and receive Euphoria data back. A list of Euphoria types is shown above.

You can pass any C integer type or pointer type. You can also pass a Euphoria atom as a C double or float.
Parameter types which use 4 bytes or less are all passed the same way, so it is not necessary to be exact.
Currently, there is no way to pass a C structure by value. You can only pass a pointer to a structure. However, you

can pass a 64 bit integer by pretending to pass two C LONG instead. When calling the routine, pass low doubleword first,
then high doubleword.

The C function can return a value but it will be ignored. If you want to use the value returned by the C function, you
must instead define it with define c func and call it with c func.

Example 1:

1 atom user32

2 integer ShowWindow

3

4 -- open user32.dll - it contains the ShowWindow C function

5 user32 = open_dll("user32.dll")

6

7 -- It has 2 parameters that are both C int.

8 ShowWindow = define_c_proc(u""ShowWindow", {C_INT , C_INT})

9 -- If ShowWindow used the cdecl convention ,

10 -- we would have coded "+ShowWindow" here

11

12 if ShowWindow = -1 then

13 puts(1, "ShowWindow not found !\n")

14 end if

666

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.4. ROUTINES

See Also:

c proc, define c func, c func, open dll

79.4.4 define c func

include std/dll.e

namespace dll

public function define_c_func(object lib , object routine_name , sequence arg_types ,

atom return_type)

defines the characteristics of either a C function, or a machine-code routine that returns a value.

Parameters:

1. lib : an object, either an entry point returned as an atom by open dll, or "" to denote a routine the RAM address
is known.

2. routine name : an object, either the name of a procedure in a shared object or the machine address of the procedure.

3. argtypes : a sequence of type constants.

4. return type : an atom, indicating what type the function will return.

Returns:

A small integer, known as a routine id, will be returned.

Errors:

The length of name should not exceed 1 024 characters.

Comments:

Use the returned routine id as the first argument to c proc when you wish to call the routine from Euphoria.
A returned value of -1 indicates that the procedure could not be found or linked to.
On Windows you can add a ’+’ character as a prefix to the function name. This indicates to Euphoria that the

function uses the cdecl calling convention. By default, Euphoria assumes that C routines accept the stdcall convention.
When defining a machine code routine, x1 must be the empty sequence ("" or), and x2 indicates the address of the

machine code routine. You can poke the bytes of machine code into a block of memory reserved using allocate. On
Windows the machine code routine is normally expected to follow the stdcall calling convention, but if you wish to use
the cdecl convention instead, you can code ’+’, address instead of address for x2.

The C function that you define could be one created by the Euphoria To C Translator, in which case you can pass
Euphoria data to it, and receive Euphoria data back. A list of Euphoria types is contained in dll.e:

• E INTEGER = #06000004

• E ATOM = #07000004

• E SEQUENCE= #08000004

• E OBJECT = #09000004

You can pass or return any C integer type or pointer type. You can also pass a Euphoria atom as a C double or float,
and get a C double or float returned to you as a Euphoria atom.

Parameter types which use 4 bytes or less are all passed the same way, so it is not necessary to be exact when choosing
a 4-byte parameter type. However the distinction between signed and unsigned may be important when you specify the
return type of a function.

667

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.4. ROUTINES

Currently, there is no way to pass a C structure by value or get a C structure as a return result. You can only pass a
pointer to a structure and get a pointer to a structure as a result. However, you can pass a 64 bit integer as two C LONG

instead. On calling the routine, pass low doubleword first, then high doubleword.
If you are not interested in using the value returned by the C function, you should instead define it with define c proc

and call it with c proc.
If you use euiw to call a cdecl C routine that returns a floating-point value, it might not work. This is because the

Watcom C compiler (used to build euiw) has a non-standard way of handling cdecl floating-point return values.
Passing floating-point values to a machine code routine will be faster if you use c func rather than call to call the

routine, since you will not have to use atom to float64 and poke to get the floating-point values into memory.

Example 1:

1 atom user32

2 integer LoadIcon

3

4 -- open user32.dll - it contains the LoadIconA C function

5 user32 = open_dll("user32.dll")

6

7 -- It takes a C pointer and a C int as parameters.

8 -- It returns a C int as a result.

9 LoadIcon = define_c_func(u""LoadIconA",

10 {C_POINTER , C_INT}, C_INT)

11 -- We use "LoadIconA" here because we know that LoadIconA

12 -- needs the stdcall convention , as do

13 -- all standard .dll routines in the WINDOWS API.

14 -- To specify the cdecl convention , we would have used "+LoadIconA".

15

16 if LoadIcon = -1 then

17 puts(1, "LoadIconA could not be found !\n")

18 end if

See Also:

demo\callmach.ex, c func, define c proc, c proc, open dll

79.4.5 c func

<built -in > function c_func(integer rid , sequence args ={})

calls a C function, machine code function, translated Euphoria function, or compiled Euphoria function by routine id.

Parameters:

1. rid : an integer, the routine id of the external function being called.

2. args : a sequence, the list of parameters to pass to the function

Returns:

An object, whose type and meaning was defined on calling define c func.

Errors:

If rid is not a valid routine id, or the arguments do not match the prototype of the routine being called, an error occurs.

668

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.4. ROUTINES

Comments:

rid must have been returned by define c func, not by routine id. The type checks are different, and you would get a
machine level exception in the best case.

If the function does not take any arguments then args should be .
If you pass an argument value which contains a fractional part, where the C function expects a C integer type, the

argument will be rounded towards zero. For example: 5.9 will be passed as 5 and -5.9 will be passed as -5.
The function could be part of a .dll or .so created by the Euphoria To C Translator. In this case, a Euphoria atom

or sequence could be returned. C and machine code functions can only return integers, or more generally, atoms (IEEE
floating-point numbers).

Example 1:

1 atom user32 , hwnd , ps, hdc

2 integer BeginPaint

3

4 -- open user32.dll - it contains the BeginPaint C function

5 user32 = open_dll("user32.dll")

6

7 -- the C function BeginPaint takes a C int argument and

8 -- a C pointer , and returns a C int as a result:

9 BeginPaint = define_c_func(u""BeginPaint",

10 {C_INT , C_POINTER}, C_INT)

11

12 -- call BeginPaint , passing hwnd and ps as the arguments ,

13 -- hdc is assigned the result:

14 hdc = c_func(BeginPaint , {hwnd , ps})

See Also:

c proc, define c proc, open dll, Platform-Specific Issues

79.4.6 c proc

<built -in > procedure c_proc(integer rid , sequence args ={})

calls a C void function, machine code function, translated Euphoria procedure, or compiled Euphoria procedure by
routine id.

Parameters:

1. rid : an integer, the routine id of the external function being called.

2. args : a sequence, the list of parameters to pass to the function

Errors:

If rid is not a valid routine id, or the arguments do not match the prototype of the routine being called, an error occurs.

Comments:

rid must have been returned by define c proc, not by routine id. The type checks are different, and you would get a
machine level exception in the best case.

If the procedure does not take any arguments then args should be .
If you pass an argument value which contains a fractional part, where the C void function expects a C integer type,

the argument will be rounded towards zero. For example: 5.9 will be passed as 5 and -5.9 will be passed as -5.

669

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.4. ROUTINES

Example 1:

1 atom user32 , hwnd , rect

2 integer GetClientRect

3

4 -- open user32.dll - it contains the GetClientRect C function

5 user32 = open_dll("user32.dll")

6

7 -- GetClientRect is a VOID C function that takes a C int

8 -- and a C pointer as its arguments:

9 GetClientRect = define_c_proc(u""GetClientRect",

10 {C_INT , C_POINTER })

11

12 -- pass hwnd and rect as the arguments

13 c_proc(GetClientRect , {hwnd , rect})

See Also:

c func, define c func, open dll, Platform-Specific Issues

79.4.7 call back

include std/dll.e

namespace dll

public function call_back(object id)

gets a machine address for an Euphoria procedure.

Parameters:

1. id : an object, either the id returned by routine id (for the function or procedure), or a pair ’+’, id.

Returns:

An atom, the address of the machine code of the routine. It can be used by Windows, an external C routine in a Windows
.dll, or Unix shared library (.so), as a 32-bit ”call-back” address for calling your Euphoria routine.

Errors:

The length of name should not exceed 1 024 characters.

Comments:

By default, your routine will work with the stdcall convention. On Windows you can specify its id as ’+’, id, in which
case it will work with the cdecl calling convention instead. On Unix platforms, you should only use simple IDs, as there is
just one standard cdecl calling convention.

You can set up as many call-back functions as you like, but they must all be Euphoria functions (or types) with 0 to
9 arguments. If your routine has nothing to return (it should really be a procedure), just return 0 (say), and the calling C
routine can ignore the result.

When your routine is called, the argument values will all be 32-bit unsigned (positive) values. You should declare each
parameter of your routine as atom, unless you want to impose tighter checking. Your routine must return a 32-bit integer
value.

You can also use a call-back address to specify a Euphoria routine as an exception handler in the Linux or FreeBSD
signal function. For example, you might want to catch the SIGTERM signal, and do a graceful shutdown. Some Web
hosts send a SIGTERM to a CGI process that has used too much CPU time.

670

CHAPTER 79. DYNAMIC LINKING TO EXTERNAL CODE 79.4. ROUTINES

A call-back routine that uses the cdecl convention and returns a floating-point result, might not work with euiw. This
is because the Watcom C compiler (used to build euiw) has a non-standard way of handling cdecl floating-point return
values.

Example 1:

See: .../euphoria/demo/win32/window.exw

Example 2:

See: .../euphoria/demo/linux/qsort.ex

See Also:

routine id

671

Chapter 80
Errors and Warnings

80.1 Routines

80.1.1 crash

include std/error.e

namespace error

public procedure crash(sequence fmt , object data = {})

crashes the running program and displays a formatted error message.

Parameters:

1. fmt : a sequence representing the message text. It may have format specifiers in it

2. data : an object, defaulted to .

Comments:

Formatting is the same as with printf.
The actual message being shown, both on standard error and in ex.err (or whatever file last passed to crash file), is

sprintf(fmt, data). The program terminates as for any runtime error.

Example 1:

if PI = 3 then

crash("The structure of universe just changed -- reload solar_system.ex")

end if

Example 2:

if token = end_of_file then

crash("Test file #%d is bad , text read so far is %s\n",

{file_number , read_so_far })

end if

672

CHAPTER 80. ERRORS AND WARNINGS 80.1. ROUTINES

See Also:

crash file, crash message, printf

80.1.2 crash message

include std/error.e

namespace error

public procedure crash_message(sequence msg)

specifies a final message to be displayed to your user, in the event that Euphoria has to shut down your program due
to an error.

Parameters:

1. msg : a sequence to display. It must only contain printable characters.

Comments:

There can be as many calls to crash message as needed in a program. Whatever was defined last will be used in case of
a runtime error.

Example 1:

1 crash_message("The password you entered must have at least 8 characters.")

2 pwd_key = input_text [1..8]

3 -- if ## input_text ## is too short ,

4 -- user will get a more meaningful message than

5 -- "index out of bounds ".

See Also:

crash, crash file

80.1.3 crash file

include std/error.e

namespace error

public procedure crash_file(sequence file_path)

specifies a file path name in place of "ex.err" where you want any diagnostic information to be written.

Parameters:

1. file path : a sequence, the new error and traceback file path.

Comments:

There can be as many calls to crash file as needed. Whatever was defined last will be used in case of an error at
runtime, whether it was triggered by crash or not.

See Also:

crash, crash message

673

CHAPTER 80. ERRORS AND WARNINGS 80.1. ROUTINES

80.1.4 abort

<built -in > procedure abort(atom error)

aborts execution of the program.

Parameters:

1. error : an integer, the exit code to return.

Comments:

error is expected to lie in the 0..255 range. Zero is usually interpreted as the sign of a successful completion.
Other values can indicate various kinds of errors. Windows batch (.bat) programs can read this value using the

errorlevel feature. Non integer values are rounded down. A Euphoria program can read this value using system exec.
abort is useful when a program is many levels deep in subroutine calls, and execution must end immediately, perhaps

due to a severe error that has been detected.
If you do not use abort then the interpreter will normally return an exit status code of zero. If your program fails with

a Euphoria-detected compile-time or run-time error then a code of one is returned.

Example 1:

1 if x = 0 then

2 puts(ERR , "can ’t divide by 0 !!!\n")

3 abort (1)

4 else

5 z = y / x

6 end if

See Also:

crash message, system exec

80.1.5 warning file

include std/error.e

namespace error

public procedure warning_file(object file_path)

specifies a file path where to output warnings.

Parameters:

1. file path : an object indicating where to dump any warning that were produced.

Comments:

By default, warnings are displayed on the standard error, and require pressing the Enter key to keep going. Redirecting to
a file enables skipping the latter step and having a console window open, while retaining ability to inspect the warnings in
case any was issued.

Any atom >= 0 causes standard error to be used, thus reverting to default behaviour.
Any atom < 0 suppresses both warning generation and output. Use this latter in extreme cases only.
On an error, some output to the console is performed anyway, so that whatever warning file was specified is ignored

then.

674

CHAPTER 80. ERRORS AND WARNINGS 80.1. ROUTINES

Example 1:

warning_file("warnings.lst")

-- some code

warning_file (0)

-- changed opinion: warnings will go to standard error as usual

See Also:

without warning, warning

80.1.6 warning

<built -in > procedure warning(sequence message)

causes the specified warning message to be displayed as a regular warning.

Parameters:

1. message : a double quoted literal string, the text to display.

Comments:

Writing a library has specific requirements, since the code you write will be mainly used inside code you did not write. It
may be desirable then to influence, from inside the library, that code you did not write.

This is what warning, in a limited way, does. It enables to generate custom warnings in code that will include yours.
Of course, you can also generate warnings in your own code, for instance as a kind of memo. The without warning top
level statement disables such warnings.

The warning is issued with the custom warning level. This level is enabled by default, but can be turned off any time.
Using any kind of expression in message will result in a blank warning text.

Example 1:

1 -- mylib.e

2 procedure foo(integer n)

3 warning("The foo() procedure is obsolete , use bar() instead.")

4 ? n

5 end procedure

6

7 -- some_app.exw

8 include mylib.e

9 foo (123)

will result, when some app.exw is run with warning, in the following text being displayed in the console (terminal)
window

123

Warning: (custom_warning):

The foo() procedure is obsolete , use bar() instead.

Press Enter ...

See Also:

warning file without warning

675

CHAPTER 80. ERRORS AND WARNINGS 80.1. ROUTINES

80.1.7 crash routine

include std/error.e

namespace error

public procedure crash_routine(integer func)

specifies a function to be called when an error takes place at run time.

Parameters:

1. func : an integer, the routine id of the function to link in.

Comments:

The supplied function must have only one argument, which should be integer or more general. Defaulted parameters in
crash routines are not supported yet.

Euphoria maintains a linked list of routines to execute upon a crash. crash routine adds a new function to the list.
The routines defined first are executed last. You cannot unlink a routine once it is linked, nor inspect the crash routine
chain.

Currently, the crash routines are pass zero. Future versions may attempt to convey more information to them. If a
crash routine returns anything else than zero, the remaining routines in the chain are skipped.

Crash routines are not fully fledged exception handlers, and they cannot resume execution at current or next statement.
However, they can read the generated crash file, and might perform any action, including restarting the program.

Example 1:

1 function report_error(integer dummy)

2 mylib:email("maintainer@remote_site.org", "ex.err")

3 return 0 and dummy

4 end function

5 crash_routine(routine_id("report_error"))

See Also:

crash file, routine id, Debugging and Profiling

676

Chapter 81
Pseudo Memory

One use is to emulate PBR, such as Euphoria’s map and stack types.

81.0.8 ram space

include std/eumem.e

namespace eumem

export sequence ram_space

The (pseudo) RAM heap space. Use malloc to gain ownership to a heap location and free to release it back to the
system.

81.0.9 malloc

include std/eumem.e

namespace eumem

export function malloc(object mem_struct_p = 1, integer cleanup_p = 1)

allocates a block of (pseudo) memory.

Parameters:

1. mem struct p : The initial structure (sequence) to occupy the allocated block. If this is an integer, a sequence of
zero this long is used. The default is the number one, meaning that the default initial structure is 0

2. cleanup p : Identifies whether the memory should be released automatically when the reference count for the handle
for the allocated block drops to zero, or when passed to delete. If zero, then the block must be freed using the
free procedure.

Returns:

A handle, to the acquired block. Once you acquire the handle you can use it as needed. Note that if cleanup p is one,
then the variable holding the handle must be capable of storing an atom (do not use an integer) as a double floating point
value.

Example 1:

my_spot = malloc ()

ram_space[my_spot] = my_data

677

CHAPTER 81. PSEUDO MEMORY

81.0.10 free

include std/eumem.e

namespace eumem

export procedure free(atom mem_p)

deallocates a block of (pseudo) memory.

Parameters:

1. mem p : The handle to a previously acquired ram space location.

Comments:

This allows the location to be used by other parts of your application. You should no longer access this location again
because it could be acquired by some other process in your application. This routine should only be called if you passed
zero as cleanup p to malloc.

Example 1:

my_spot = malloc (1,0)

ram_space[my_spot] = my_data

-- . . . do some processing . . .

free(my_spot)

81.0.11 valid

include std/eumem.e

namespace eumem

export function valid(object mem_p , object mem_struct_p = 1)

validates a block of (pseudo) memory.

Parameters:

1. mem p : The handle to a previously acquired ram space location.

2. mem struct p : If an integer, this is the length of the sequence that should be occupying the ram space location
pointed to by mem p.

Returns:

An integer,
0 if either the mem p is invalid or if the sequence at that location is the wrong length.
1 if the handle and contents are okay.

Comments:

This can only check the length of the contents at the location. Nothing else is checked at that location.

678

CHAPTER 81. PSEUDO MEMORY

Example 1:

1 my_spot = malloc ()

2 ram_space[my_spot] = my_data

3 . . . do some processing . .

4 if valid(my_spot , length(my_data)) then

5 free(my_spot)

6 end if

679

Chapter 82
Machine Level Access

82.0.12 Marchine Level Access Summary

Warning: Some of these routines require a knowledge of machine-level programming. You could crash your system!

These routines, along with peek, poke and call, let you access all of the features of your computer. You can read and
write to any allowed memory location, and you can create and execute machine code subroutines.

If you are manipulating 32-bit addresses or values, remember to use variables declared as atom. The integer type only
goes up to 31 bits.

If you choose to call machine proc or machine func directly (to save a bit of overhead) you *must* pass valid
arguments or Euphoria could crash.

Some example programs to look at:

• demo/callmach.ex – calling a machine language routine

82.0.13 peek longs

include std/machine.e

namespace machine

public function peek_longs(object x)

@nodoc

82.0.14 MAP ANONYMOUS

include std/machine.e

namespace machine

export constant MAP_ANONYMOUS

82.0.15 MAP FAILED

include std/machine.e

namespace machine

export constant MAP_FAILED

680

CHAPTER 82. MACHINE LEVEL ACCESS 82.1. SAFE MODE

82.1 Safe Mode

82.1.1 Safe Mode Summary

During the development of your application, you can define the word SAFE to cause machine.e to use alternative memory
functions. These functions are slower but help in the debugging stages. In general, SAFE mode should not be enabled
during production phases but only for development phases.

To define the word SAFE run your application with the -D SAFE command line option, or add to the top of your main
file:

with define safe

before the first appearance of include std/machine.e

The implementation of the Machine Level Access routines used are controled with the define word SAFE. The use of
SAFE switches the routines included here to use debugging versions which will allow you to catch all kinds of bugs that
might otherwise may not always crash your program where in the line your program is written. There may be bugs that
are invisible until you port the program they are in to another platform. There has been no bench marking for how much
of a speed penalty there is using SAFE.

You can take advantage of SAFE debugging by:

• If necessary, call register block(address, length, memory protection) to add additional ”external” blocks of memory
to the safe address list. These are blocks of memory that are safe to use but which you did not acquire through
Euphoria’s allocate, allocate data, allocate code or allocate protect, allocate string, allocate wstring. Call unregis-
ter block(address) when you want to prevent further access to an external block. When SAFE is not enabled these
functions will do nothing and will be converted into nothing by the inline code in the front-end.

• You will be notified if memory that you haven’t allocated is accessed, or if memory is freed twice, or if memory is
used in the wrong way. Your application will can be ready for D.E.P. enabled systems even if the system you test
on doesn’t have D.E.P..

• If a bug is caught, you will hear some ”beep” sounds. Press Enter to clear the screen and see the error message.
There will be a descriptive crash message and a traceback in ex.err so you can find the statement that is making
the illegal memory access.

82.1.2 check calls

Define block checking policy.

include std/machine.e

public integer check_calls

Comments:

If this integer is 1, (the default), check all blocks for edge corruption after each Executable Memory, call, c proc or c func.
To save time, your program can turn off this checking by setting check calls to 0.

82.1.3 edges only

include std/machine.e

public integer edges_only

Determine whether to flag accesses to remote memory areas.

681

CHAPTER 82. MACHINE LEVEL ACCESS 82.1. SAFE MODE

Comments:

If this integer is 1 (the default under Windows), only check for references to the leader or trailer areas just outside each
registered block, and don’t complain about addresses that are far out of bounds (it’s probably a legitimate block from
another source)

For a stronger check, set this to 0 if your program will never read/write an unregistered block of memory.
On Windows people often use unregistered blocks. Please do not be one of them.

82.1.4 check all blocks

include std/machine.e

check_all_blocks ()

Scans the list of registered blocks for any corruption.

Comments:

safe.e maintains a list of acquired memory blocks. Those gained through allocate are automatically included. Any other
block, for debugging purposes, must be registered by register block and unregistered by unregister block.

The list is scanned and, if any block shows signs of corruption, it is displayed on the screen and the program terminates.
Otherwise, nothing happens.

Unless SAFE is defined, this routine does nothing. It is there to make switching between debugged and normal version
of your program easier.

See Also:

register block, unregister block

82.1.5 register block

include std/machine.e

procedure register_block(machine_addr block_addr , positive_int block_len ,

valid_memory_protection_constant memory_protection = PAGE_READ_WRITE)

Adds a block of memory to the list of safe blocks maintained by safe.e (the debug version of memory.e). The block
starts at address a. The length of the block is i bytes.

Parameters:

1. block addr : an atom, the start address of the block

2. block len : an integer, the size of the block.

3. protection : a constant integer, of the memory protection constants found in machine.e, that describes what
access we have to the memory.

Comments:

In memory.e, this procedure does nothing. It is there to simplify switching between the normal and debug version of the
library.

This routine is only meant to be used for debugging purposes. safe.e tracks the blocks of memory that your program is
allowed to peek, poke, mem copy etc. These are normally just the blocks that you have allocated using Euphoria’s allocate
routine, and which you have not yet freed using Euphoria’s free. In some cases, you may acquire additional, external,
blocks of memory, perhaps as a result of calling a C routine.

If you are debugging your program using safe.e, you must register these external blocks of memory or safe.e

will prevent you from accessing them. When you are finished using an external block you can unregister it using
unregister block.

682

CHAPTER 82. MACHINE LEVEL ACCESS 82.2. DATA EXECUTE MODE AND DATA EXECUTE PROTECTION

Example 1:

1 atom addr

2

3 addr = c_func(x, {})

4 register_block(addr , 5)

5 poke(addr , "ABCDE")

6 unregister_block(addr)

See Also:

unregister block, Safe Mode

82.1.6 unregister block

include std/machine.e

public procedure unregister_block(machine_addr block_addr)

removes a block of memory from the list of safe blocks maintained by safe.e (the debug version of memory.e).

Parameters:

1. block addr : an atom, the start address of the block

Comments:

In memory.e, this procedure does nothing. It is there to simplify switching between the normal and debug version of the
library.

This routine is only meant to be used for debugging purposes. Use it to unregister blocks of memory that you have
previously registered using register block. By unregistering a block, you remove it from the list of safe blocks maintained
by safe.e. This prevents your program from performing any further reads or writes of memory within the block.

See register block for further comments and an example.

See Also:

register block, Safe Mode

82.2 Data Execute Mode and Data Execute Protection

Data Execute Mode makes data that will be returned from allocate executable. On some systems you will not be allowed
to run code in memory returned from allocate unless this mode has been enabled. This restriction is called Data Execute
Protection or D.E.P.. When writing software you should use allocate code or allocate protect to get memory for execution.
This is more efficient and more secure than using Data Execute mode. Because many hacker exploits of software use
data buffers and then trick software into running this data, Data Execute Protection stops an entire class of exploits.

If you get a Data Execute Protection Exception from running software, it means that D.E.P. could have thwarted an
attack! Your application crashes and your computer wasn’t infected. However, many people will decide that they want to
disable D.E.P. because they know that they call memory returned by allocate or perhaps they are simply careless.

82.3 Type Sorted Function List

82.3.1 Executable Memory

Executable Memory is the way to run code on the stack in a completly portable way.

683

CHAPTER 82. MACHINE LEVEL ACCESS 82.3. TYPE SORTED FUNCTION LIST

Use the following Routines:

Use allocate code to allocate some executable machine-code, call to call the code, and free code to free the machine-code.

82.3.2 Using Data Bytes

In C, bytes are called ’char’ or ’BOOL’ or ’boolean’. They sometimes are used for very small numbers but mostly, they are
used in C-strings. See Using Strings.

Use allocate data to allocate data and return an address. Use poke to save atoms or sequences to at an address. Use
peeks or peek to read from an address. Use mem set and mem copy to set and copy sections of memory. Use free to free
or use delete if you enabled cleanup in allocate data.

82.3.3 Using Data Words

Words are 16-bit integers and are big enough to hold most integers in common use as far as whole numbers go. So they
often are used to hold numbers. In C, they are declared as WORD or short.

Use allocate data to allocate data and return its address. Use poke2 to write to the data at an address. Use peek2 or
peek2s to read from an address. Use free to free or use delete if you enabled cleanup in allocate data.

82.3.4 Using Data Double Words

Double words are 32-bit integers. In C, they are typically declared as int, or long (on Windows and other 32-bit architec-
tures), or DWORD. They are big enough to hold pointers to other values in memory on 32-bit architectures.

Use allocate data to allocate data and return its address. Use poke4 to write to the data at an address. Use peek4 or
peek4s to read from an address. Use free to free or use delete if you enabled cleanup in allocate data.

82.3.5 Using Data Quad Words

Quad words are 64-bit integers. In C, they are typically declared as long long int, or long int (on 64-bit architectures other
than Windows). They are big enough to hold pointers to other values in memory on 64-bit architectures.

Use allocate data to allocate data and return its address. Use poke8 to write to the data at an address. Use peek8u
or peek8s to read from an address. Use free to free or use delete if you enabled cleanup in allocate data.

82.3.6 Using Pointers

A Euphoria atom should be used to store pointer values. On 32-bit architectures, pointers may be larger than a Euphoria
integer. On 64-bit architectures, a Euphoria integer is large enough to hold pointer values, since current 64-bit architectures
use only a 48-bit memory space

To portably peek and poke pointers, you should use peek pointer and poke pointer. These routines automatically
detect the architecture and use the correct size for a pointer.

82.3.7 Using Long Integers

When interfacing with C code, some data will be defined as long or long int. This data type can be tricky to use in a
portable manner, due to the way that different architectures and operating systems define it.

On all 32-bit architectures on which Euphoria runs, a long int is defined as 32-bits. On 64-bit Windows, a long

int is also 32-bits. However, on other 64-bit operating systems, a long int is defined as 64-bits.

To portably peek and poke long int data, you should use peek longs, peek longu and poke long. You can also use
sizeof(C LONG) to determine the size (in bytes) of a native long int.

684

CHAPTER 82. MACHINE LEVEL ACCESS 82.4. MEMORY ALLOCATION

82.3.8 Using Strings

You can create legal ANSI and 16-bit UNICODE Strings with these routines. In C, strings are often declared as some
pointer to a character: char * or wchar *.

Microsoft Windows uses 8-bit ANSI and 16-bit UNICODE in its routines.

Use allocate string or allocate wstring to allocate a string pointer. Use peek string, peek wstring, peek4, to read from
memory byte strings, word strings and double word strings repsectively. Use poke, poke2, or poke4 to write to memory
byte strings, word strings and double word strings. Use free to free or use delete if you enabled cleanup in allocate data.

82.3.9 Using Pointer Arrays

Use allocate string pointer array to allocate a string array from a sequence of strings. Use allocate pointer array to allocate
and then write to an array for pointers . Use free pointer array to deallocate or use delete if you enabled cleanup in
allocate data.

82.4 Memory Allocation

82.4.1 allocate

include std/machine.e

namespace machine

public function allocate(memory :positive_int n, types :boolean cleanup = 0)

This does the same as allocate data but allows the DATA EXECUTE defined word to cause it to return executable
memory.

See Also:

allocate data, allocate code, free

82.4.2 allocate data

include std/machine.e

namespace machine

public function allocate_data(memory :positive_int n, types :boolean cleanup = 0)

Allocate a contiguous block of data memory.

Parameters:

1. n : a positive integer, the size of the requested block.

2. cleanup : an integer, if non-zero, then the returned pointer will be automatically freed when its reference count
drops to zero, or when passed as a parameter to delete.

Returns:

An atom, the address of the allocated memory or 0 if the memory can’t be allocated. NOTE you must use either an atom
or object to receive the returned value as sometimes the returned memory address is too larger for an integer to hold.

685

CHAPTER 82. MACHINE LEVEL ACCESS 82.4. MEMORY ALLOCATION

Comments:

• Since allocate acquires memory from the system, it is your responsiblity to return that memory when your appli-
cation is done with it. There are two ways to do that - automatically or manually.

– Automatically - If the cleanup parameter is non-zero, then the memory is returned when the variable that
receives the address goes out of scope and is not referenced by anything else. Alternatively you can force it be
released by calling the delete function.

– Manually - If the cleanup parameter is zero, then you must call the free function at some point in your program
to release the memory back to the system.

• When your program terminates, the operating system will reclaim all memory that your applicaiton acquired anyway.

• An address returned by this function shouldn’t be passed to call. For that purpose you should use allocate code

instead.

• The address returned will be at least 8-byte aligned.

Example 1:

buffer = allocate (100)

for i = 0 to 99 do

poke(buffer+i, 0)

end for

See Also:

Using Data Bytes, Using Data Words, Using Data Double Words, Using Strings, allocate code, free

82.4.3 allocate pointer array

include std/machine.e

namespace machine

public function allocate_pointer_array(sequence pointers , types :boolean cleanup = 0)

Allocate a NULL terminated pointer array.

Parameters:

1. pointers : a sequence of pointers to add to the pointer array.

2. cleanup : an integer, if non-zero, then the returned pointer will be automatically freed when its reference count
drops to zero, or when passed as a parameter to delete

Comments:

This function adds the NULL terminator.

Example 1:

atom pa

pa = allocate_pointer_array ({ allocate_string("1"), allocate_string("2") })

686

CHAPTER 82. MACHINE LEVEL ACCESS 82.4. MEMORY ALLOCATION

See Also:

Using Pointer Arrays, allocate string pointer array, free pointer array

82.4.4 free pointer array

include std/machine.e

namespace machine

public procedure free_pointer_array(atom pointers_array)

Free a NULL terminated pointers array.

Parameters:

1. pointers array : memory address of where the NULL terminated array exists at.

Comments:

This is for NULL terminated lists, such as allocated by allocate pointer array. Do not call free pointer array for a
pointer that was allocated to be cleaned up automatically. Instead, use delete.

See Also:

allocate pointer array, allocate string pointer array

82.4.5 allocate string pointer array

include std/machine.e

namespace machine

public function allocate_string_pointer_array(object string_list , types :boolean cleanup = 0)

Allocate a C-style null-terminated array of strings in memory

Parameters:

1. string list : sequence of strings to store in RAM.

2. cleanup : an integer, if non-zero, then the returned pointer will be automatically freed when its reference count
drops to zero, or when passed as a parameter to delete

Returns:

An atom, the address of the memory block where the string pointer array was stored.

Example 1:

atom p = allocate_string_pointer_array ({ "One", "Two", "Three" })

-- Same as C: char *p = { "One", "Two", "Three", NULL };

See Also:

Using Pointer Arrays, free pointer array

687

CHAPTER 82. MACHINE LEVEL ACCESS 82.5. READING FROM MEMORY

82.4.6 allocate wstring

include std/machine.e

namespace machine

public function allocate_wstring(sequence s, types :boolean cleanup = 0)

Create a C-style null-terminated wchar t string in memory

Parameters:

1. s : a unicode (utf16) string

Returns:

An atom, the address of the allocated string, or 0 on failure.

See Also:

Using Strings, allocate string

82.5 Reading from Memory

82.5.1 peek

<built -in > function peek(object addr_n_length)

fetches a byte, or some bytes, from an address in memory.

Parameters:

1. addr n length : an object, either of

• an atom addr – to fetch one byte at addr, or

• a pair addr,len – to fetch len bytes at addr

Returns:

An object, either an integer if the input was a single address, or a sequence of integers if a sequence was passed. In both
cases, integers returned are bytes, in the range 0..255.

Errors:

Peeking in memory you don’t own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a EUPHORIA error.

When supplying a address, count sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers on 32-bit architectures, they can be larger than the largest value of type integer
(31-bits). Variables that hold an address should therefore be declared as atoms.

It is faster to read several bytes at once using the second form of peek than it is to read one byte at a time in a loop.
The returned sequence has the length you asked for on input.

Remember that peek takes just one argument, which in the second form is actually a 2-element sequence.

688

CHAPTER 82. MACHINE LEVEL ACCESS 82.5. READING FROM MEMORY

Example 1:

1 -- The following are equivalent:

2 -- first way

3 s = {peek (100) , peek (101) , peek (102) , peek (103)}

4

5 -- second way

6 s = peek ({100 , 4})

See Also:

Using Data Bytes, poke, peeks, peek4u, allocate, free, peek2u

82.5.2 peeks

<built -in > function peeks(object addr_n_length)

fetches a byte, or some bytes, from an address in memory.

Parameters:

1. addr n length : an object, either of

• an atom addr : to fetch one byte at addr, or

• a pair addr,len : to fetch len bytes at addr

Returns:

An object, either an integer if the input was a single address, or a sequence of integers if a sequence was passed. In both
cases, integers returned are bytes, in the range -128..127.

Errors:

Peeking in memory you do not own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

When supplying a address, count sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers on 32-bit architectures, they can be larger than the largest value of type integer
(31-bits). Variables that hold an address should therefore be declared as atoms.

It is faster to read several bytes at once using the second form of peek than it is to read one byte at a time in a loop.
The returned sequence has the length you asked for on input.

Remember that peeks takes just one argument, which in the second form is actually a 2-element sequence.

Example 1:

1 -- The following are equivalent:

2 -- first way

3 s = {peeks (100) , peek (101) , peek (102) , peek (103)}

4

5 -- second way

6 s = peeks ({100 , 4})

689

CHAPTER 82. MACHINE LEVEL ACCESS 82.5. READING FROM MEMORY

See Also:

Using Data Bytes, poke, peek4s, allocate, free, peek2s, peek

82.5.3 peek2s

<built -in > function peek2s(object addr_n_length)

Fetches a signed word, or some signed words , from an address in memory.

Parameters:

1. addr n length : an object, either of

• an atom addr – to fetch one word at addr, or

• a pair addr, len, to fetch len words at addr

Returns:

An object, either an integer if the input was a single address, or a sequence of integers if a sequence was passed. In both
cases, integers returned are double words, in the range -32768..32767.

Errors:

Peeking in memory you don’t own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a EUPHORIA error.

When supplying a address, count sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers on 32-bit architectures, they can be larger than the largest value of type integer
(31-bits). Variables that hold an address should therefore be declared as atoms.

It is faster to read several words at once using the second form of peek than it is to read one word at a time in a loop.
The returned sequence has the length you asked for on input.

Remember that peek2s takes just one argument, which in the second form is actually a 2-element sequence.

The only difference between peek2s and peek2u is how words with the highest bit set are returned. peek2s assumes
them to be negative, while peek2u just assumes them to be large and positive.

Example 1:

1 -- The following are equivalent:

2 -- first way

3 s = {peek2s (100) , peek2s (102) , peek2s (104) , peek2s (106)}

4

5 -- second way

6 s = peek2s ({100 , 4})

See Also:

Using Data Words, poke2, peeks, peek4s, allocate, free peek2u

690

CHAPTER 82. MACHINE LEVEL ACCESS 82.5. READING FROM MEMORY

82.5.4 peek2u

<built -in > function peek2u(object addr_n_length)

fetches an unsigned word, or some unsigned words, from an address in memory.

Parameters:

1. addr n length : an object, either of

• an atom addr – to fetch one double word at addr, or

• a pair addr,len – to fetch len double words at addr

Returns:

An object, either an integer if the input was a single address, or a sequence of integers if a sequence was passed. In both
cases, integers returned are words, in the range 0..65535.

Errors:

Peeking in memory you do not own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

When supplying a address, count sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers on 32-bit architectures, they can be larger than the largest value of type integer
(31-bits). Variables that hold an address should therefore be declared as atoms.

It is faster to read several words at once using the second form of peek than it is to read one word at a time in a loop.
The returned sequence has the length you asked for on input.

Remember that peek2u takes just one argument, which in the second form is actually a 2-element sequence.
The only difference between peek2s and peek2u is how words with the highest bit set are returned. peek2s assumes

them to be negative, while peek2u just assumes them to be large and positive.

Example 1:

1 -- The following are equivalent:

2 -- first way

3 Get 4 2-byte numbers starting address 100.

4 s = {peek2u (100) , peek2u (102) , peek2u (104) , peek2u (106)}

5

6 -- second way

7 Get 4 2-byte numbers starting address 100.

8 s = peek2u ({100 , 4})

See Also:

Using Data Words, poke2, peek, peek2s, allocate, free peek4u

82.5.5 peek4s

<built -in > function peek4s(object addr_n_length)

fetches a signed double words, or some signed double words, from an address in memory.

691

CHAPTER 82. MACHINE LEVEL ACCESS 82.5. READING FROM MEMORY

Parameters:

1. addr n length : an object, either of

• an atom addr – to fetch one double word at addr, or

• a pair addr, len – to fetch len double words at addr

Returns:

An object, either an atom if the input was a single address, or a sequence of atoms if a sequence was passed. In both
cases, atoms returned are double words, in the range -(231)..231-1.

Errors:

Peeking in memory you don’t own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

When supplying a address, count sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers on 32-bit architectures, they can be larger than the largest value of type integer
(31-bits). Variables that hold an address should therefore be declared as atoms.

It is faster to read several double words at once using the second form of peek than it is to read one double word at
a time in a loop. The returned sequence has the length you asked for on input.

Remember that peek4s takes just one argument, which in the second form is actually a 2-element sequence.
The only difference between peek4s and peek4u is how double words with the highest bit set are returned. peek4s

assumes them to be negative, while peek4u just assumes them to be large and positive.

Example 1:

1 -- The following are equivalent:

2 -- first way

3 s = {peek4s (100) , peek4s (104) , peek4s (108) , peek4s (112)}

4

5 -- second way

6 s = peek4s ({100 , 4})

See Also:

Using Data Double Words, poke4, peeks, peek4u, allocate, free, peek2s

82.5.6 peek8s

<built -in > function peek8s(object addr_n_length)

fetches a signed quad words, or some signed quad words, from an address in memory.

Parameters:

1. addr n length : an object, either of

• an atom addr – to fetch one double word at addr, or

• a pair addr, len – to fetch len quad words at addr

692

CHAPTER 82. MACHINE LEVEL ACCESS 82.5. READING FROM MEMORY

Returns:

An object, either an atom if the input was a single address, or a sequence of atoms if a sequence was passed. In both
cases, atoms returned are quad words, in the range -power(2,63)..power(2,63)-1.

Errors:

Peeking in memory you don’t own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

When supplying a address, count sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers on 32-bit architectures, they can be larger than the largest value of type integer
(31-bits). Variables that hold an address should therefore be declared as atoms.

It is faster to read several quad words at once using the second form of peek than it is to read one quad word at a
time in a loop. The returned sequence has the length you asked for on input.

Remember that peek8s takes just one argument, which in the second form is actually a 2-element sequence.
The only difference between peek8s and peek8u is how quad words with the highest bit set are returned. peek4s

assumes them to be negative, while peek4u just assumes them to be large and positive.

Example 1:

1 -- The following are equivalent:

2 -- first way

3 s = {peek8s (100) , peek8s (108) , peek8s (116) , peek8s (124)}

4

5 -- second way

6 s = peek8s ({100 , 4})

See Also:

Using Data Double Words, poke4, peeks, peek4u, allocate, free, peek2s

82.5.7 peek4u

<built -in > function peek4u(object addr_n_length)

fetches an unsigned double word, or some unsigned double words, from an address in memory.

Parameters:

1. addr n length : an object, either of

• an atom addr – to fetch one double word at addr, or

• a pair addr,len – to fetch len double words at addr

Returns:

An object, either an atom if the input was a single address, or a sequence of atoms if a sequence was passed. In both
cases, atoms returned are double words, in the range 0..232-1.

693

CHAPTER 82. MACHINE LEVEL ACCESS 82.5. READING FROM MEMORY

Errors:

Peeking in memory you do not own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

When supplying a address, count sequence, the count must not be negative.

Comments:

Since addresses are 32-bit numbers on 32-bit architectures, they can be larger than the largest value of type integer
(31-bits). Variables that hold an address should therefore be declared as atoms.

It is faster to read several double words at once using the second form of peek than it is to read one double word at
a time in a loop. The returned sequence has the length you asked for on input.

Remember that peek4u takes just one argument, which in the second form is actually a 2-element sequence.
The only difference between peek4s and peek4u is how double words with the highest bit set are returned. peek4s

assumes them to be negative, while peek4u just assumes them to be large and positive.

Example 1:

1 -- The following are equivalent:

2 -- first way

3 s = {peek4u (100) , peek4u (104) , peek4u (108) , peek4u (112)}

4

5 -- second way

6 s = peek4u ({100 , 4})

See Also:

Using Data Double Words, poke4, peek, peek4s, allocate, free, peek2u

82.5.8 peek8u

<built -in > function peek8u(object addr_n_length)

fetches an unsigned quad word, or some unsigned quad words, from an address in memory.

Parameters:

1. addr n length : an object, either of

• an atom addr – to fetch one double word at addr, or

• a pair addr,len – to fetch len double words at addr

Returns:

An object, either an atom if the input was a single address, or a sequence of atoms if a sequence was passed. In both
cases, atoms returned are quad words, in the range 0..power(2,64)-1.

Errors:

Peeking in memory you do not own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

When supplying a address, count sequence, the count must not be negative.

694

CHAPTER 82. MACHINE LEVEL ACCESS 82.5. READING FROM MEMORY

Comments:

Since addresses are 32-bit numbers on 32-bit architectures, they can be larger than the largest value of type integer
(31-bits). Variables that hold an address should therefore be declared as atoms.

It is faster to read several quad words at once using the second form of peek than it is to read one quad word at a
time in a loop. The returned sequence has the length you asked for on input.

Remember that peek8u takes just one argument, which in the second form is actually a 2-element sequence.

The only difference between peek8s and peek8u is how quad words with the highest bit set are returned. peek8s

assumes them to be negative, while peek8u just assumes them to be large and positive.

Example 1:

1 -- The following are equivalent:

2 --first way

3 s = {peek8u (100) , peek8u (108) , peek8u (116) , peek8u (124)}

4

5 -- second way

6 s = peek8u ({100 , 4})

See Also:

Using Data Double Words, poke4, peek, peek4s, allocate, free, peek2u

82.5.9 peek longu

<built -in > function peek_longu(object addr_n_length)

fetches an unsigned integer, or some unsigned integers, from an address in memory.

Parameters:

1. addr n length : an object, either of

• an atom addr – to fetch one double word at addr, or

• a pair addr,len – to fetch len double words at addr

Returns:

An object, either an atom if the input was a single address, or a sequence of atoms if a sequence was passed. In both cases,
atoms returned are based on the native size of a ”long int.” On Windows and all other 32-bit architectures, the number
will be in the range 0..power(2,32)-1. On other 64-bit architectures, the number will be in the range of 0..power(2,64)-1.

Errors:

Peeking in memory you do not own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

When supplying a address, count sequence, the count must not be negative.

695

CHAPTER 82. MACHINE LEVEL ACCESS 82.5. READING FROM MEMORY

Comments:

Since addresses are 32-bit numbers on 32-bit architectures, they can be larger than the largest value of type integer
(31-bits). Variables that hold an address should therefore be declared as atoms.

It is faster to read several integers at once using the second form of peek than it is to read one integer at a time in a
loop. The returned sequence has the length you asked for on input.

Remember that peek longu takes just one argument, which in the second form is actually a 2-element sequence.
The only difference between peek longs and peek longu is how double words with the highest bit set are returned.

peek4s assumes them to be negative, while peek longu just assumes them to be large and positive.

Example 1:

1 -- The following are equivalent (on a 32-bit architecture , or Windows):

2 -- first way

3 s = {peek_longu (100) , peek4u (104) , peek4u (108) , peek4u (112)}

4

5 -- second way

6 s = peek_longu ({100 , 4})

See Also:

Using Data Double Words, poke4, peek, peek4s, allocate, free, peek2u, peek2s, peek8u, peek8s, peek longs, poke long

82.5.10 peek string

<built -in > function peek_string(atom addr)

reads an ASCII string in RAM, starting from a supplied address.

Parameters:

1. addr : an atom, the address at which to start reading.

Returns:

A sequence, of bytes, the string that could be read.

Errors:

Further, peeking in memory that does not belong to your process is something the operating system could prevent, and
you’d crash with a machine level exception.

Comments:

An ASCII string is any sequence of bytes and ends with a 0 byte. If you peek string at some place where there is no
string, you will get a sequence of garbage.

See Also:

Using Strings, peek, peek wstring, allocate string

82.5.11 peek pointer

<built -in > function peek_pointer(object addr_n_length)

696

CHAPTER 82. MACHINE LEVEL ACCESS 82.6. WRITING TO MEMORY

82.5.12 peek wstring

include std/machine.e

namespace machine

public function peek_wstring(atom addr)

returns a unicode (utf16) string that are stored at machine address a.

Parameters:

1. addr : an atom, the address of the string in memory

Returns:

The string, at the memory position. The terminator is the null word (two bytes equal to 0).

See Also:

Using Strings, peek string

82.6 Writing to Memory

82.6.1 poke

<built -in > procedure poke(atom addr , object x)

stores one or more bytes, starting at a memory location.

Parameters:

1. addr : an atom, the address at which to store

2. x : an object, either a byte or a non empty sequence of bytes.

Errors:

Poking in memory you do not own may be blocked by the OS, and cause a machine exception. The -D SAFE option will
make poke catch this sort of issues.

Comments:

The lower 8-bits of each byte value (such as remainder(x, 256)) is actually stored in memory.

It is faster to write several bytes at once by poking a sequence of values, than it is to write one byte at a time in a
loop.

Writing to the screen memory with poke can be much faster than using puts or printf, but the programming is more
difficult. In most cases the speed is not needed. For example, the Euphoria editor, ed, never uses poke.

697

CHAPTER 82. MACHINE LEVEL ACCESS 82.6. WRITING TO MEMORY

Example 1:

1 a = allocate (100) -- allocate 100 bytes in memory

2

3 -- poke one byte at a time:

4 poke(a, 97)

5 poke(a+1, 98)

6 poke(a+2, 99)

7

8 -- poke 3 bytes at once:

9 poke(a, {97, 98, 99})

Example 2:

demo/callmach.ex

See Also:

Using Data Bytes, peek, peeks, poke4, allocate, free, poke2, mem copy, mem set

82.6.2 poke2

<built -in > procedure poke2(atom addr , object x)

stores one or more words, starting at a memory location.

Parameters:

1. addr : an atom, the address at which to store

2. x : an object, either a word or a non empty sequence of words.

Errors:

Poking in memory you do not own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

Comments:

There is no point in having poke2s or poke2u. For example, both 32768 and -32768 are stored as #F000 when stored as
words. It is up to whoever reads the value to figure it out.

It is faster to write several words at once by poking a sequence of values, than it is to write one words at a time in a
loop.

Writing to the screen memory with poke2 can be much faster than using puts or printf, but the programming is
more difficult. In most cases the speed is not needed. For example, the Euphoria editor, ed, never uses poke2.

The 2-byte values to be stored can be negative or positive. You can read them back with either peek2s or peek2u.
Actually, only remainder(x,65536) is being stored.

Example 1:

1 a = allocate (100) -- allocate 100 bytes in memory

2

3 -- poke one 2-byte value at a time:

4 poke2(a, 12345)

5 poke2(a+2, #FF00)

698

CHAPTER 82. MACHINE LEVEL ACCESS 82.6. WRITING TO MEMORY

6 poke2(a+4, -12345)

7

8 -- poke 3 2-byte values at once:

9 poke2(a, {12345 , #FF00 , -12345})

See Also:

Using Data Words, peek2s, peek2u, poke, poke4, allocate, free

82.6.3 poke4

<built -in > procedure poke4(atom addr , object x)

stores one or more double words, starting at a memory location.

Parameters:

1. addr : an atom, the address at which to store

2. x : an object, either a double word or a non empty sequence of double words.

Errors:

Poking in memory you do not own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

Comments:

There is no point in having poke4s or poke4u. For example, both +231 and -(231) are stored as #F0000000. It is up to
whoever reads the value to figure it out.

It is faster to write several double words at once by poking a sequence of values, than it is to write one double words
at a time in a loop.

Writing to the screen memory with poke4 can be much faster than using puts or printf, but the programming is
more difficult. In most cases the speed is not needed. For example, the Euphoria editor, ed, never uses poke4.

The 4-byte values to be stored can be negative or positive. You can read them back with either peek4s or peek4u.
However, the results are unpredictable if you want to store values with a fractional part or a magnitude greater than 232,
even though Euphoria represents them all as atoms.

Example 1:

1 a = allocate (100) -- allocate 100 bytes in memory

2

3 -- poke one 4-byte value at a time:

4 poke4(a, 9712345)

5 poke4(a+4, #FF00FF00)

6 poke4(a+8, -12345)

7

8 -- poke 3 4-byte values at once:

9 poke4(a, {9712345 , #FF00FF00 , -12345})

See Also:

Using Data Double Words, peek4s, peek4u, poke, poke2, allocate, free, call

699

CHAPTER 82. MACHINE LEVEL ACCESS 82.6. WRITING TO MEMORY

82.6.4 poke8

<built -in > procedure poke8(atom addr , object x)

stores one or more quad words, starting at a memory location.

Parameters:

1. addr : an atom, the address at which to store

2. x : an object, either a quad word or a non empty sequence of double words.

Errors:

Poking in memory you do not own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

Comments:

There is no point in having poke8s or poke8u. For example, both +power(2,63) and -power(2,63) are stored as
#F000000000000000. It is up to whoever reads the value to figure it out.

It is faster to write several quad words at once by poking a sequence of values, than it is to write one quad words at a
time in a loop.

The 8-byte values to be stored can be negative or positive. You can read them back with either peek8s or peek8u.
However, the results are unpredictable if you want to store values with a fractional part or a magnitude greater than
power(2,64), even though Euphoria represents them all as atoms.

Example 1:

1 a = allocate (100) -- allocate 100 bytes in memory

2

3 -- poke one 8-byte value at a time:

4 poke8(a, 9712345)

5 poke8(a+8, #FF00FF00)

6 poke8(a+16, -12345)

7

8 -- poke 3 8-byte values at once:

9 poke8(a, {9712345 , #FF00FF00 , -12345})

See Also:

Using Data Double Words, peek4s, peek4u, poke, poke2, allocate, free, call

82.6.5 poke long

<built -in > procedure poke_long(atom addr , object x)

stores one or more integers, starting at a memory location.

Parameters:

1. addr : an atom, the address at which to store

2. x : an object, either an integer or a non empty sequence of double words.

700

CHAPTER 82. MACHINE LEVEL ACCESS 82.6. WRITING TO MEMORY

Errors:

Poking in memory you do not own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

Comments:

There is no point in having poke longs or poke longu. For example, both +power(2,31) and -power(2,31) are stored as
#F0000000 on a 32-bit architecture. It is up to whoever reads the value to figure it out.

On all Windows and other 32-bit operating systems, the poke long uses 4-byte integers. On 64-bit architectures using
operating systems other than Windows, poke long uses 8-byte integers.

It is faster to write several integers at once by poking a sequence of values, than it is to write one double words at a
time in a loop.

The 4-byte (or 8-byte) values to be stored can be negative or positive. You can read them back with either peek longs

or peek longu. However, the results are unpredictable if you want to store values with a fractional part or a magnitude
greater than the size of a native long int, even though Euphoria represents them all as atoms.

Example 1:

1 a = allocate (100) -- allocate 100 bytes in memory

2

3 -- poke one 4-byte value at a time (on Windows or other 32-bit operating system):

4 poke_long(a, 9712345)

5 poke_long(a+4, #FF00FF00)

6 poke_long(a+8, -12345)

7

8 -- poke 3 long int values at once:

9 poke_long(a, {9712345 , #FF00FF00 , -12345})

See Also:

Using Data Double Words, peek4s, peek4u, poke, poke2, allocate, free, call

82.6.6 poke pointer

<built -in > procedure poke_pointer(atom addr , object x)

stores one or more pointers, starting at a memory location.

Parameters:

1. addr : an atom, the address at which to store

2. x : an object, either an integer or a non empty sequence of pointers.

Errors:

Poking in memory you do not own may be blocked by the OS, and cause a machine exception. If you use the define safe
these routines will catch these problems with a Euphoria error.

701

CHAPTER 82. MACHINE LEVEL ACCESS 82.6. WRITING TO MEMORY

Comments:

There is no point in having poke pointers or poke pointersu. For example, both +power(2,31) and -power(2,31) are
stored as #F0000000 on a 32-bit architecture. It is up to whoever reads the value to figure it out.

On all 32-bit operating systems, the poke pointer uses 4-byte integers. On 64-bit architectures using operating
systems, poke pointer uses 8-byte integers.

It is faster to write several pointers at once by poking a sequence of values, than it is to write one double words at a
time in a loop.

The 4-byte (or 8-byte) values to be stored can be negative or positive. You can read them back with either
peek pointer or any other peek function of the correctsize. However, the results are unpredictable if you want to
store values with a fractional part or a magnitude greater than the size of a native pointer, even though Euphoria
represents them all as atoms.

Example 1:

1 a = allocate (100) -- allocate 100 bytes in memory

2

3 -- poke one 4-byte value at a time (on a 32-bit operating system):

4 poke_pointer(a, 9712345)

5 poke_pointer(a+4, #FF00FF00)

6 poke_pointer(a+8, -12345)

7

8 -- poke 3 long int values at once:

9 poke_pointer(a, {9712345 , #FF00FF00 , -12345})

See Also:

Using Data Double Words, peek4s, peek4u, peek8u, peek8s, peek pointer poke, poke2, allocate, free, call

82.6.7 poke string

include std/machine.e

namespace machine

public function poke_string(atom buffaddr , integer buffsize , sequence s)

Stores a C-style null-terminated ANSI string in memory

Parameters:

1. buffaddr: an atom, the RAM address to to the string at.

2. buffsize: an integer, the number of bytes available, starting from buffaddr.

3. s : a sequence, the string to store at address buffaddr.

Comments:

• This does not allocate an RAM. You must supply the preallocated area.

• This can only be used on ANSI strings. It cannot be used for double-byte strings.

• If s is not a string, nothing is stored and a zero is returned.

Returns:

An atom. If this is zero, then nothing was stored, otherwise it is the address of the first byte after the stored string.

702

CHAPTER 82. MACHINE LEVEL ACCESS 82.6. WRITING TO MEMORY

Example 1:

1 atom title

2

3 title = allocate (1000)

4 if poke_string(title , 1000, "The Wizard of Oz") then

5 -- successful

6 else

7 -- failed

8 end if

See Also:

Using Strings, allocate, allocate string

82.6.8 poke wstring

include std/machine.e

namespace machine

public function poke_wstring(atom buffaddr , integer buffsize , sequence s)

stores a C-style null-terminated Double-Byte string in memory.

Parameters:

1. buffaddr: an atom, the RAM address to to the string at.

2. buffsize: an integer, the number of bytes available, starting from buffaddr.

3. s : a sequence, the string to store at address buffaddr.

Comments:

• This does not allocate an RAM. You must supply the preallocated area.

• This uses two bytes per string character. Note that buffsize is the number of bytes available in the buffer and
not the number of characters available.

• If s is not a double-byte string, nothing is stored and a zero is returned.

Returns:

An atom. If this is zero, then nothing was stored, otherwise it is the address of the first byte after the stored string.

Example 1:

1 atom title

2

3 title = allocate (1000)

4 if poke_wstring(title , 1000, "The Wizard of Oz") then

5 -- successful

6 else

7 -- failed

8 end if

703

CHAPTER 82. MACHINE LEVEL ACCESS 82.7. MEMORY MANIPULATION

See Also:

Using Strings, allocate, allocate wstring

82.7 Memory Manipulation

82.7.1 mem copy

<built -in > procedure mem_copy(atom destination , atom origin , integer len)

copies a block of memory from an address to another.

Parameters:

1. destination : an atom, the address at which data is to be copied

2. origin : an atom, the address from which data is to be copied

3. len : an integer, how many bytes are to be copied.

Comments:

The bytes of memory will be copied correctly even if the block of memory at destination overlaps with the block of
memory at origin.

mem copy(destination, origin, len) is equivalent to: poke(destination, peek(origin, len)) but is much faster.

Example 1:

dest = allocate (50)

src = allocate (100)

poke(src , {1,2,3,4,5,6,7,8,9})

mem_copy(dest , src , 9)

See Also:

Using Data Bytes, mem set, peek, poke, allocate, free

82.7.2 mem set

<built -in > procedure mem_set(atom destination , integer byte_value , integer how_many))

sets a contiguous range of memory locations to a single value.

Parameters:

1. destination : an atom, the address starting the range to set.

2. byte value : an integer, the value to copy at all addresses in the range.

3. how many : an integer, how many bytes are to be set.

Comments:

The low order 8 bits of byte value are actually stored in each byte. mem set(destination, byte value, how many) is
equivalent to: poke(destination, repeat(byte value, how many)) but is much faster.

704

CHAPTER 82. MACHINE LEVEL ACCESS 82.8. CALLING INTO MEMORY

Example 1:

destination = allocate (1000)

mem_set(destination , ’ ’, 1000)

-- 1000 consecutive bytes in memory will be set to 32

-- (the ASCII code for ’ ’)

See Also:

Using Data Bytes, peek, poke, allocate, free, mem copy

82.8 Calling Into Memory

82.8.1 call

<built -in > procedure call(atom addr)

calls a machine language routine which was stored in memory prior.

Parameters:

1. addr : an atom, the address at which to transfer execution control.

Comments:

The machine code routine must execute a RET instruction #C3 to return control to Euphoria. The routine should save
and restore any registers that it uses.

You can allocate a block of memory for the routine and then poke in the bytes of machine code using allocate code.
You might allocate other blocks of memory for data and parameters that the machine code can operate on using allocate.
The addresses of these blocks could be part of the machine code.

If your machine code uses the stack, use c proc instead of call.

Example 1:

demo/callmach.ex

See Also:

Executable Memory, allocate code, free code, c proc, define c proc

82.9 Allocating and Writing to memory:

82.9.1 allocate code

include std/machine.e

namespace machine

public function allocate_code(object data , memconst :valid_wordsize wordsize = 1)

allocates and copies data into executable memory.

705

CHAPTER 82. MACHINE LEVEL ACCESS 82.9. ALLOCATING AND WRITING TO MEMORY:

Parameters:

1. a sequence of machine code : is the machine code to be put into memory to be later called with call

2. the word length : of the said code. You can specify your code as 1-byte, 2-byte or 4-byte chunks if you wish. If
your machine code is byte code specify 1. The default is 1.

Returns:

An address, The function returns the address in memory of the code, that can be safely executed whether DEP is enabled
or not or 0 if it fails. On the other hand, if you try to execute a code address returned by allocate with DEP enabled the
program will receive a machine exception.

Comments:

Use this for the machine code you want to run in memory. The copying is done for you and when the routine returns the
memory may not be readable or writeable but it is guaranteed to be executable. If you want to also write to this memory
after the machine code has been copied you should use allocate protect instead and you should read about having
memory executable and writeable at the same time is a bad idea. You mustn’t use free on memory returned from this
function. You may instead use free code but since you will probably need the code throughout the life of your program’s
process this normally is not necessary. If you want to put only data in the memory to be read and written use allocate.

See Also:

Executable Memory, allocate, free code, allocate protect

82.9.2 allocate string

include std/machine.e

namespace machine

public function allocate_string(sequence s, types :boolean cleanup = 0)

Allocate a C-style null-terminated string in memory

Parameters:

1. s : a sequence, the string to store in RAM.

2. cleanup : an integer, if non-zero, then the returned pointer will be automatically freed when its reference count
drops to zero, or when passed as a parameter to delete.

Returns:

An atom, the address of the memory block where the string was stored, or 0 on failure.

Comments:

Only the 8 lowest bits of each atom in s is stored. Use allocate wstring for storing double byte encoded strings.
There is no allocate string low function. However, you could easily craft one by adapting the code for allocate string.
Since allocate string allocates memory, you are responsible to free the block when done with it if cleanup is zero.

If cleanup is non-zero, then the memory can be freed by calling delete, or when the pointer’s reference count drops to
zero.

706

CHAPTER 82. MACHINE LEVEL ACCESS 82.10. MEMORY DISPOSAL

Example 1:

atom title

title = allocate_string("The Wizard of Oz")

See Also:

Using Strings, allocate, allocate wstring

82.9.3 allocate protect

include std/machine.e

namespace machine

public function allocate_protect(object data , memconst :valid_wordsize wordsize = 1,

valid_memory_protection_constant protection)

Allocates and copies data into memory and gives it protection using Standard Library Memory Protection Constants
or Microsoft Windows Memory Protection Constants. The user may only pass in one of these constants. If you only wish
to execute a sequence as machine code use allocate code. If you only want to read and write data into memory use
allocate.

See MSDN: Microsoft’s Memory Protection Constants

Parameters:

1. data : is the machine code to be put into memory.

2. wordsize : is the size each element of data will take in memory. Are they 1-byte, 2-bytes, 4-bytes or 8-bytes long?
Specify here. The default is 1.

3. protection : is the particular Windows protection.

Returns:

An address, The function returns the address to the required memory or 0 if it fails. This function is guaranteed to return
memory on the 8 byte boundary. It also guarantees that the memory returned with at least the protection given (but you
may get more).

If you want to call allocate protect(data, PAGE READWRITE), you can use allocate instead. It is more efficient
and simpler.

If you want to call allocate protect(data, PAGE EXECUTE), you can use allocate code instead. It is simpler.
You must not use free on memory returned from this function, instead use free code.

See Also:

Executable Memory

82.10 Memory Disposal

82.10.1 free

include std/machine.e

namespace machine

public procedure free(object addr)

frees up a previously allocated block of memory.

707

http://msdn.microsoft.com/en-us/library/aa366786(VS.85).aspx

CHAPTER 82. MACHINE LEVEL ACCESS 82.11. AUTOMATIC RESOURCE MANAGEMENT

Parameters:

1. addr, either a single atom or a sequence of atoms; these are addresses of a blocks to free.

Comments:

• Use free to return blocks of memory the during execution. This will reduce the chance of running out of memory
or getting into excessive virtual memory swapping to disk.

• Do not reference a block of memory that has been freed.

• When your program terminates, all allocated memory will be returned to the system.

• addr must have been allocated previously using allocate. You cannot use it to relinquish part of a block. Instead,
you have to allocate a block of the new size, copy useful contents from old block there and then free the old block.

• If the memory was allocated and automatic cleanup was specified, then do not call free directly. Instead, use delete.

• An addr of zero is simply ignored.

Example 1:

demo/callmach.ex

See Also:

Using Data Bytes, Using Data Words, Using Data Double Words, Using Strings, allocate data, free code

82.10.2 free code

include std/machine.e

public procedure free_code(atom addr , integer size , valid_wordsize wordsize = 1)

frees up allocated code memory.

Parameters:

1. addr : must be an address returned by allocate code or allocate protect. Do not pass memory returned from
allocate here!

2. size : is the length of the sequence passed to alllocate code or the size you specified when you called
allocate protect.

3. wordsize: valid wordsize default = 1

Comments:

Chances are you will not need to call this function because code allocations are typically public scope operations that you
want to have available until your process exits.

See Also: Executable Memory, allocate code, free

82.11 Automatic Resource Management

Euphoria objects are automatically garbage collected when they are no longer referenced anywhere. Euphoria also provides
the ability to manage resources associated with euphoria objects. These resources could be open file handles, allocated
memory, or other euphoria objects. There are two built-in routines for managing these external resources.

708

CHAPTER 82. MACHINE LEVEL ACCESS 82.12. TYPES AND CONSTANTS

82.11.1 delete routine

<built -in > function delete_routine(object x, integer rid)

associates a routine for cleaning up after a Euphoria object.

Comments:

delete routine associates a euphoria object with a routine id meant to clean up any allocated resources. It always
returns an atom (double) or a sequence, depending on what was passed (integers are promoted to atoms).

The routine specified by delete routine should be a procedure that takes a single parameter, being the object to
be cleaned up after. Objects are cleaned up under one of two circumstances. The first is if it’s called as a parameter to
delete. After the call, the association with the delete routine is removed.

The second way for the delete routine to be called is when its reference count is reduced to 0. Before its memory is
freed, the delete routine is called. A default delete will be used if the cleanup parameter to one of the allocate routines is
true.

delete routine may be called multiple times for the same object. In this case, the routines are called in reverse order
compared to how they were associated.

82.11.2 delete

<built -in > procedure delete(object x)

calls the cleanup routines associated with the object, and removes the association with those routines.

Comments:

The cleanup routines associated with the object are called in reverse order than they were added. If the object is an
integer, or if no cleanup routines are associated with the object, then nothing happens.

After the cleanup routines are called, the value of the object is unchanged, though the cleanup routine will no longer
be associated with the object.

82.12 Types and Constants

82.12.1 std library address

include std/machine.e

namespace machine

public type std_library_address(object addr)

an address returned from allocate or allocate protect or allocate code or the value 0.

Returns:

An integer, The type will return 1 if the parameter, an address, was returned from one of these Machine Level functions
(and has not yet been freeed)

Comments:

This type is equivalent to atom unless SAFE is defined. Only values that satisfy this type may be passed into free or
free code.

709

CHAPTER 82. MACHINE LEVEL ACCESS 82.12. TYPES AND CONSTANTS

82.12.2 valid memory protection constant

include std/machine.e

public type valid_memory_protection_constant(object a)

protection constants type

82.12.3 machine addr

include std/machine.e

public type machine_addr(object a)

a 32-bit non-null machine address

82.12.4 safe address

include std/machine.e

public function safe_address(machine_addr start , natural len ,

positive_int action)

action is some bitwise-or combination of the following constants: A READ, A WRITE and A EXECUTE.

Returns:

When Safe Mode is turned on, this returns true iff it is ok to perform action all addresses from start to start+len-1.
When Safe Mode is not turned on, this always returns true.

Comments:

This is used mostly inside the safe library itself to check whenever you call Machine Level Access Functions or Procedures.
It should only be used for debugging purposes.

82.12.5 ADDRESS LENGTH

include std/machine.e

namespace machine

public constant ADDRESS_LENGTH

The number of bytes required to hold a pointer.

82.12.6 PAGE SIZE

include std/machine.e

namespace machine

public constant PAGE_SIZE

The operating system’s memory page length in bytes.

710

Chapter 83
Indirect Routine Calling

83.1 Accessing Euphoria coded routines

83.1.1 routine id

<built -in > function routine_id(sequence routine_name)

returns an integer id number for a user-defined Euphoria procedure or function.

Parameters:

1. routine name : a string, the name of the procedure or function.

Returns:

An integer, known as a routine id, -1 if the named routine can’t be found, else zero or more.

Errors:

routine name should not exceed 1,024 characters.

Comments:

The id number can be passed to call proc or call func, to indirectly call the routine named by routine name. This id
depends on the internal process of parsing your code, not on routine name.

The routine named routine name must be visible (that is callable) at the place where routine id is used to get the
id number. If it is not, -1 is returned.

Indirect calls to the routine can appear earlier in the program than the definition of the routine, but the id number can
only be obtained in code that comes after the definition of the routine - see example 2 below.

Once obtained, a valid routine id can be used at any place in the program to call a routine indirectly via call proc or
call func, including at places where the routine is no longer in scope.

Some typical uses of routine id are:

1. Creating a subroutine that takes another routine as a parameter. (See Example 2 below)

2. Using a sequence of routine id’s to make a case (switch) statement. Using the switch statement is more efficient.

3. Setting up an Object-Oriented system.

4. Getting a routine id so you can pass it to call back. (See Platform-Specific Issues)

711

CHAPTER 83. INDIRECT ROUTINE CALLING 83.1. ACCESSING EUPHORIA CODED ROUTINES

5. Getting a routine id so you can pass it to task create. (See Multitasking in Euphoria)

6. Calling a routine that is defined later in a program. This is no longer needed from v4.0 onward.

Note that C routines, callable by Euphoria, also have ids, but they cannot be used where routine ids are, because of
the different type checking and other technical issues.

See Also:

define c proc and define c func

Example 1:

1 procedure foo()

2 puts(1, "Hello World\n")

3 end procedure

4

5 integer foo_num

6 foo_num = routine_id("foo")

7

8 call_proc(foo_num , {}) -- same as calling foo()

Example 2:

1 function apply_to_all(sequence s, integer f)

2 -- apply a function to all elements of a sequence

3 sequence result

4 result = {}

5 for i = 1 to length(s) do

6 -- we can call add1() here although it comes later in the program

7 result = append(result , call_func(f, {s[i]}))

8 end for

9 return result

10 end function

11

12 function add1(atom x)

13 return x + 1

14 end function

15

16 -- add1() is visible here , so we can ask for its routine id

17 ? apply_to_all ({1, 2, 3}, routine_id("add1"))

18 -- displays {2,3,4}

See Also:

call proc, call func, call back, define c func, define c proc, task create, Platform-Specific Issues, Indirect routine calling

83.1.2 call func

<built -in > function call_func(integer id, sequence args ={})

calls the user-defined Euphoria function by routine id.

712

CHAPTER 83. INDIRECT ROUTINE CALLING 83.1. ACCESSING EUPHORIA CODED ROUTINES

Parameters:

1. id : an integer, the routine id of the function to call

2. args : a sequence, the parameters to pass to the function.

Returns:

The value, the called function returns.

Errors:

If id is negative or otherwise unknown, an error occurs.
If the length of args is not the number of parameters the function takes, an error occurs.

Comments:

id must be a valid routine id returned by routine id.
args must be a sequence of argument values of length n, where n is the number of arguments required by the called

function. Defaulted parameters currently cannot be synthesized while making a indirect call.
If the function with id id does not take any arguments then args should be .

Example 1:

Take a look at the sample program called demo/csort.ex

See Also:

call proc, routine id, c func

83.1.3 call proc

<built -in > procedure call_proc(integer id, sequence args ={})

calls a user-defined Euphoria procedure by routine id.

Parameters:

1. id : an integer, the routine id of the procedure to call

2. args : a sequence, the parameters to pass to the function.

Errors:

If id is negative or otherwise unknown, an error occurs.
If the length of args is not the number of parameters the function takes, an error occurs.

Comments:

id must be a valid routine id returned by routine id.
args must be a sequence of argument values of length n, where n is the number of arguments required by the called

procedure. Defaulted parameters currently cannot be synthesized while making a indirect call.
If the procedure with id id does not take any arguments then args should be .

713

CHAPTER 83. INDIRECT ROUTINE CALLING 83.2. ACCESSING EUPHORIA INTERNALS

Example 1:

1 public integer foo_id

2

3 procedure x()

4 call_proc(foo_id , {1, "Hello World\n"})

5 end procedure

6

7 procedure foo(integer a, sequence s)

8 puts(a, s)

9 end procedure

10

11 foo_id = routine_id("foo")

12

13 x()

See Also:

call func, routine id, c proc

83.2 Accessing Euphoria Internals

83.2.1 machine func

<built -in > function machine_func(integer machine_id , object args ={})

performs a machine-specific operation that returns a value.

Returns:

Depends on the called internal facility.

Comments:

This function us mainly used by the standard library files to implement machine dependent operations such as graphics
and sound effects. This routine should normally be called indirectly via one of the library routines in a Euphoria include
file. User programs normally do not need to call machine func.

A direct call might cause a machine exception if done incorrectly.

See Also:

machine proc

83.2.2 machine proc

<built -in > procedure machine_proc(integer machine_id , object args ={})

perform a machine-specific operation that does not return a value.

Comments:

This procedure us mainly used by the standard library files to implement machine dependent operations such as graphics
and sound effects. This routine should normally be called indirectly via one of the library routines in a Euphoria include
file. User programs normally do not need to call machine proc.

A direct call might cause a machine exception if done incorrectly.

714

CHAPTER 83. INDIRECT ROUTINE CALLING 83.2. ACCESSING EUPHORIA INTERNALS

See Also:

machine func

715

Chapter 84
Memory Constants

84.1 Microsoft Windows Memory Protection Constants

These constant names are taken right from Microsoft’s Memory Protection constants.

84.1.1 PAGE EXECUTE

include std/memconst.e

namespace memconst

public constant PAGE_EXECUTE

You may run the data in this page

84.1.2 PAGE EXECUTE READ

include std/memconst.e

namespace memconst

public constant PAGE_EXECUTE_READ

You may read or run the data

84.1.3 PAGE EXECUTE READWRITE

include std/memconst.e

namespace memconst

public constant PAGE_EXECUTE_READWRITE

You may run, read or write in this page

84.1.4 PAGE EXECUTE WRITECOPY

include std/memconst.e

namespace memconst

public constant PAGE_EXECUTE_WRITECOPY

You may run or write in this page

716

CHAPTER 84. MEMORY CONSTANTS 84.2. STANDARD LIBRARY MEMORY PROTECTION CONSTANTS

84.1.5 PAGE WRITECOPY

include std/memconst.e

namespace memconst

public constant PAGE_WRITECOPY

You may write to this page.

84.1.6 PAGE READWRITE

include std/memconst.e

namespace memconst

public constant PAGE_READWRITE

You may read or write in this page.

84.1.7 PAGE READONLY

include std/memconst.e

namespace memconst

public constant PAGE_READONLY

You may only read data in this page

84.1.8 PAGE NOACCESS

include std/memconst.e

namespace memconst

public constant PAGE_NOACCESS

You have no access to this page

84.2 Standard Library Memory Protection Constants

Memory Protection Constants are the same constants names and meaning across all platforms yet possibly of different
numeric value. They are only necessary for allocate protect

The constant names are created like this: You have four aspects of protection READ, WRITE, EXECUTE and
COPY. You take the word PAGE and you concatonate an underscore and the aspect in the order above. For exam-
ple: PAGE WRITE EXECUTE The sole exception to this nomenclature is when you will have no acesss to the page the
constant is called PAGE NONE.

84.2.1 PAGE NONE

include std/memconst.e

namespace memconst

public constant PAGE_NONE

You have no access to this page.

84.2.2 PAGE READ EXECUTE

include std/memconst.e

namespace memconst

public constant PAGE_READ_EXECUTE

You may read or run the data An alias to PAGE EXECUTE READ

717

CHAPTER 84. MEMORY CONSTANTS 84.2. STANDARD LIBRARY MEMORY PROTECTION CONSTANTS

84.2.3 PAGE READ WRITE

include std/memconst.e

namespace memconst

public constant PAGE_READ_WRITE

You may read or write to this page An alias to PAGE READWRITE

84.2.4 PAGE READ

include std/memconst.e

namespace memconst

public constant PAGE_READ

You may only read to this page An alias to PAGE READONLY

84.2.5 PAGE READ WRITE EXECUTE

include std/memconst.e

namespace memconst

public constant PAGE_READ_WRITE_EXECUTE

You may run, read or write in this page An alias to PAGE EXECUTE READWRITE

84.2.6 PAGE WRITE EXECUTE COPY

include std/memconst.e

namespace memconst

public constant PAGE_WRITE_EXECUTE_COPY

You may run or write to this page. Data will copied for use with other processes when you first write to it.

84.2.7 PAGE WRITE COPY

include std/memconst.e

namespace memconst

public constant PAGE_WRITE_COPY

You may write to this page. Data will copied for use with other processes when you first write to it.

718

Chapter 85
Graphics Constants

85.1 Error Code Constants

85.1.1 enum

include std/graphcst.e

namespace graphcst

public enum

85.2 video config Sequence Accessors

85.2.1 enum

include std/graphcst.e

namespace graphcst

public enum

85.2.2 Colors

85.2.3 BLACK

include std/graphcst.e

namespace graphcst

public constant BLACK

85.2.4 BLUE

include std/graphcst.e

namespace graphcst

public constant BLUE

719

CHAPTER 85. GRAPHICS CONSTANTS 85.2. VIDEO CONFIG SEQUENCE ACCESSORS

85.2.5 GREEN

include std/graphcst.e

namespace graphcst

public constant GREEN

85.2.6 CYAN

include std/graphcst.e

namespace graphcst

public constant CYAN

85.2.7 RED

include std/graphcst.e

namespace graphcst

public constant RED

85.2.8 MAGENTA

include std/graphcst.e

namespace graphcst

public constant MAGENTA

85.2.9 BROWN

include std/graphcst.e

namespace graphcst

public constant BROWN

85.2.10 WHITE

include std/graphcst.e

namespace graphcst

public constant WHITE

85.2.11 GRAY

include std/graphcst.e

namespace graphcst

public constant GRAY

85.2.12 BRIGHT BLUE

include std/graphcst.e

namespace graphcst

public constant BRIGHT_BLUE

720

CHAPTER 85. GRAPHICS CONSTANTS 85.2. VIDEO CONFIG SEQUENCE ACCESSORS

85.2.13 BRIGHT GREEN

include std/graphcst.e

namespace graphcst

public constant BRIGHT_GREEN

85.2.14 BRIGHT CYAN

include std/graphcst.e

namespace graphcst

public constant BRIGHT_CYAN

85.2.15 BRIGHT RED

include std/graphcst.e

namespace graphcst

public constant BRIGHT_RED

85.2.16 BRIGHT MAGENTA

include std/graphcst.e

namespace graphcst

public constant BRIGHT_MAGENTA

85.2.17 YELLOW

include std/graphcst.e

namespace graphcst

public constant YELLOW

85.2.18 BRIGHT WHITE

include std/graphcst.e

namespace graphcst

public constant BRIGHT_WHITE

85.2.19 true fgcolor

include std/graphcst.e

namespace graphcst

export sequence true_fgcolor

85.2.20 true bgcolor

include std/graphcst.e

namespace graphcst

export sequence true_bgcolor

721

CHAPTER 85. GRAPHICS CONSTANTS 85.3. ROUTINES

85.2.21 BLINKING

include std/graphcst.e

namespace graphcst

public constant BLINKING

Add to color number to get blinking text.

85.2.22 BYTES PER CHAR

include std/graphcst.e

namespace graphcst

public constant BYTES_PER_CHAR

85.2.23 color

include std/graphcst.e

namespace graphcst

public type color(object x)

85.3 Routines

85.3.1 mixture

include std/graphcst.e

namespace graphcst

public type mixture(object s)

Mixture Type

Comments:

A mixture is a red, green, blue triple of intensities, which enables you to define custom colors. Intensities must be
from 0 (weakest) to 63 (strongest). Thus, the brightest white is 63, 63, 63.

85.3.2 video config

include std/graphcst.e

namespace graphcst

public function video_config ()

returns a description of the current video configuration.

Returns:

A sequence, of 10 non-negative integers, laid out as follows:

1. color monitor? – 0 if monochrome, 1 otherwise

2. current video mode

3. number of text rows in console buffer

4. number of text columns in console buffer

722

CHAPTER 85. GRAPHICS CONSTANTS 85.4. COLOR SET SELECTION

5. screen width in pixels

6. screen height in pixels

7. number of colors

8. number of display pages

9. number of text rows for current screen size

10. number of text columns for current screen size

Comments:

A public enum is available for convenient access to the returned configuration data:

• VC COLOR

• VC MODE

• VC LINES

• VC COLUMNS

• VC XPIXELS

• VC YPIXELS

• VC NCOLORS

• VC PAGES

• VC SCRNLINES

• VC SCRNCOLS

This routine makes it easy for you to parameterize a program so it will work in many different graphics modes.

Example 1:

vc = video_config ()

-- vc could be {1, 3, 300, 132, 0, 0, 32, 8, 37, 90}

See Also:

graphics mode

85.4 Color Set Selection

85.4.1 enum

include std/graphcst.e

namespace graphcst

public enum

723

CHAPTER 85. GRAPHICS CONSTANTS 85.4. COLOR SET SELECTION

85.4.2 FGSET

include std/graphcst.e

namespace graphcst

FGSET

Foreground (text) set of colors

85.4.3 BGSET

include std/graphcst.e

namespace graphcst

BGSET

Background set of colors

724

Chapter 86
Graphics - Cross Platform

86.1 Routines

86.1.1 position

<built -in > procedure position(integer row , integer column)

Parameters:

1. row : an integer, the index of the row to position the cursor on.

2. column : an integer, the index of the column to position the cursor on.

sets the cursor to where the next character will be output.

Comments:

Set the cursor to line row, column column, where the top left corner of the screen is line 1, column 1. The next character
displayed on the screen will be printed at this location. position will report an error if the location is off the screen. The
Windows console does not check for rows, as the physical height of the console may be vastly less than its logical height.

Example 1:

position (2,1)

-- the cursor moves to the beginning of the second line from the top

See Also:

get position

86.1.2 get position

include std/graphics.e

namespace graphics

public function get_position ()

returns the current line and column position of the cursor.

725

CHAPTER 86. GRAPHICS - CROSS PLATFORM 86.1. ROUTINES

Returns:

A sequence, line, column, the current position of the text mode cursor.

Comments:

The coordinate system for displaying text is different from the one for displaying pixels. Pixels are displayed such that the
top-left is (x=0,y=0) and the first coordinate controls the horizontal, left-right location. In pixel-graphics modes you can
display both text and pixels. get position returns the current line and column for the text that you are displaying, not
the pixels that you may be plotting. There is no corresponding routine for getting the current pixel position, because there
is no such thing.

See Also:

position

86.1.3 text color

include std/graphics.e

namespace graphics

public procedure text_color(color c)

sets the foreground text color.

Parameters:

1. c : the new text color. Add BLINKING to get blinking text in some modes.

Comments:

Text that you print after calling text color will have the desired color.
When your program terminates, the last color that you selected and actually printed on the screen will remain in effect.

Thus you may have to print something, maybe just ’\n’, in WHITE to restore white text, especially if you are at the
bottom line of the screen, ready to scroll up.

Example 1:

text_color(BRIGHT_BLUE)

See Also:

bk color , clear screen

86.1.4 bk color

include std/graphics.e

namespace graphics

public procedure bk_color(color c)

sets the background color to one of the sixteen standard colors.

Parameters:

1. c : the new text color. Add BLINKING to get blinking text in some modes.

726

CHAPTER 86. GRAPHICS - CROSS PLATFORM 86.1. ROUTINES

Comments:

To restore the original background color when your program finishes, (often 0 - BLACK), you must call bk color(0). If
the cursor is at the bottom line of the screen, you may have to actually print something before terminating your program;
printing ’\n’ may be enough.

Example 1:

bk_color(BLACK)

See Also:

text color

86.1.5 console colors

include std/graphics.e

namespace graphics

public function console_colors(sequence colorset = {})

sets the codes for the colors used in text color and bk color.

Parameters:

1. colorset : A sequence in one of two formats.

(a) Containing two sets of exactly sixteen color numbers in which the first set are foreground (text) colors and the
other set are background colors.

(b) Containing a set of exactly sixteen color numbers. These are to be applied to both foreground and background.

Returns:

A sequence: This contains two sets of sixteen color values currently in use for foreground and background respectively.

Comments:

• If the colorset is omitted then this just returns the current values without changing anything.

• A color set contains sixteen values. You can access the color value for a specific color by using [X + 1] where ’X’

is one of the Euphoria color constants such as RED or BLUE.

• This can be used to change the meaning of the standard color codes for some consoles that are not using standard
values. For example, the Unix default color value for RED is 1 and BLUE is 4, but you might need this to swapped.
See code Example 1. Another use might be to suppress highlighted (bold) colors. See code Example 2.

Example 1:

1 sequence cs

2 cs = console_colors () -- Get the current FG and BG color values.

3 cs[FGSET][RED + 1] = 4 -- set RED to 4

4 cs[FGSET][BLUE + 1] = 1 -- set BLUE to 1

5 cs[BGSET][RED + 1] = 4 -- set RED to 4

6 cs[BGSET][BLUE + 1] = 1 -- set BLUE to 1

7 console_colors(cs)

727

CHAPTER 86. GRAPHICS - CROSS PLATFORM 86.1. ROUTINES

Example 2:

1 -- Prevent highlighted background colors

2 sequence cs

3 cs = console_colors ()

4 for i = GRAY + 1 to BRIGHT_WHITE + 1 do

5 cs[BGSET][i] = cs[BGSET][i - 8]

6 end for

7 console_colors(cs)

See Also:

text color bk color

86.1.6 wrap

include std/graphics.e

namespace graphics

public procedure wrap(object on = 1)

determines whether text will wrap when hitting the rightmost column.

Parameters:

1. on : an object, 0 to truncate text, anything else to wrap.

Comments:

By default text will wrap.
Use wrap in text modes or pixel-graphics modes when you are displaying long lines of text.

Example 1:

1 puts(1, repeat(’x’, 100) & "\n\n")

2 -- now have a line of 80 ’x’ followed a line of 20 more ’x’

3 wrap (0)

4 puts(1, repeat(’x’, 100) & "\n\n")

5 -- creates just one line of 80 ’x’

See Also:

puts, position

86.1.7 scroll

include std/graphics.e

namespace graphics

public procedure scroll(integer amount , console :positive_int top_line ,

console :positive_int bottom_line)

scrolls a region of text on the screen.

728

CHAPTER 86. GRAPHICS - CROSS PLATFORM 86.2. GRAPHICS MODES

Parameters:

1. amount : an integer, the number of lines by which to scroll. This is >0 to scroll up and <0 to scroll down.

2. top line : the 1-based number of the topmost line to scroll.

3. bottom line : the 1-based number of the bottom-most line to scroll.

Comments:

• New blank lines will appear at the vacated lines.

• You could perform the scrolling operation using a series of calls to puts, but scroll is much faster.

• The position of the cursor after scrolling is not defined.

Example 1:

.../euphoria/bin/ed.ex

See Also:

clear screen, text rows

86.2 Graphics Modes

86.2.1 graphics mode

include std/graphics.e

namespace graphics

public function graphics_mode(object m = - 1)

attempts to set up a new graphics mode.

Parameters:

1. x : an object, but it will be ignored.

Returns:

An integer, always returns zero.

Platform:

Windows

Comments:

• This has no effect on Unix platforms.

• On Windows it causes a console to be shown if one has not already been created.

See Also:

video config

729

Chapter 87
Graphics - Image Routines

87.0.2 graphics point

include std/image.e

namespace image

public type graphics_point(object p)

87.1 Bitmap Handling

87.1.1 read bitmap

include std/image.e

namespace image

public function read_bitmap(sequence file_name)

reads a bitmap (.BMP) file into a 2-d sequence of sequences (image)

Parameters:

1. file name : a sequence, the path to a .bmp file to read from. The extension is not assumed if missing.

Returns:

An object, on success, a sequence of the form palette,image. On failure, an error code is returned.

Comments:

In the returned value, the first element is a list of mixtures, each of which defines a color, and the second, a list of point
rows. Each pixel in a row is represented by its color index.

The file should be in the bitmap format. The most common variations of the format are supported.
Bitmaps of 2, 4, 16 or 256 colors are supported. If the file is not in a good format, an error code (atom) is returned

instead

public constant

BMP_OPEN_FAILED = 1,

BMP_UNEXPECTED_EOF = 2,

BMP_UNSUPPORTED_FORMAT = 3

You can create your own bitmap picture files using Windows Paintbrush and many other graphics programs. You can
then incorporate these pictures into your Euphoria programs.

730

CHAPTER 87. GRAPHICS - IMAGE ROUTINES 87.1. BITMAP HANDLING

Example 1:

x = read_bitmap("c:\\ windows \\ arcade.bmp")

See Also:

save bitmap

87.1.2 save bitmap

include std/image.e

namespace image

public function save_bitmap(two_seq palette_n_image , sequence file_name)

create a .BMP bitmap file, given a palette and a 2-d sequence of sequences of colors.

Parameters:

1. palette n image : a palette, image pair, like read bitmap returns

2. file name : a sequence, the name of the file to save to.

Returns:

An integer, 0 on success.

Comments:

This routine does the opposite of read bitmap. The first element of palette n image is a sequence of mixtures defining
each color in the bitmap. The second element is a sequence of sequences of colors. The inner sequences must have the
same length.

The result will be one of the following codes:

1 public constant

2 BMP_SUCCESS = 0,

3 BMP_OPEN_FAILED = 1,

4 BMP_INVALID_MODE = 4 -- invalid graphics mode

5 -- or invalid argument

save bitmap produces bitmaps of 2, 4, 16, or 256 colors and these can all be read with read bitmap. Windows
Paintbrush and some other tools do not support 4-color bitmaps.

Example 1:

code = save_bitmap ({ paletteData , imageData},

"c:\\ example \\a1.bmp")

See Also:

read bitmap

731

Chapter 88
Euphoria Information

88.1 Build Type Constants

88.1.1 is developmental

include euphoria/info.e

namespace info

public constant is_developmental

Is this build a developmental build?

88.1.2 is release

include euphoria/info.e

namespace info

public constant is_release

Is this build a release build?

88.2 Numeric Version Information

88.3 Compiled Platform Information

88.3.1 platform name

include euphoria/info.e

namespace info

public function platform_name ()

Get the platform name

Returns:

A sequence, containing the platform name, i.e. Windows, Linux, FreeBSD or OS X.

732

CHAPTER 88. EUPHORIA INFORMATION 88.3. COMPILED PLATFORM INFORMATION

88.3.2 arch bits

include euphoria/info.e

namespace info

public function arch_bits ()

Get the native architecture word size.

Returns:

A sequence in the form of ”%d-bit”, where %d is the word size for the architecture for which this version of euphoria was
built.

88.3.3 version

include euphoria/info.e

namespace info

public function version ()

Get the version, as an integer, of the host Euphoria

Returns:

An integer, representing Major, Minor and Patch versions. Version 4.0.0 will return 40000, 4.0.1 will return 40001, 5.6.2
will return 50602, 5.12.24 will return 512624, etc...

88.3.4 version major

include euphoria/info.e

namespace info

public function version_major ()

Get the major version of the host Euphoria

Returns:

An integer, representing the Major version number. Version 4.0.0 will return 4, version 5.6.2 will return 5, etc...

88.3.5 version minor

include euphoria/info.e

namespace info

public function version_minor ()

Get the minor version of the hosting Euphoria

Returns:

An integer, representing the Minor version number. Version 4.0.0 will return 0, 4.1.0 will return 1, 5.6.2 will return 6,
etc...

733

CHAPTER 88. EUPHORIA INFORMATION 88.3. COMPILED PLATFORM INFORMATION

88.3.6 version patch

include euphoria/info.e

namespace info

public function version_patch ()

Get the patch version of the hosting Euphoria

Returns:

An integer, representing the Path version number. Version 4.0.0 will return 0, 4.0.1 will return 1, 5.6.2 will return 2, etc...

88.3.7 version node

include euphoria/info.e

namespace info

public function version_node(integer full = 0)

Get the source code node id of the hosting Euphoria

Parameters:

• full - If TRUE, the full node id is returned. If FALSE only the first 12 characters of the node id is returned.
Typically the short node id is considered unique.

Returns:

A text sequence, containing the source code management systems node id that globally identifies the executing Euphoria.

88.3.8 version revision

include euphoria/info.e

namespace info

public function version_revision ()

Get the source code revision of the hosting Euphoria

Returns:

A text sequence, containing the source code management systems revision number that the executing Euphoria was built
from.

88.3.9 version date

include euphoria/info.e

namespace info

public function version_date(integer full = 0)

Get the compilation date of the hosting Euphoria

Parameters:

• full - Standard return value is a string formatted as CCYY-MM-DD. However, if this is a development build or the
full parameter is TRUE (1), then the result will be formatted as CCYY-MM-DD HH:MM:SS.

734

CHAPTER 88. EUPHORIA INFORMATION 88.4. STRING VERSION INFORMATION

Returns:

A text sequence containing the commit date of the the associated SCM revision.
The date/time is UTC.

88.4 String Version Information

88.4.1 version type

include euphoria/info.e

namespace info

public function version_type ()

Get the type version of the hosting Euphoria

Returns:

A sequence, representing the Type version string. Version 4.0.0 alpha 1 will return alpha 1. 4.0.0 beta 2 will return
beta 2. 4.0.0 final, or release, will return release.

88.4.2 version string

include euphoria/info.e

namespace info

public function version_string(integer full = 0)

Get a normal version string

Parameters:

1. full - Return full version information regardless of developmental/production status.

Returns:

A #sequence, representing the entire version information in one string. The amount of detail you get depends on if
this version of Euphoria has been compiled as a developmental version (more detailed version information) or if you have
indicated TRUE for the full argument.

Example return values

• ”4.0.0 alpha 3 (ab8e98ab3ce4,2010-11-18)”

• ”4.0.0 release (8d8874dc9e0a, 2010-12-22)”

• ”4.1.5 development (12332:e8d8787af7de, 2011-07-18 12:55:03)”

88.4.3 version string short

include euphoria/info.e

namespace info

public function version_string_short ()

Get a short version string

735

CHAPTER 88. EUPHORIA INFORMATION 88.5. COPYRIGHT INFORMATION

Returns:

A sequence, representing the Major, Minor and Patch all in one string.

Example return values:

• ”4.0.0”

• ”4.0.2”

• ”5.6.2”

88.4.4 version string long

include euphoria/info.e

namespace info

public function version_string_long(integer full = 0)

Get a long version string

Parameters:

1. full - Return full version information regardless of developmental/production status.

Returns:

A #sequence, representing the entire version information in one string. The amount of detail you get depends on if
this version of Euphoria has been compiled as a developmental version (more detailed version information) or if you have
indicated TRUE for the full argument.

Example return values

• ”4.0.0 alpha 3 (ab8e98ab3ce4,2010-11-18) for Windows 32-bit”

• ”4.0.0 release (8d8874dc9e0a, 2010-12-22) for Linux 32-bit”

• ”4.1.5 development (12332:e8d8787af7de, 2011-07-18 12:55:03) for OS X 64-bit”

88.5 Copyright Information

88.5.1 euphoria copyright

include euphoria/info.e

namespace info

public function euphoria_copyright ()

Get the copyright statement for Euphoria

Returns:

A sequence, containing 2 sequences: product name and copyright message

736

CHAPTER 88. EUPHORIA INFORMATION 88.6. TIMING INFORMATION

Example 1:

1 sequence info = euphoria_copyright ()

2 -- info = {

3 -- "Euphoria v4.0.0 alpha 3",

4 -- "Copyright (c) XYZ , ABC\n" &

5 -- "Copyright (c) ABC , DEF"

6 -- }

88.5.2 pcre copyright

include euphoria/info.e

namespace info

public function pcre_copyright ()

Get the copyright statement for PCRE.

Returns:

A sequence, containing 2 sequences: product name and copyright message.

See Also:

euphoria copyright()

88.5.3 all copyrights

include euphoria/info.e

namespace info

public function all_copyrights ()

Get all copyrights associated with this version of Euphoria.

Returns:

A sequence, of product names and copyright messages.

1 {

2 { ProductName , CopyrightMessage },

3 { ProductName , CopyrightMessage },

4 ...

5 }

88.6 Timing Information

88.6.1 start time

include euphoria/info.e

namespace info

public function start_time ()

Euphoria start time.
This time represents the time Euphoria itself started. This time is recorded before any of the users code is opened,

parsed or executed. It can provide accurate timing information as to how long it takes for your application to go from
start time to usable time.

737

CHAPTER 88. EUPHORIA INFORMATION 88.7. CONFIGURE INFORMATION

Returns:

An atom representing the start time of Euphoria itself

88.7 Configure Information

88.7.1 include paths

<built -in > function include_paths(integer convert)

Returns the list of include paths, in the order in which they are searched

Parameters:

1. convert : an integer, nonzero to include converted path entries that were not validated yet.

Returns:

A sequence, of strings, each holding a fully qualified include path.

Comments:

convert is checked only under Windows. If a path has accented characters in it, then it may or may not be valid to
convert those to the OEM code page. Setting convert to a nonzero value will force conversion for path entries that have
accents and which have not been checked to be valid yet. The extra entries, if any, are returned at the end of the returned
sequence.

The paths are ordered in the order they are searched:

1. current directory

2. configuration file,

3. command line switches,

4. EUINC

5. a default based on EUDIR.

Example 1:

1 sequence s = include_paths (0)

2 -- s might contain

3 {

4 "/usr/euphoria/tests",

5 "/usr/euphoria/include",

6 "./ include",

7 "../ include"

8 }

See Also:

eu.cfg, include, option switches

738

Chapter 89
Keyword Data

Keywords and routines built in to Euphoria.

89.1 Constants

89.1.1 keywords

include euphoria/keywords.e

namespace keywords

public constant keywords

Sequence of Euphoria keywords

89.1.2 builtins

include euphoria/keywords.e

namespace keywords

public constant builtins

Sequence of Euphoria’s built-in function names

739

Chapter 90
Syntax Coloring

Syntax Color Break Euphoria statements into words with multiple colors. The editor and pretty printer (eprint.ex) both
use this file.

90.1 Routines

90.1.1 set colors

include euphoria/syncolor.e

namespace syncolor

public procedure set_colors(sequence pColorList)

90.1.2 init class

include euphoria/syncolor.e

namespace syncolor

public procedure init_class ()

90.1.3 new

include euphoria/syncolor.e

namespace syncolor

public function new()

Create a new colorizer state

See Also:

reset, SyntaxColor

90.1.4 reset

include euphoria/syncolor.e

namespace syncolor

public procedure reset(atom state = g_state)

740

CHAPTER 90. SYNTAX COLORING 90.1. ROUTINES

90.1.5 keep newlines

include euphoria/syncolor.e

namespace syncolor

public procedure keep_newlines(integer val = 1, atom state = g_state)

90.1.6 SyntaxColor

include euphoria/syncolor.e

namespace syncolor

public function SyntaxColor(sequence pline , atom state = g_state , multiline_token multi = 0)

Parse Euphoria code into tokens of like colors.

Parameters:

1. pline the source code to color

2. state (default g state) the tokenizer to use

3. multi the multiline token from the previous line

Break up a new-line terminated line into colored text segments identifying the various parts of the Euphoria language.
They are broken into separate tokens.

Returns:

A sequence that looks like:

{color1 , "text1"}, {color2 , "text2"}, ... }

Comments:

In order to properly color multiline syntax (strings and comments), you should pass a value for multi. This value can be
attained by calling last multiline token after coloring the previous line.

741

Chapter 91
Euphoria Source Tokenizer

91.1 tokenize return sequence key

91.1.1 enum

include euphoria/tokenize.e

namespace tokenize

public enum

91.2 Tokens

91.2.1 enum

include euphoria/tokenize.e

namespace tokenize

public enum

91.2.2 T CHAR

include euphoria/tokenize.e

namespace tokenize

T_CHAR

quoted character

91.2.3 T STRING

include euphoria/tokenize.e

namespace tokenize

T_STRING

string

742

CHAPTER 91. EUPHORIA SOURCE TOKENIZER 91.3. T NUMBER FORMATS AND T TYPES

91.3 T NUMBER formats and T types

91.4 Token accessors

91.4.1 enum

include euphoria/tokenize.e

namespace tokenize

public enum

91.5 ET error codes

91.5.1 enum

include euphoria/tokenize.e

namespace tokenize

public enum

91.5.2 error string

include euphoria/tokenize.e

namespace tokenize

public function error_string(integer err)

Get an error message string for a given error code.

91.5.3 new

include euphoria/tokenize.e

namespace tokenize

public function new()

Create a new tokenizer state

See Also:

reset, tokenize string, tokenize file

91.5.4 reset

include euphoria/tokenize.e

namespace tokenize

public procedure reset(atom state = g_state)

Reset the state to begin parsing a new file

See Also:

new, tokenize string, tokenize file

743

CHAPTER 91. EUPHORIA SOURCE TOKENIZER 91.6. GET/SET OPTIONS

91.6 get/set options

91.6.1 keep builtins

include euphoria/tokenize.e

namespace tokenize

public procedure keep_builtins(integer val = 1, atom state = g_state)

Specify whether to identify builtins specially or not
default is FALSE

91.6.2 keep keywords

include euphoria/tokenize.e

namespace tokenize

public procedure keep_keywords(integer val = 1, atom state = g_state)

Specify whether to identify keywords specially or not
default is TRUE

91.6.3 keep whitespace

include euphoria/tokenize.e

namespace tokenize

public procedure keep_whitespace(integer val = 1, atom state = g_state)

Return white space (other than newlines) as tokens.
default is FALSE

91.6.4 keep newlines

include euphoria/tokenize.e

namespace tokenize

public procedure keep_newlines(integer val = 1, atom state = g_state)

Return new lines as tokens.
default is FALSE

91.6.5 keep comments

include euphoria/tokenize.e

namespace tokenize

public procedure keep_comments(integer val = 1, atom state = g_state)

Return comments as tokens
default is FALSE

91.6.6 return literal string

include euphoria/tokenize.e

namespace tokenize

public procedure return_literal_string(integer val = 1, atom state = g_state)

744

CHAPTER 91. EUPHORIA SOURCE TOKENIZER 91.6. GET/SET OPTIONS

When returning string tokens, we have the option to process them and return their value, or to return the literal text
that made up the original string.

Right now, this option only affects the processing of hex strings.
default is FALSE - process the string and return its value

91.6.7 string strip quotes

include euphoria/tokenize.e

namespace tokenize

public procedure string_strip_quotes(integer val = 1, atom state = g_state)

When returning string tokens, we have the option to strip the quotes.
default is TRUE

91.6.8 string numbers

include euphoria/tokenize.e

namespace tokenize

public procedure string_numbers(integer val = 1, atom state = g_state)

Return TDATA for all T NUMBER tokens in ”string” format.

Defaults:

• T NUMBER tokens return atoms

• T CHAR tokens return single integer chars

• T EOF tokens return undefined data

• Other tokens return strings

91.6.9 multiline token

include euphoria/tokenize.e

namespace tokenize

public type multiline_token(object mlt)

91.6.10 last multiline token

include euphoria/tokenize.e

namespace tokenize

public function last_multiline_token ()

Returns:

One of 0, TF COMMENT MULTIPLE, TF STRING BACKTICK, TF STRING TRIPLE.

Comments:

After calling tokenize string, this function will return a value of 0 if the line did not end in the middle of a multiline
construct, or the value for the respective token. This is meant to facilitate proper tokenizing of individual lines of code.

745

CHAPTER 91. EUPHORIA SOURCE TOKENIZER 91.7. ROUTINES

91.7 Routines

91.7.1 tokenize string

include euphoria/tokenize.e

namespace tokenize

public function tokenize_string(sequence code , atom state = g_state ,

integer stop_on_error = TRUE , multiline_token multi = 0)

Tokenize euphoria source code

Parameters:

1. code The code to be tokenized

2. state (default g state) the tokenizer returned by new

3. stop on error (default TRUE)

4. multi one of 0, TF COMMENT MULTIPLE, TF STRING BACKTICK, TF STRING TRIPLE

Returns:

Sequence of tokens

91.7.2 tokenize file

include euphoria/tokenize.e

namespace tokenize

public function tokenize_file(sequence fname , atom state = g_state ,

integer mode = io :BINARY_MODE)

Tokenize euphoria source code

Parameters:

1. fname the file to be read and tokenized

2. state (default g state) the tokenizer returned by new

3. mode the mode in which to open the file. One of: io:BINARY MODE (??) (default) or io:TEXT MODE (??). Note
that for large files with Windows line endings, text mode may be much slower. See io:read file for more information.

Returns:

Sequence of tokens

91.8 Debugging

91.8.1 token names

include euphoria/tokenize.e

namespace tokenize

public constant token_names

Sequence containing token names for debugging

746

CHAPTER 91. EUPHORIA SOURCE TOKENIZER 91.8. DEBUGGING

91.8.2 token forms

include euphoria/tokenize.e

namespace tokenize

public constant token_forms

91.8.3 show tokens

include euphoria/tokenize.e

namespace tokenize

public procedure show_tokens(integer fh, sequence tokens)

Print token names and data for each token in ‘tokens‘ to the file handle ‘fh‘

Parameters:

• fh - file handle to print information to

• tokens - token sequence to print

Comments:

This does not take direct output from tokenize string or tokenize file. Instead they take the first element of their
return value, the token stream only.

See Also:

tokenize string, tokenize file

747

Chapter 92
Unit Testing Framework

92.1 Background

Unit testing is the process of assuring that the smallest programming units are actually delivering functionality that complies
with their specification. The units in question are usually individual routines rather than whole programs or applications.

The theory is that if the components of a system are working correctly, then there is a high probability that a system
using those components can be made to work correctly.

In Euphoria terms, this framework provides the tools to make testing and reporting on functions and procedures easy
and standardized. It gives us a simple way to write a test case and to report on the findings.
Example:

1 include std/unittest.e

2

3 test_equal("Power function test #1", 4, power(2, 2))

4 test_equal("Power function test #2", 4, power(16, 0.5))

5

6 test_report ()

Name your test file in the special manner, t NAME.e and then simply run eutest in that directory.

C:\Euphoria > eutest

t_math.e:

failed: Bad math , expected: 100 but got: 8

2 tests run , 1 passed , 1 failed , 50.0% success

Test failure summary:

FAIL: t_math.e

2 file(s) run 1 file(s) failed , 50.0% success --

In this example, we use the test equal function to record the result of a test. The first parameter is the name of
the test, which can be anything and is displayed if the test fails. The second parameter is the expected result – what we
expect the function being tested to return. The third parameter is the actual result returned by the function being tested.
This is usually written as a call to the function itself.

It is typical to provide as many test cases as would be required to give us confidence that the function is being truly
exercised. This includes calling it with typical values and edge-case or exceptional values. It is also useful to test the
function’s error handling by calling it with bad parameters.

When a test fails, the framework displays a message, showing the test’s name, the expected result and the actual
result. You can configure the framework to display each test run, regardless of whether it fails or not.

After running a series of tests, you can get a summary displayed by calling the test report procedure. To get a
better feel for unit testing, have a look at the provided test cases for the standard library in the tests directory.

When included in your program, unittest.e sets a crash handler to log a crash as a failure.

748

CHAPTER 92. UNIT TESTING FRAMEWORK 92.2. CONSTANTS

92.2 Constants

92.2.1 enum

include std/unittest.e

namespace unittest

public enum

92.3 Setup Routines

92.3.1 set test verbosity

include std/unittest.e

namespace unittest

public procedure set_test_verbosity(atom verbosity)

set the amount of information that is returned about passed and failed tests.

Parameters:

1. verbosity : an atom which takes predefined values for verbosity levels.

Comments:

The following values are allowable for verbosity:

• TEST QUIET – 0,

• TEST SHOW FAILED ONLY – 1

• TEST SHOW ALL – 2

However, anything less than TEST SHOW FAILED ONLY is treated as TEST QUIET, and everything above TEST SHOW ALL

is treated as TEST SHOW ALL.

• At the lowest verbosity level, only the score is shown, ie the ratio passed tests/total tests.

• At the medium level, in addition, failed tests display their name, the expected outcome and the outcome they got.
This is the initial setting.

• At the highest level of verbosity, each test is reported as passed or failed.

If a file crashes when it should not, this event is reported no matter the verbosity level.
The command line switch "-failed" causes verbosity to be set to medium at startup. The command line switch

"-all" causes verbosity to be set to high at startup.

See Also:

test report

92.3.2 set wait on summary

include std/unittest.e

namespace unittest

public procedure set_wait_on_summary(integer to_wait)

requests the test report to pause before exiting.

749

CHAPTER 92. UNIT TESTING FRAMEWORK 92.3. SETUP ROUTINES

Parameters:

1. to wait : an integer, zero not to wait, nonzero to wait.

Comments:

Depending on the environment, the test results may be invisible if set wait on summary(1) was not called prior, as this
is not the default. The command line switch "-wait" performs this call.

See Also:

test report

92.3.3 set accumulate summary

include std/unittest.e

namespace unittest

public procedure set_accumulate_summary(integer accumulate)

requests the test report to save run stats in "unittest.dat" before exiting.

Parameters:

1. accumulate : an integer, zero not to accumulate, nonzero to accumulate.

Comments:

The file ”unittest.dat” is appended to with t,f
where t is total number of tests run
f is the total number of tests that failed

92.3.4 set test abort

include std/unittest.e

namespace unittest

public function set_test_abort(integer abort_test)

sets the behavior on test failure, and return previous value.

Parameters:

1. abort test : an integer, the new value for this setting.

Returns:

An integer, the previous value for the setting.

Comments:

By default, the tests go on even if a file crashed.

750

CHAPTER 92. UNIT TESTING FRAMEWORK 92.4. REPORTING

92.4 Reporting

92.4.1 test report

include std/unittest.e

namespace unittest

public procedure test_report ()

outputs the test report.

Comments:

The report components are described in the comments section for set test verbosity. Everything prints on the standard
error device.

See Also:

set test verbosity

92.5 Tests

92.5.1 test equal

include std/unittest.e

namespace unittest

public procedure test_equal(sequence name , object expected , object outcome)

records whether a test passes by comparing two values.

Parameters:

1. name : a string, the name of the test

2. expected : an object, the expected outcome of some action

3. outcome : an object, some actual value that should equal the reference expected.

Comments:

• For floating point numbers, a fuzz of 1e-9 is used to assess equality.

A test is recorded as passed if equality holds between expected and outcome. The latter is typically a function call,
or a variable that was set by some prior action.

While expected and outcome are processed symmetrically, they are not recorded symmetrically, so be careful to pass
expected before outcome for better test failure reports.

See Also:

test not equal, test true, test false, test pass, test fail

92.5.2 test not equal

include std/unittest.e

namespace unittest

public procedure test_not_equal(sequence name , object a, object b)

records whether a test passes by comparing two values.

751

CHAPTER 92. UNIT TESTING FRAMEWORK 92.5. TESTS

Parameters:

1. name : a string, the name of the test

2. expected : an object, the expected outcome of some action

3. outcome : an object, some actual value that should equal the reference expected.

Comments:

• For atoms, a fuzz of 1e-9 is used to assess equality.

• For sequences, no such fuzz is implemented.

A test is recorded as passed if equality does not hold between expected and outcome. The latter is typically a function
call, or a variable that was set by some prior action.

See Also:

test equal, test true, test false, test pass, test fail

92.5.3 test true

include std/unittest.e

namespace unittest

public procedure test_true(sequence name , object outcome)

records whether a test passes.

Parameters:

1. name : a string, the name of the test

2. outcome : an object, some actual value that should not be zero.

Comments:

This assumes an expected value different from 0. No fuzz is applied when checking whether an atom is zero or not. Use
test equal instead in this case.

See Also:

test equal, test not equal, test false, test pass, test fail

92.5.4 assert

include std/unittest.e

namespace unittest

public procedure assert(object name , object outcome)

records whether a test passes. If it fails, the program also fails.

Parameters:

1. name : a string, the name of the test

2. outcome : an object, some actual value that should not be zero.

752

CHAPTER 92. UNIT TESTING FRAMEWORK 92.5. TESTS

Comments:

This is identical to test true except that if the test fails, the program will also be forced to fail at this point.

See Also:

test equal, test not equal, test false, test pass, test fail

92.5.5 test false

include std/unittest.e

namespace unittest

public procedure test_false(sequence name , object outcome)

records whether a test passes by comparing two values.

Parameters:

1. name : a string, the name of the test

2. outcome : an object, some actual value that should be zero

Comments:

This assumes an expected value of 0. No fuzz is applied when checking whether an atom is zero or not. Use test equal
instead in this case.

See Also:

test equal, test not equal, test true, test pass, test fail

92.5.6 test fail

include std/unittest.e

namespace unittest

public procedure test_fail(sequence name)

records that a test failed.

Parameters:

1. name : a string, the name of the test

See Also:

test equal, test not equal, test true, test false, test pass

92.5.7 test pass

include std/unittest.e

namespace unittest

public procedure test_pass(sequence name)

records that a test passed.

753

CHAPTER 92. UNIT TESTING FRAMEWORK 92.5. TESTS

Parameters:

1. name : a string, the name of the test

See Also:

test equal, test not equal,test true, test false, test fail

754

Chapter 93
Debugging tools

93.1 Call Stack Constants

93.1.1 enum

include euphoria/debug/debug.e

namespace debug

public enum

93.1.2 CS ROUTINE NAME

include euphoria/debug/debug.e

namespace debug

CS_ROUTINE_NAME

93.1.3 CS FILE NAME

include euphoria/debug/debug.e

namespace debug

CS_FILE_NAME

93.1.4 CS LINE NO

include euphoria/debug/debug.e

namespace debug

CS_LINE_NO

93.1.5 CS ROUTINE SYM

include euphoria/debug/debug.e

namespace debug

CS_ROUTINE_SYM

755

CHAPTER 93. DEBUGGING TOOLS 93.2. DEBUG ROUTINE ENUM TYPE

93.1.6 CS PC

include euphoria/debug/debug.e

namespace debug

CS_PC

93.1.7 CS GLINE

include euphoria/debug/debug.e

namespace debug

CS_GLINE

93.2 DEBUG ROUTINE Enum Type

These constants are used to register euphoria routines that handle various debugger tasks, displaying information or waiting
for user input.

93.2.1 DEBUG ROUTINE

include euphoria/debug/debug.e

namespace debug

public enum type DEBUG_ROUTINE

SHOW DEBUG a procedure that takes an integer parameter that represents the current line in the global line table

DISPLAY VAR A procedure that takes a pointer to the variable in the symbol table, and a flag to indicate whether
the user requested this variable or not. Euphoria generally calls this when a variable is assigned to.

UPDATE GLOBALS A procedure called when the debug screen should update the display of any non-private variables

93.2.2 DEBUG SCREEN

include euphoria/debug/debug.e

namespace debug

enum type DEBUG_ROUTINE DEBUG_SCREEN

93.2.3 ERASE PRIVATES

include euphoria/debug/debug.e

namespace debug

enum type DEBUG_ROUTINE ERASE_PRIVATES

93.2.4 ERASE SYMBOL

include euphoria/debug/debug.e

namespace debug

enum type DEBUG_ROUTINE ERASE_SYMBOL

756

CHAPTER 93. DEBUGGING TOOLS 93.3. DEBUGGING ROUTINES

93.3 Debugging Routines

93.3.1 call stack

include euphoria/debug/debug.e

namespace debug

public function call_stack ()

Returns information about the call stack of the code currently running.

Returns:

A sequence where each element represents one level in the call stack. See the Call Stack Constants for constants that can
be used to access the call stack information.

1. routine name

2. file name

3. line number

93.3.2 M INIT DEBUGGER

include euphoria/debug/debug.e

namespace debug

public constant M_INIT_DEBUGGER

93.3.3 initialize debugger

include euphoria/debug/debug.e

namespace debug

public procedure initialize_debugger(atom init_ptr)

Initializes an external debugger. It can also be called from a debugger compiled into a DLL / SO.

Parameters:

1. init ptr : The result of machine func(M INIT DEBUGGER,).

93.3.4 set debug rid

include euphoria/debug/debug.e

namespace debug

public procedure set_debug_rid(DEBUG_ROUTINE rtn , integer rid)

93.3.5 read object

include euphoria/debug/debug.e

namespace debug

public function read_object(atom sym)

757

CHAPTER 93. DEBUGGING TOOLS 93.3. DEBUGGING ROUTINES

93.3.6 trace off

include euphoria/debug/debug.e

namespace debug

public procedure trace_off ()

93.3.7 disable trace

include euphoria/debug/debug.e

namespace debug

public procedure disable_trace ()

93.3.8 step over

include euphoria/debug/debug.e

namespace debug

public procedure step_over ()

93.3.9 abort program

include euphoria/debug/debug.e

namespace debug

public procedure abort_program ()

93.3.10 get current line

include euphoria/debug/debug.e

namespace debug

public function get_current_line ()

93.3.11 symbol lookup

include euphoria/debug/debug.e

namespace debug

public function symbol_lookup(sequence name , integer line = get_current_line (),

atom pc = get_pc ())

93.3.12 get pc

include euphoria/debug/debug.e

namespace debug

public function get_pc ()

93.3.13 is novalue

include euphoria/debug/debug.e

namespace debug

public function is_novalue(atom sym_ptr)

758

CHAPTER 93. DEBUGGING TOOLS 93.3. DEBUGGING ROUTINES

93.3.14 debugger call stack

include euphoria/debug/debug.e

namespace debug

public function debugger_call_stack ()

93.3.15 break routine

include euphoria/debug/debug.e

namespace debug

public function break_routine(atom routine_sym , integer enable)

93.3.16 get name

include euphoria/debug/debug.e

namespace debug

public function get_name(atom sym)

93.3.17 get source

include euphoria/debug/debug.e

namespace debug

public function get_source(integer line)

93.3.18 get file no

include euphoria/debug/debug.e

namespace debug

public function get_file_no(integer line)

93.3.19 get file name

include euphoria/debug/debug.e

namespace debug

public function get_file_name(integer file_no)

93.3.20 get file line

include euphoria/debug/debug.e

namespace debug

public function get_file_line(integer line)

93.3.21 get next

include euphoria/debug/debug.e

namespace debug

public function get_next(atom sym)

759

CHAPTER 93. DEBUGGING TOOLS 93.3. DEBUGGING ROUTINES

93.3.22 is variable

include euphoria/debug/debug.e

namespace debug

public function is_variable(atom sym_ptr)

93.3.23 get parameter syms

include euphoria/debug/debug.e

namespace debug

public function get_parameter_syms(atom rtn_sym)

93.3.24 get symbol table

include euphoria/debug/debug.e

namespace debug

public function get_symbol_table ()

760

Chapter 94
Windows Message Box

94.1 Style Constants

Possible style values for message box() style sequence

94.1.1 MB ABORTRETRYIGNORE

include std/win32/msgbox.e

namespace msgbox

public constant MB_ABORTRETRYIGNORE

Abort, Retry, Ignore

94.1.2 MB APPLMODAL

include std/win32/msgbox.e

namespace msgbox

public constant MB_APPLMODAL

User must respond before doing something else

94.1.3 MB DEFAULT DESKTOP ONLY

include std/win32/msgbox.e

namespace msgbox

public constant MB_DEFAULT_DESKTOP_ONLY

94.1.4 MB DEFBUTTON1

include std/win32/msgbox.e

namespace msgbox

public constant MB_DEFBUTTON1

First button is default button

761

CHAPTER 94. WINDOWS MESSAGE BOX 94.1. STYLE CONSTANTS

94.1.5 MB DEFBUTTON2

include std/win32/msgbox.e

namespace msgbox

public constant MB_DEFBUTTON2

Second button is default button

94.1.6 MB DEFBUTTON3

include std/win32/msgbox.e

namespace msgbox

public constant MB_DEFBUTTON3

Third button is default button

94.1.7 MB DEFBUTTON4

include std/win32/msgbox.e

namespace msgbox

public constant MB_DEFBUTTON4

Fourth button is default button

94.1.8 MB HELP

include std/win32/msgbox.e

namespace msgbox

public constant MB_HELP

Windows 95: Help button generates help event

94.1.9 MB ICONASTERISK

include std/win32/msgbox.e

namespace msgbox

public constant MB_ICONASTERISK

94.1.10 MB ICONERROR

include std/win32/msgbox.e

namespace msgbox

public constant MB_ICONERROR

94.1.11 MB ICONEXCLAMATION

include std/win32/msgbox.e

namespace msgbox

public constant MB_ICONEXCLAMATION

Exclamation-point appears in the box

762

CHAPTER 94. WINDOWS MESSAGE BOX 94.1. STYLE CONSTANTS

94.1.12 MB ICONHAND

include std/win32/msgbox.e

namespace msgbox

public constant MB_ICONHAND

A hand appears

94.1.13 MB ICONINFORMATION

include std/win32/msgbox.e

namespace msgbox

public constant MB_ICONINFORMATION

Lowercase letter i in a circle appears

94.1.14 MB ICONQUESTION

include std/win32/msgbox.e

namespace msgbox

public constant MB_ICONQUESTION

A question-mark icon appears

94.1.15 MB ICONSTOP

include std/win32/msgbox.e

namespace msgbox

public constant MB_ICONSTOP

94.1.16 MB ICONWARNING

include std/win32/msgbox.e

namespace msgbox

public constant MB_ICONWARNING

94.1.17 MB OK

include std/win32/msgbox.e

namespace msgbox

public constant MB_OK

Message box contains one push button: OK

94.1.18 MB OKCANCEL

include std/win32/msgbox.e

namespace msgbox

public constant MB_OKCANCEL

Message box contains OK and Cancel

763

CHAPTER 94. WINDOWS MESSAGE BOX 94.1. STYLE CONSTANTS

94.1.19 MB RETRYCANCEL

include std/win32/msgbox.e

namespace msgbox

public constant MB_RETRYCANCEL

Message box contains Retry and Cancel

94.1.20 MB RIGHT

include std/win32/msgbox.e

namespace msgbox

public constant MB_RIGHT

Windows 95: The text is right-justified

94.1.21 MB RTLREADING

include std/win32/msgbox.e

namespace msgbox

public constant MB_RTLREADING

Windows 95: For Hebrew and Arabic systems

94.1.22 MB SERVICE NOTIFICATION

include std/win32/msgbox.e

namespace msgbox

public constant MB_SERVICE_NOTIFICATION

Windows NT: The caller is a service

94.1.23 MB SETFOREGROUND

include std/win32/msgbox.e

namespace msgbox

public constant MB_SETFOREGROUND

Message box becomes the foreground window

94.1.24 MB SYSTEMMODAL

include std/win32/msgbox.e

namespace msgbox

public constant MB_SYSTEMMODAL

All applications suspended until user responds

94.1.25 MB TASKMODAL

include std/win32/msgbox.e

namespace msgbox

public constant MB_TASKMODAL

Similar to MB APPLMODAL

764

CHAPTER 94. WINDOWS MESSAGE BOX 94.2. RETURN VALUE CONSTANTS

94.1.26 MB YESNO

include std/win32/msgbox.e

namespace msgbox

public constant MB_YESNO

Message box contains Yes and No

94.1.27 MB YESNOCANCEL

include std/win32/msgbox.e

namespace msgbox

public constant MB_YESNOCANCEL

Message box contains Yes, No, and Cancel

94.2 Return Value Constants

possible values returned by MessageBox(). 0 means failure

94.2.1 IDABORT

include std/win32/msgbox.e

namespace msgbox

public constant IDABORT

Abort button was selected.

94.2.2 IDCANCEL

include std/win32/msgbox.e

namespace msgbox

public constant IDCANCEL

Cancel button was selected.

94.2.3 IDIGNORE

include std/win32/msgbox.e

namespace msgbox

public constant IDIGNORE

Ignore button was selected.

94.2.4 IDNO

include std/win32/msgbox.e

namespace msgbox

public constant IDNO

No button was selected.

765

CHAPTER 94. WINDOWS MESSAGE BOX 94.3. ROUTINES

94.2.5 IDOK

include std/win32/msgbox.e

namespace msgbox

public constant IDOK

OK button was selected.

94.2.6 IDRETRY

include std/win32/msgbox.e

namespace msgbox

public constant IDRETRY

Retry button was selected.

94.2.7 IDYES

include std/win32/msgbox.e

namespace msgbox

public constant IDYES

Yes button was selected.

94.3 Routines

94.3.1 message box

include std/win32/msgbox.e

namespace msgbox

public function message_box(sequence text , sequence title , object style)

Displays a window with a title, message, buttons and an icon, usually known as a message box.

Parameters:

1. text: a sequence, the message to be displayed

2. title: a sequence, the title the box should have

3. style: an object which defines which,icon should be displayed, if any, and which buttons will be presented.

Returns:

An integer, the button which was clicked to close the message box, or 0 on failure.

Comments:

See Style Constants above for a complete list of possible values for style and Return Value Constants for the returned
value. If style is a sequence, its elements will be or’ed together.

766

Chapter 95
Windows Sound

95.0.2 SND DEFAULT

include std/win32/sounds.e

namespace sound

public constant SND_DEFAULT

95.0.3 SND STOP

include std/win32/sounds.e

namespace sound

public constant SND_STOP

95.0.4 SND QUESTION

include std/win32/sounds.e

namespace sound

public constant SND_QUESTION

95.0.5 SND EXCLAMATION

include std/win32/sounds.e

namespace sound

public constant SND_EXCLAMATION

95.0.6 SND ASTERISK

include std/win32/sounds.e

namespace sound

public constant SND_ASTERISK

767

CHAPTER 95. WINDOWS SOUND

95.0.7 sound

include std/win32/sounds.e

namespace sound

public procedure sound(atom sound_type = SND_DEFAULT)

Makes a sound.

Parameters:

1. sound type: An atom. The type of sound to make. The default is SND DEFAULT.

Comments:

The sound type value can be one of ...

• SND ASTERISK

• SND EXCLAMATION

• SND STOP

• SND QUESTION

• SND DEFAULT

These are sounds associated with the same Windows events via the Control Panel.

Example:

sound(SND_EXCLAMATION)

768

Chapter 96
Unsupported Features

These are features that have been implemented either partly or fully, but are not officially part of the Euphoria Language.
They may one day be officially sanctioned and thus fully supported, but that is not certain. And even if an unsupported
feature does make it way into the language, it may not be exactly what is documented in this section.

So if you use any of these unsupported features then be aware that your code might break in future releases.

96.1 UTF Encoded String Literals

• using word strings hexadecimal (for utf-16) and double word hexadecimal (for utf-32) e.g.

u"65 66 67 AE" -- ==> {#65 ,#66 ,#67 ,#AE}

U"65 66 67 AE" -- ==> {#65 ,#66 ,#67 ,#AE}

The value of the strings above are equivalent. Spaces seperate values to other elements. When you put too many hex
characters together for the kind of string they are split up appropriately for you:

1 x"6566 67AE" -- 8-bit ==> {#65 ,#66 ,#67 ,#AE}

2 u"6566 67AE" -- 16-bit ==> {#6566 ,#67 AE}

3 U"6566 67AE" -- 32-bit ==> {#6566 ,#67 AE}

4 U"6566 _67AE" -- 32-bit ==> {#656667 AE}

5 -- Uses ’_’ to aid readability for long values.

6 U"656667 AE" -- 32-bit ==> {#656667 AE}

String literals encoded as ASCII, UTF-8, UTF-16, UTF-32 or really any encoding that uses elements that are 32-bits
long or shorter can be built with U”” syntax. Literals of encodings that have 16-bit long or shorter or 8-bit long or shorter
elements can be built using u”” syntax or x”” syntax respectively. Use delimiters, such as spaces and underscores, to break
the ambiguity and improve readability.

The following is code with a vaild UTF8 encoded string:

sequence utf8_val = x"3e 65" -- This is ">e"

However, it is up to the coder to know the correct code-point values for these to make any sense in the encoding the
coder is using. That is to say, it is possible for the coder to use the x””, u””, and U”” syntax to create literals that are
not valid UTF strings.

Hexadecimal strings can be used to encode UTF-8 strings, even though the resulting string does not have to be a valid
UTF-8 string.

The rules for unicode strings are...

1. they begin with the pair u" for UTF-16 and U" for UTF-32 strings, and end with a double-quote (") character

2. they can only contain hexadecimal digits (0-9 A-F a-f), and space, underscore, tab, newline, carriage-return. Anything
else is invalid.

769

CHAPTER 96. UNSUPPORTED FEATURES 96.1. UTF ENCODED STRING LITERALS

3. an underscore is simply ignored, as if it was never there. It is used to aid readability.

4. For UTF-16 strings, each set of four contiguous hex digits represent a single sequence element with a value from
0x0000 to 0xFFFF

5. For UTF-32 strings, each set of eight contiguous hex digits represent a single sequence element with a value from
0x0000 to 0xFFFFFFFF

6. they can span multiple lines

7. The non-hex digits are treated as punctuation and used to delimit individual values.

8. The resulting string does not have to be a valid UTF-16/UTF-32 string.

u"1 2 34 5678 AbC" == {0x0001 , 0x0002 , 0x0034 , 0x5678 , 0x0ABC}

U"1 2 34 5678 AbC" == {0 x0000_0001 , 0x0000_0002 , 0x0000_0034 , 0x05678ABC}

U"1 2 34 5_678_AbC" == {0 x0000_0001 , 0x0000_0002 , 0x0000_0034 , 0x0567_8ABC}

770

Part IX

Release Notes

771

Chapter 97
Version 4.1.0 Date TBD

772

Chapter 98
Bug Fixes

• ticket:665 Fixed to load socket routines from its DLL only when needed.

• ticket:744 Detect duplicate case values in a switch statement and throw an error at compile or parse time

• OS X bug fixes:

– Callbacks function again, including on 64bit platforms

– Memory maps function

• Fix std/net/http.e that caused malformed HTTP GET requests

• Updated demo/news.ex with up-to-date URLs for some news web sites.

• Fix std/net/http.e so it can handle cases where the Content-Length header is not present

• Fix std/sequence.e so store() will correctly handle the one-element index case - it was duplicating the entire sequence
before.

• ticket:710 Updated tokenizer and syntax coloring to be able to preserve state between lines. The euphoria trace
screen and ed.ex now properly colorize multiline strings and comments.

• tokenize string had an infinite loop if the string ended with a single or double quote and a backslash

• euphoria/tokenizer.e does not add a leading zero to floating point numbers without one when string numbers is
set

• fixed detection of hex string tokens in tokenize string

• tokenizing better respects the value of stop on error parameter for tokenize string

773

/ticket/view.wc?id=665
/ticket/view.wc?id=744
/ticket/view.wc?id=710

Chapter 99
Enhancements

• Euphoria can be built natively as a 64-bit programming language.

• Added 8-byte memory access: poke8, peek8s, peek8u

• eucoverage also outputs a file ”big routines.html” that shows covered routines from all files sorted by descending
routine size

• Added poke pointer and peek pointer

• New sizeof built-in for determining size of certain data types.

• ticket:631 Scientific parsing code moved from the euphoria source directory and into the standard library. Routines
in std/get.e now return the proper precision data based on the native platform (32 or 64 bits).

• Users can write their own debuggers and use them instead of the built in trace debugger.

• gcc builds now include -fPIC (position independent code) runtime libraries for translating euphoria code into shared
objects.

• -lib-pic switch for translator to specify the PIC runtime library to be used

• ticket:166 get integer16,32 will return -1 on EOF.

• Added deprecate keyword

• Architecture ifdefs (X86, X86 64, ARM, BITS32, BITS64, LONG32, LONG64)

• -arch option for translator for cross translating

• -cc-prefix option for translator

• Can assign to multiple variables with one statement using sequence semantics.

• Use ? to stand in for default parameters.

• eudis now tabulates counts of forward references

• Added poke long, peek longu and peek longs

• ticket:735 The number of lines to be used in ctrace.out by trace(3) can be configured using -trace-lines n

command line switch. See Command line switches for more information.

• ticket:782 When downloading http content, std/net/http.e will yield to other tasks

• t\textunderscoreinteger32 (??) type for checking to see if an object is an integer based on 32-bit Euphoria’s definition

774

/ticket/view.wc?id=631
/ticket/view.wc?id=166
/ticket/view.wc?id=735
/ticket/view.wc?id=782

CHAPTER 99. ENHANCEMENTS

• Improved identification of routine id() targets by the translator

• Smaller translated DLLs are produced by improved identification of routines that need to be exported

• Eutest now has an eubin option for specifying all binaries in a single option.

• Eutest has a retest option for retesting all tests that had previously failed.

• Front end optimizations to reduce parsing time

• Added dynamic library uninitialization to reduce memory leaks if a euphoria translated .dll or .so is unloaded

• ticket:838 Eutest now reports the date of the Interpreter, and when the test was completed.

• Much faster and simpler implementation of maps in std/map.e inspired by the implementation of python’s dictionary
object. Some functions and parameters have been deprecated (such as any distinction between small and large
maps), as they no longer make sense for the new implementation.

• ticket:532 extra-cflags and extra-lflags for translator (thanks to Ira Hill)

• lock file on Windows now supports LOCK SHARED and LOCK EXCLUSIVE

• tokenize file uses io:BINARY MODE (??) by default instead of io:TEXT MODE (??), which improves perfor-
mance on large files with Windows style newlines

775

/ticket/view.wc?id=838
/ticket/view.wc?id=532

Chapter 100
Version 4.0.6 Date TBD

100.1 Bug Fixes

• ticket:872 fix documentation error involving or all

• ticket:880 fix documentaiton error involving poke2

• ticket:801 fix translator memory leak for insert

• ticket:799 fix memory leak in gets when reading EOF

• ticket:819 use operating system sleep functions for fractions of seconds to avoid needless CPU utilization

• ticket:824 fix OpenWatcom installer PCRE directory

• ticket:823 emit error in translator when user specifies a file for the build directory

• ticket:781 http post and http get now follow redirects

• ticket:835 translator properly handles sequences passed to floor

• ticket:830 fixed memory leak in replace

• ticket:847 fixed memory leak in remove

• ticket:837 fixed documentation error involving load map

• Fix std/sequence.e so store() will correctly handle the one-element index case - it was duplicating the entire sequence
before.

• ticket:638 value and get handle multi-line strings

• ticket:836 canonical path works when path is not on the current drive on Windows

• ticket:630 shrouder ignores binder options that are not applicable

• ticket:776 Updated walk dir parameter documentation

• functions imported from msvcrt.dll should use cdecl (affects now gmt, locale:get, locale:set and locale:datetime)

100.2 Enhancements

• command line help is now sorted by option

776

/ticket/view.wc?id=872
/ticket/view.wc?id=880
/ticket/view.wc?id=801
/ticket/view.wc?id=799
/ticket/view.wc?id=819
/ticket/view.wc?id=824
/ticket/view.wc?id=823
/ticket/view.wc?id=781
/ticket/view.wc?id=835
/ticket/view.wc?id=830
/ticket/view.wc?id=847
/ticket/view.wc?id=837
/ticket/view.wc?id=638
/ticket/view.wc?id=836
/ticket/view.wc?id=630
/ticket/view.wc?id=776

Chapter 101
Version 4.0.5 October 19, 2012

101.1 Bug Fixes

• ticket:777 When invalid input is sent to ’match’ or ’find’ the error includes ’match’ or ’find’ in the error message
repectively.

• ticket:749 Fix init checks for while-entry and goto

• ticket:563 Default values for arguments are always parsed and resolved as though they were being evaluated from
the point of the routine declaration, not the point where the routine is called

• ticket:763 In some cases, the translator did not keep potential routine id targets when dynamic routine names were
used

• ticket:665 documented minimal requirements for various features in EUPHORIA on various platforms.

• ticket:665 set minimal version for Windows in its installer to avoid installing on computers that it wont work on.

• ticket:767 translated insert() could segfault when inserting an atom stored as an integer

• ticket:744 Duplicate case values in a switch block no longer result in a failed compile after being translated to C.

• ticket:775 Fixed potential memory leak when a temp is passed to one of the native type check functions: integer(),
atom(), object() or sequence()

• ticket:778 Translator keeps forward referenced routine id routines in include files

• ticket:789 Make parser read Windows eols the same as unix eols on Linux.

• ticket:795 Corrected std/serialize.e to call define c proc correctly

• ticket:795 Corrected std/net/http.e to call do a case insensitive search for ’content-length’

• ticket:796 when binding and translating use different EXE names

• Fixed memory leak in translator when calls to head() result in an empty sequence

101.2 Enhancements

• ticket:768 Backported support for deserializing 8-byte integers and 10-byte floating point.

• Optimization of std/map.e remove() to prevent unnecessary copy on write

• ticket:787 Document cases where you pass an empty sequence into search routines

777

/ticket/view.wc?id=777
/ticket/view.wc?id=749
/ticket/view.wc?id=563
/ticket/view.wc?id=763
/ticket/view.wc?id=665
/ticket/view.wc?id=665
/ticket/view.wc?id=767
/ticket/view.wc?id=744
/ticket/view.wc?id=775
/ticket/view.wc?id=778
/ticket/view.wc?id=789
/ticket/view.wc?id=795
/ticket/view.wc?id=795
/ticket/view.wc?id=796
/ticket/view.wc?id=768
/ticket/view.wc?id=787

Chapter 102
Version 4.0.4 April 4, 2012

102.1 Bug Fixes

• ticket:664 Symbol resolution errors now report whether you use a symbol is not declared or is declared more than
once, or from not declared in the file you specify (via a namespace), or not a builtin. When declared more than
once, you are now told where the symbols were declared.

• ticket:602 socket create documentation corrected to state that it returns an error code on failure.

• ticket:672 fixed dll creation under Windows.

• ticket:687 fixed source file distribution.

• ticket:681 fixed error reporting when the error is the last symbol on a line, but that might be part of and expression
that carries over to the next line

• ticket:694 do not short circuit inside of forward function calls

• ticket:699 Include public and export symbols in ex.err output

• ticket:717 Fix docs to correctly describe bitwise functions

• ticket:725 Smarter reading of command line options. Euphoria could consume switches meant for the the end user
program

• When there is a user supplied library, the translator does not abort when the library doesn’t exist and one of
-nobuild, -makefile or -makefile-partial is used

• ticket:728 Fix sequence slice error when invalid command line arguments are passed to euphoria.

• ticket:730 Fixed initialization of private variables. The translator incorrectly assumed that all variables started as
integers to prevent them from being dereferenced.

• ticket:722 Use backslashes for the filesystem seperator when passing to Watcom even if the supplied data uses
forward slashes.

• ticket:611 an no-longer existing install.doc was being referenced by a an install script. This has been updated.

• ticket:683 ticket:685 fixes for building the interpreter itself for MinGW

• ticket:732 fixes in building console less programs using MinGW

• ticket:721 fixes drive letter case descrepency between various functions defined in sys/filesys.e

778

/ticket/view.wc?id=664
/ticket/view.wc?id=602
/ticket/view.wc?id=672
/ticket/view.wc?id=687
/ticket/view.wc?id=681
/ticket/view.wc?id=694
/ticket/view.wc?id=699
/ticket/view.wc?id=717
/ticket/view.wc?id=725
/ticket/view.wc?id=728
/ticket/view.wc?id=730
/ticket/view.wc?id=722
/ticket/view.wc?id=611
/ticket/view.wc?id=683
/ticket/view.wc?id=685
/ticket/view.wc?id=732
/ticket/view.wc?id=721

CHAPTER 102. VERSION 4.0.4 APRIL 4, 2012 102.2. ENHANCEMENTS

102.2 Enhancements

• ticket:611 A more complete explaination of how to install has been added to the documentation.

• ticket:727 The interpreter and translator no longer show you all of their options when you make a mistake at the
command line.

• ticket:727 cmd parse() can take a new option NO HELP ON ERROR, which means it will not display all of the
options on error.

• ticket:741 minor format/refactor win32 demos to use C TYPES more win64 compatible & eu4.1 ready.

779

/ticket/view.wc?id=611
/ticket/view.wc?id=727
/ticket/view.wc?id=727
/ticket/view.wc?id=741

Chapter 103
Version 4.0.3 June 23, 2011

103.1 Bug Fixes

• ticket:655 Integer values stored as doubles weren’t being correctly coerced back to euphoria integers in translated
code.

• ticket:656 Translated not bits made incorrect type assumptions

• ticket:662 Switches with all integer cases, but with a range of greater than 1024 between the biggest and smallest
were interpreted incorrectly.

• ticket:661 fixed translator linking to use comctl32 library on windows

• ticket:663 Translator -plat switch now uses WINDOWS instead of WIN.

• ticket:666 fixed to allow integers stored as doubles in be sockets.c.

• ticket:654 removed internal use-only standard library routines and constants from the user documentation.

• ticket:667 Fixed optimization of translated IF when the conditions were known to be false.

• ticket:654 Removed from documentation the internal workings of Machine Level Access and reorganized Documen-
tation.

• ticket:676 Changed search order for locate file

• ticket:675 Fixed machine crash in splice when splicing an atom before beginning of sequence or after end

• ticket:665 Windows 95 and above is supported. For using sockets you must have Windows Sockets 2.2

• ticket:680 Fixed socket type checking.

• ticket:720 Fix propagation of public include among reincluded files

103.2 Enhancements

• Minor changes to eutest output to read its console output

• The interpreter and programs created with the translator (for WATCOM only) will now run on older versions of
Windows that don’t support sockets unless this program uses sockets.

• New math functions larger of and smaller of

780

/ticket/view.wc?id=655
/ticket/view.wc?id=656
/ticket/view.wc?id=662
/ticket/view.wc?id=661
/ticket/view.wc?id=663
/ticket/view.wc?id=666
/ticket/view.wc?id=654
/ticket/view.wc?id=667
/ticket/view.wc?id=654
/ticket/view.wc?id=676
/ticket/view.wc?id=675
/ticket/view.wc?id=665
/ticket/view.wc?id=680
/ticket/view.wc?id=720

Chapter 104
Version 4.0.2 April 5, 2011

104.1 Bug Fixes

• Fixed canonical path performance issues introduced in 4.0.1.

• ticket:646 dir can now handle multiple wildcards on non-Windows platforms

• ticket:647 The version detection system has been improved so that all binaries use the same C header file, which
should prevent the potential of mismatched versions.

• ticket:644 canonical path leaves alone path components (and anything after them) with wildcards.

• Fixed compiler directives about functions that don’t return. Removed some that were obsolete, and corrected for
MinGW to use the GCC directives.

• ticket:648 Fix small memory leak from while loops

104.2 New Functionality

• The std\rand.e function, sample(), now implements both with replacement and without replacement sampling
methods.

781

/ticket/view.wc?id=646
/ticket/view.wc?id=647
/ticket/view.wc?id=644
/ticket/view.wc?id=648

Chapter 105
Version 4.0.1 March 29, 2011

105.1 Bug Fixes

• Renamed implicit Top Level SubProgram to an illegal name. Previously used ” toplevel ”, which became a legal
name for euphoria 4.0

• ticket:577 object() works same on translator as the interpreter.

• euc now uses quotes around filenames when processing resource files

• ticket:575 OW installer file setenv-ow.bat functionality restored from 4.0.0RC2.

• case issues were removed from pathinfo(), canonical path(), and abbreviate path() these functions now return raw
OS output; it is up to the user to change case when necessary

• ticket:593 Atoms represented as doubles, but that hold the double representation of a euphoria integer, now hash as
though they were actually represented as an integer. This ensures that two objects that evaluate as equal() will
have the same hash value.

• ticket:597 Invalid negative routine ids were not detected properly by the interpreter, leading to a machine crash.

• Now EUPHORIA can be installed under the Windows’ ’Program Files’ (with spaces) and the translated code will be
compiled.

• Fixed Demos to not rely on EUDIR being set and to not issue warnings

• Improved confirmation in the algorithm that determines where EUPHORIA is.

• ticket:601 Missing htmldoc added to Makefile

• ticket:604 Uninstaller now completely cleans up after the installer. Note %EUBIN%\bin\eu.cfg is left in place if
modified.

• Fixed link to PDF documentation

• Added HTML documentation

• ticket:610 Euphoria Installer that includes Watcom will now prevent the user from installing Euphoria under a
directory with spaces. Watcom itself has a lot of problems when spaces are in its path

• ticket:614 maybe any key() was not pausing when a Console Program was run from Windows Explorer.

• ticket:591 updated copyright and version and added documentation reminding us all of the places we need to change
that information.

782

/ticket/view.wc?id=577
/ticket/view.wc?id=575
/ticket/view.wc?id=593
/ticket/view.wc?id=597
/ticket/view.wc?id=601
/ticket/view.wc?id=604
/ticket/view.wc?id=610
/ticket/view.wc?id=614
/ticket/view.wc?id=591

CHAPTER 105. VERSION 4.0.1 MARCH 29, 2011 105.2. ENHANCEMENTS

• ticket:607 Fixed translation of integers with decimals (e.g., 2.0) when assigned to constants

• ticket:598 Link windows binaries to comdlg32.dll to make sure GUI calls work with the new manifest.

• ticket:590 Fixed outdated or incorrect documentation on loop statements

• ticket:594 Fixed problem with not being able to link to resource file in a location with spaces.

• ticket:615 Fixed abbreviate path for Windows

• ticket:595 When it is necessary, tell user to change directory before using the make program.

• ticket:592 eu.cfg files in the program’s directory and the euphoria executable directories are searched before platform
specific directories

• ticket:609 Scientific notation not handling a decimal of all zeroes correctly.

• ticket:621 Add -eudir <dir> handler to binder and shrouder

• ticket:617 Fix top level case values when referencing an unqualified constant in another file

• ticket:620 Added comdlg32.dll to mingw linking flags

• ticket:625 Negative subscripts result in runtime errors.

• Fixed eu.cfg handling precedence and parameter merge / de-dupe algorithm to keep correct order of switches.

• Load eu.cfg arguments when running programs with no arguments, e.g., ”eui app.ex”

• ticket:619 GNU makefile ”all” target builds all binaries now

• ticket:632 fix trace screen prompts to prompt to continue

• ticket:633 On Windows, dir was incorrectly case sensitive if wildcards were used.

• ticket:624 Fixed regex function is match to use the from parameter

• ticket:596 Worked around GNU C problem of a lack of alias attribute support on some Mac OS X machines.

• ticket:636 Source files checked out from Mercurial (and thus distributed packages) will use the conventions of the
OS for line breaks.

• ticket:639 In place RHS slice (on sequence with reference count 1), followed by in place splice (on sequence still
with reference count 1) works correctly

• ticket:640 Fix dir when a file cannot be stat()ed

• ticket:641 Use dir instead of just calling raw machine func in canonical path and abbreviate path

105.2 Enhancements

• Added parsing of two digit years to std/datetime.e parse.

• ticket:516 added join path and split path routines.

• current dir() now always returns an upper case letter for the drive id.

• canonical path() can now leave the case alone, lower the case, correct the case, and even get short file names
for programs that still cannot handle quoted arguments at the command line.

783

/ticket/view.wc?id=607
/ticket/view.wc?id=598
/ticket/view.wc?id=590
/ticket/view.wc?id=594
/ticket/view.wc?id=615
/ticket/view.wc?id=595
/ticket/view.wc?id=592
/ticket/view.wc?id=609
/ticket/view.wc?id=621
/ticket/view.wc?id=617
/ticket/view.wc?id=620
/ticket/view.wc?id=625
/ticket/view.wc?id=619
/ticket/view.wc?id=632
/ticket/view.wc?id=633
/ticket/view.wc?id=624
/ticket/view.wc?id=596
/ticket/view.wc?id=636
/ticket/view.wc?id=639
/ticket/view.wc?id=640
/ticket/view.wc?id=641
/ticket/view.wc?id=516

Chapter 106
Version 4.0.0 December 22, 2010

4.0.0 was released on December 22, 2010.
For a concise list of what has changed from 3.1.1 to 4.0.0 final, please see What’s new in 4.0? section of this manual.

106.1 Deprecation

• with/without warning lists have changed from (name1, name2) to name1, name2 as to be more like Euphoria
sequences. In the future the old (name1, name2) syntax will be removed.

106.2 Possible Breaking Changes

• std/sequence.e/series has changed the functionality of the last parameter. Previously series(1,1,5) would
produce 1,2,3,4,5,6. i.e. 5 was the number of items to add onto the starting 1. The last parameter has been
changed to be the number of items in the resulting list. Thus, series(1,1,5) will now produce 1,2,3,4,5, i.e. a
sequence of 5 items. series(1,1,0) before would produce 1. Now it produces , i.e. an empty series.

• ticket:551: WIN32 GUI, WIN32 CONSOLE, EUB CONSOLE, EUC CONSOLE have been changed to simply refer to GUI or
CONSOLE. On non-Windows platforms, CONSOLE will be defined.

106.3 Removed

• creolehtml is no longer shipped with Euphoria. It has been enhanced to support multiple output formats and thus
its name has been changed to simply creole. HTML remains the default output. Usage remains the same thus
simply renaming build systems to use creole instead of creolehtml will work.

106.4 Bug Fixes

• ticket:438, removed path test in demos/santiy.ex as it does not function correctly with bound, translated or even
a non-standard eui location and actually cannot, thus it was removed.

• ticket:514, Fixed bug with internal dir implementation that would prevent displaying the content of a directory if
given without a trailing slash on Windows.

• ticket:517, Added a bounds check that could cause the translator or binder to crash.

• ticket:518, Prevented write coverage from being called twice on CTRL+C/error condition.

784

/ticket/view.wc?id=551
/ticket/view.wc?id=438
/ticket/view.wc?id=514
/ticket/view.wc?id=517
/ticket/view.wc?id=518

CHAPTER 106. VERSION 4.0.0 DECEMBER 22, 2010 106.5. ENHANCEMENTS/CHANGES

• ticket:519, preproc and net demos are now in the debian package.

• ticket:530, t command line quote test fixed on Windows.

• ticket:533, Debian package copyright was updated in accordance to Debian policy.

• ticket:540, get key was described in both io.e and console.e, removed from io.e

• ticket:545, canonical path did not properly insert the drive letter on Windows when the path began with a forward
slash /.

• ticket:548, Fixed error in emitted C in some translated for loops.

• ticket:550, Examples for regex matches and all matches now properly either supply or use the default from

parameter.

• ticket:555, Fixed parsing of constants when first statement is a constant assigned by a built-in function.

• ticket:556, Fixed type inference for return value from rand in translator.

• ticket:557, euphoria.h had gotten out of sync when some OPs were removed.

• ticket:558, Fixed crash caused by undeclared variable assignment by properly subscripting [i] when looking up forward
references in the toplevel subroutine

• ticket:560, Functions that started with an unqualified variable from another file being assigned by the return value
of an unqualified function from another file could result in a crash.

• ticket:564, Documentation fix on parameter name for calc hash.

• Fix backend and interpreter to avoid ”press any key” prompts when running as a console from a shared console
window.

• Ensure forward type checks aren’t resolved until after the variable being type checked has been resolved.

106.5 Enhancements/Changes

• Made previously private method iscon in std/console.e a public method named has console which will return
TRUE/FALSE if the current application has a console window attached.

• cmd parse now splits onto two lines an option whose command is longer than the maximum pad size and its
description.

• PDF documentation is now much better, generated from LaTeX sources.

• Bundled creole program supports multiple output formats now, the addition of LaTeX for great printed or PDF
documentation from your creole sources.

• Bundled utility bench.ex now outputs timing information to STDERR by default. --stdout can be supplied if
output to STDOUT is desired. It now also displays the min and max iteration times in addition to the already
average and total.

• demo/net/pastey.ex demo has been updated to function with OpenEuphoria’s pastey service. It can also now
accept file input via stdin.

• -version on main products now reports build date in addition to previous information.

• euphoria/info.e version methods version string and version string long now have the ability to report
the enhanced version information.

• Optimized for loops to check for integer initial value and limits.

785

/ticket/view.wc?id=519
/ticket/view.wc?id=530
/ticket/view.wc?id=533
/ticket/view.wc?id=540
/ticket/view.wc?id=545
/ticket/view.wc?id=548
/ticket/view.wc?id=550
/ticket/view.wc?id=555
/ticket/view.wc?id=556
/ticket/view.wc?id=557
/ticket/view.wc?id=558
/ticket/view.wc?id=560
/ticket/view.wc?id=564

Chapter 107
Version 4.0.0 Release Candidate 2 December 8,
2010

107.1 Deprecation

• find from and match from have been deprecated. find and match accept an optional argument (start) allowing
these functions to be a 100% drop in replacement.

• OPT EXTRAS in std/cmdline.e has been replaced by a more favored name EXTRAS.

• iff from std/utils.e has been replaced by a more favored name iif.

107.2 Removed

• ticket:371, replace all has been removed as it was a duplicate of the more powerful match replace routine.

• ticket:376, mouse.e and std/mouse.e

• ticket:484, wildcard file is very DOS centric, doesn’t act right at all on modern consoles. It has been removed.

• ticket:486, can add docs have been removed, they pointed to the name change of can add to binop ok, changed
during beta stage.

• ticket:487, wildcard:new(), method really didn’t make sense as a planning stage for regex usage as too much
would have to change, a simply call to new did not save much and possibly just caused bad programming methods
to be used.

• Support for alternate style eu.cfg sections, i.e. bind:unix and unix:bind were previously supported, now only the
documented method: bind:unix is accepted.

107.3 Bug Fixes

• ticket:118, object() tests now function properly when translated.

• ticket:169, find nested no longer defaults the rtn id parameter to -1 as that is the ”invalid” return value of
routine id in which case a typo in your routine id would be silently ignored

• ticket:335, eui now only accepts -v, –version as parameters to display the version number instead of -v, –v, -version
and –version.

786

/ticket/view.wc?id=371
/ticket/view.wc?id=376
/ticket/view.wc?id=484
/ticket/view.wc?id=486
/ticket/view.wc?id=487
/ticket/view.wc?id=118
/ticket/view.wc?id=169
/ticket/view.wc?id=335

CHAPTER 107. VERSION 4.0.0 RELEASE CANDIDATE 2 DECEMBER 8, 2010 107.3. BUG FIXES

• ticket:338, Fixed Data Execution Prevention for FreeBSD systems.

• ticket:339, Fixed locale for FreeBSD systems.

• ticket:341, Removed unused variables in the standard library.

• ticket:343, Resolution of unqualified symbols from other files is deferred until all files that could cause symbol
resolution conflicts have been read.

• ticket:345, Forward patches now update the stack space for a routine when they create temps.

• ticket:349, Fixed resolution of qualified public symbols when the namespace points to the wrong file, but the
namespace file directly includes the file with the actual routine

• ticket:352, A function with a defaulted parameter that is both forward referenced and inlined no longer crashes.

• ticket:358, The programs eutest, creolehtml, and eudoc now all support a command line option to display their
version number.

• ticket:362, The handing of regular expressions which match the text but didn’t have any matching sub-groups was
not correct nor documented.

• ticket:366, Created a new module, base64, to implement the standard Base-64 encoding algorithms.

• ticket:367, http post properly handles multi-part form data.

• ticket:372, When an application ends, it closes all the opened files. However if it was ending due to an syntax error,
it was closing those files before trying to access the message text database that had been opened, thus causing a
seek() to fail and crash the application.

• ticket:378, On Linux and FreeBSD, the socket tests failed to detect the correct error code.

• ticket:392, seek was not returning the correct failure code on some errors.

• ticket:396, Continue operations are now properly back patched.

• ticket:391, Watcom build system was lacking the ability to build the manual.

• ticket:402, maybe any key now works when run from the command line version of EUPHORIA even when run
without a command-line shell.

• ticket:403, Many documentation examples used ? func() and showed the output in string format which ? does not
do. It was misleading to the new person to Euphoria. Found instances have been updated.

• ticket:405, dis.ex no longer creates a build directory for no reason.

• ticket:409, Calls to Head() that should have altered the sequence in place did not, resulting in slower code.

• ticket:417, Accidental inclusion of TOC was removed

• ticket:418, -debug eu.cfg switch text was corrected

• ticket:418, Clarified what (all) and (translator) means

• ticket:425, Fixed crash when branches were inlined into the top level

• ticket:426, Eutest uses binary binder

• ticket:429, tokenize.e no longer drops the first character of a backtick string

• ticket:431, tokenize.e properly parses \xXX escapes

• ticket:434, tokenize.e no longer strips leading zeros on numbers when using the string numbers option.

787

/ticket/view.wc?id=338
/ticket/view.wc?id=339
/ticket/view.wc?id=341
/ticket/view.wc?id=343
/ticket/view.wc?id=345
/ticket/view.wc?id=349
/ticket/view.wc?id=352
/ticket/view.wc?id=358
/ticket/view.wc?id=362
/ticket/view.wc?id=366
/ticket/view.wc?id=367
/ticket/view.wc?id=372
/ticket/view.wc?id=378
/ticket/view.wc?id=392
/ticket/view.wc?id=396
/ticket/view.wc?id=391
/ticket/view.wc?id=402
/ticket/view.wc?id=403
/ticket/view.wc?id=405
/ticket/view.wc?id=409
/ticket/view.wc?id=417
/ticket/view.wc?id=418
/ticket/view.wc?id=418
/ticket/view.wc?id=425
/ticket/view.wc?id=426
/ticket/view.wc?id=429
/ticket/view.wc?id=431
/ticket/view.wc?id=434

CHAPTER 107. VERSION 4.0.0 RELEASE CANDIDATE 2 DECEMBER 8, 2010 107.3. BUG FIXES

• ticket:435, tokenize.e handles 0?NN numbers properly now. Returns T NUMBER as the token type and either
TF INT (??) or TF HEX (??) as the form. If string numbers is enabled, the prefix is returned as part of the
string, i.e. integer a = 0b0101 will return "0b0101".

• ticket:439, tokenize.e fixed breakage with slice operator due to new string number parsing.

• ticket:448, Fixed splice() translation.

• ticket:453, Reworked the way open files are cleaned up so that coverage works properly

• ticket:457, cmd parse() now correctly honors the NO HELP option and allows the coder to override the default help
switches.

• ticket:461, Fixed error checking for invalid C routines for c func / c proc.

• ticket:463, Fixed large file support for MinGW

• ticket:464, Fixed translated for loops that could result in incorrectly emitted brackets

• ticket:465, Fixed stack space calculations for forward proc to func conversion and type checks.

• ticket:466, Fixed line reporting on compile time type check error.

• ticket:467, Fixed interpreter, translator and binder for handling multiple parameters when one comes from a eu.cfg
file and the other from the command line, but the given option was designed to only be used ONCE, such as -batch

• ticket:469, Fixed translated block comments

• ticket:471, When using the -lib parameter to euc, it’s canoncial path is used and it’s existance is checked before
translation has begun to prevent wasting time only to find the linker fails.

• ticket:472, eui –help display is now in a logical display order.

• ticket:473, euc –help display is now in a logical display order.

• ticket:475, Fixed memory leak with interpreted rand

• ticket:476, euc can now translated single character base filenames, i.e. h.ex

• ticket:477, canonical path expansion of now works in MSYS and CMD.exe with the MinGW build.

• ticket:479, Installer now writes a eu.cfg, appends at the confirmation of the user.

• ticket:481, RD INPLACE, RD PRESORTED, RD SORT are now documented individually.

• ticket:485, Fixed scanner initialization to prevent invalid accesses.

• ticket:490, Fixed large file support for Watcom

• ticket:491, cmd parse now appends everything after the first extra to the OPT EXTRAS entry when NO VALIDATION AFTER FIRST EXTRA

is supplied as a parsing option.

• ticket:501, rand range(hi,lo) now works with lo > 30-bits.

• ticket:505, Fixed front-end command line processing

• ticket:509, fix pointer handling in regex back end code

• ticket:503, When translating, temps that were thought to be either sequences or objects, but were ultimately atoms
were not having their possible min / max values reset, leading to incorrect C code being emitted.

• Fixed seek return value for large files on Linux.

• connect return value was documented incorrectly.

788

/ticket/view.wc?id=435
/ticket/view.wc?id=439
/ticket/view.wc?id=448
/ticket/view.wc?id=453
/ticket/view.wc?id=457
/ticket/view.wc?id=461
/ticket/view.wc?id=463
/ticket/view.wc?id=464
/ticket/view.wc?id=465
/ticket/view.wc?id=466
/ticket/view.wc?id=467
/ticket/view.wc?id=469
/ticket/view.wc?id=471
/ticket/view.wc?id=472
/ticket/view.wc?id=473
/ticket/view.wc?id=475
/ticket/view.wc?id=476
/ticket/view.wc?id=477
/ticket/view.wc?id=479
/ticket/view.wc?id=481
/ticket/view.wc?id=485
/ticket/view.wc?id=490
/ticket/view.wc?id=491
/ticket/view.wc?id=501
/ticket/view.wc?id=505
/ticket/view.wc?id=509
/ticket/view.wc?id=503

CHAPTER 107. VERSION 4.0.0 RELEASE CANDIDATE 2 DECEMBER 8, 2010107.4. ENHANCEMENTS/CHANGES

• std/cmdline.e, cmd parse sets the NO CASE option when option does not have HAS CASE.

• std/cmdline.e, cmd parse sets the NO PARAMETER option when option does not have HAS PARAMETER.

• std/cmdline.e, cmd parse sets the ONCE option when option does not have MULTIPLE.

• The euphoria coded backend (eu.ex) in some cases did not handle recursive calls correctly.

• Too numerous to list: Many documentation typo, spelling mistakes and formatting errors have been corrected.

• Removed many unnecessary maybe any key uses from the general demos

• net/http.e now properly handles key,value, ..., encoding type, key,val, ... and already encoded
string data, "name=John%20Doe".

• Fixed eutext.ex and std/unittest.e. Under some circumstances, they would report 100% success even though there
were some failures.

• Fixed std/filesys.e and std/locale.e for use on OpenBSD and NetBSD.

• Use POSIX random() to initialize random seed1 on non-Windows platforms.

• Updated t io.e as OpenBSD and NetBSD allows seeking on STDIN, STDOUT and STDERR.

• Now ensure internal C strings in be pcre are properly null terminated.

• Fixed version display information for NetBSD

107.4 Enhancements/Changes

• ticket:334, *nix generic distribution build scripts are now combined for easier maintenance.

• ticket:341, ticket:344, Many unused variables have been cleaned up in the standard library.

• ticket:363, euc now has an optional parameter -rc-file that will compile and bind the resource file to windows
executables.

• ticket:411, documented the $ character as applied to a sequence terminator.

• ticket:413, Qualified the standard library. With so many forward lookups this allows for a pretty large speedup when
using multiple standard library includes.

• ticket:499, Add support for using ’1’, ’2’, and ’j’ in place of F1, F2, and the DOWN ARROW key in the Trace screen.
This allows Unix users to use trace(1) even if we don’t recognize escape sequences for their particular $TERM

• ticket:513, Moved get text from std/text.e to std/locale.e

• manual-upload target was added to GNU and Watcom makefiles

• Formatted buzz.ex example

• euc will always remove it’s temporary build directory unless the -keep option is supplied. If one wants to keep
the build directory for some reason, they sould probably use -build-dir as well, for example: euc -build-dir

my-build hello.ex which will automatically keep the build directory since it was user specified.

• Converted bin/lines.ex to use new language constructs and the standard library as an example of how an applica-
tion take advantage of 4.0. Code base went from 591 lines of code to 195 lines of code. Bugs were fixed, comment
percentage calculations and header/footer lines were added in the new, smaller version as well.

This program also now has the ability to sort results by numerous options in normal or reverse order.

789

/ticket/view.wc?id=334
/ticket/view.wc?id=341
/ticket/view.wc?id=344
/ticket/view.wc?id=363
/ticket/view.wc?id=411
/ticket/view.wc?id=413
/ticket/view.wc?id=499
/ticket/view.wc?id=513

CHAPTER 107. VERSION 4.0.0 RELEASE CANDIDATE 2 DECEMBER 8, 2010107.4. ENHANCEMENTS/CHANGES

• Moved network demos from demos/ to demos/net for better organization.

• euphoria/tokenize.e BLANK concept has changed. tokenize use to consume all newlines and only report double
blanks. It now simply tokenizes the data and returns a newline if requested. keep blanks has been renamed
to keep newlines and T BLANK has been renamed to T NEWLINE (??). Thus the tokenizer doesn’t perform any
’parser’ functions, it simply tokenizes the source.

• Added show tokens, token names and token forms to euphoria/tokenize.e to help in debugging both tokenize
internal routines and applications that make use of euphoria/tokenize.e

• Installer now creates a eu.cfg directory in EUDIR/bin

• Speed improvements to map:put()

• Demoted several ”bin” programs to demos including:

– ascii.ex

– eprint.ex

– eused.ex

– guru.ex

– key.ex

– search.ex

– where.ex

• All demos and bundled bin programs are unit tested to ensure at least eui -test passes

• Removed analyze.ex as it never was a finished, deployable product

• eu.cfg ”win32” sections ([win32], [bind:win32], [translate:win32], [bind:win32]) have now all been changed to ”win-
dows”, not ”win32”

• Removed demo/demo.doc and instead included in the header of each demo program what they do and included
them into a section in the manual about demos.

• -test parameter now displays warnings as well as errors

• Translator speed optimizations.

• Improved logging and error checking for sock server.ex demo

• Renamed bin/lines.ex to bin/euloc.ex since it’s more Euphoria centric now.

• Removed left-over translator command line parameter -fastfp which was for DOS only.

• Reuse memory buffer in HSIEH32 hash implementation

• abbreviate path is used to cleanup the display from euc regarding the Build Directory.

• printfs third argument is now optional. printf(1, "Hello\n",) is no longer needed, it can be shortened to
printf(1, "Hello\n")

• Added another hashing algorithm. HSIEH30 is identical to HSIEH32 but will only ever return a 30-bit integer (a
Euphoria integer).

• Removed hash elements from map.e and placed them in a new standard library module, hash.e

• Performance tweaks to maps.

• Removed support for emake.bat build scripts, please use direct build or makefiles, both of which euc supports
directly.

790

Chapter 108
Version 4.0.0 Release Candidate 1 November 8,
2010

The release of Euphoria 4.0 is like no other. It’s updates are massive. The change log here is not designed to detail
every minor change that has taken place during the 4.0 development cycle. Included in this release note are the language
changes only.

The entire standard library is brand new. The manual should be consulted to learn about the new standard library, it’s
changes are not documented here as it would just be a duplicate of the manual API sections. We will, however, mention
a few major additions to the API library that has required binary changes in the backend:

108.0.1 Major Library Additions

• Dictionary Type

• Regular Expressions

• Sockets

108.1 Contributors

Another thing you will notice that is slightly different about this release note is that we are not attributing ”Change ABC”
to person ”DEF.” Many of the changes made have been an iterative process involving many people. Euphoria 4.0 has had
a large number of contributors. We will, however, list all those that have contributed, the list is in last name alphabetical
order:

• Jiri Babor

• Chris Bensler

• Jim C. Brown

• CoJaBo

• Jeremy Cowgar

• Robert Craig

• Chris Cuvier

• Jason Glade

791

CHAPTER 108. VERSION 4.0.0 RELEASE CANDIDATE 1 NOVEMBER 8, 2010 108.2. BUG FIXES

• Ryan W. Johnson

• C.K. Lester

• Matthew Lewis

• Junko Miura

• Marco Antonio Achury Palma

• Derek Parnell

• Shawn Pringle

• Michael Sabal

• Kathy Smith

• Yuku (Aku)

If we have forgotten your name, please forgive us and bring it to our attention, the addition will be made promptly.

108.2 Bug Fixes

• 1855414. open() max path length is now determined by the underlying operating system and not a generic default.
open() also now returns -1 when the filename is too long instead of causing a fatal error.

• 1608870. dir() now handles *.abc correctly, not showing a file ending with .abcd. dir() also now supports
wildcard characters (* and ?) on all platforms.

108.3 Changes

• DOS support has been withdrawn. OpenEuphoria from version 4 onwards will not be specifically supporting DOS
editions of the language.

• Comments may now be embedded in data passed to value() in get.e.

• Documentation moved to a new format.

108.4 New Programs

• eutest - Unit testing system for Euphoria

108.5 New Features

• New standard include files are in include/std to resolve many conflicts.

• Include file names with accent characters now supported.

• Enhanced symbol resolution to take into account information regarding which files were included by which files.

• Namespaces for a source file now can be used for identifiers in the specified file and for global identifiers in all files
included by the specified file.

• Command line arguments for the translator allow for creating binaries with debugging symbols, and to specify a
different runtime library.

792

CHAPTER 108. VERSION 4.0.0 RELEASE CANDIDATE 1 NOVEMBER 8, 2010 108.5. NEW FEATURES

• In trace mode, ’?’ will show the last defined variable of the requested name.

• Include directories can now be specified based on command line arguments and config files in addition to environment
variables.

• Improved accuracy in scanning numbers in scientific notation. Scanned numbers are accurate to the full precision
of the IEEE 754 floating point standard.

• New loop do ... until condition end loop construct, which differs from a while loop in that it performs its test at
the end of the block, rather than at the start.

• New keywords to give greater control over the instruction flow:

– continue: start next iteration of a loop;

– retry: restarts the current iteration of a loop

– entry: marks the entry point into a loop, skipping initial test

– break: exit an if block or switch block

– goto: jump to a label that is in the same scope

• The exit, break, continue and retry keywords now can take an optional parameter, which enables to exit several
blocks at a time, or (re)starting an iteration of a loop which is not the innermost one.

• Block headers now may mention a label. This label can be used as the optional parameter of flow control keywords.

• Variables can now be initialized right on the spot at which they are declared, just like constants.

• Any routine parameter can be defaulted, i.e. given a default value that is plugged in if omitted on a call. Any
expression can be used, and parameters of the same call can even be used.

• New switch ... end switch construct, which more efficiently implements a series of elsif, using the compact case
statement.

• Unit testing added to Euphoria.

• Condition compiling keywords (ifdef, elsifdef, end ifdef) and with define=xyz or command line -D XYZ to
insert/omit code in interpreter IL code and in translated C code.

• New enum keyword that allows for parse time sequential constant creation.

• The namespace eu is predefined, and can be used to fully qualify built-in routines.

• with warning has been enhanced in order to individually turn warnings on or off.

• New scope: export. Identifiers with the export scope can only be seen from files that:

1. directly include the file where the identifiers are defined

• New scope: public. Identifiers with the public scope can only be seen from files that:

1. directly include the file where the identifiers are defined

2. directly include a file that uses the ”public include file.e” construct to pass public identifiers

• Routine resolution changes

1. Routines the same name as an internal no longer override the internal by default. You must use the keyword
override.

2. An unqualified call to routine that exists as an internal calls the internal unless overridden with the override
keyword. global, public and export functions are not called. A namespace must be used.

• -STRICT option added that will display all warnings regardless of the file’s with/without warning setting.

793

CHAPTER 108. VERSION 4.0.0 RELEASE CANDIDATE 1 NOVEMBER 8, 2010 108.5. NEW FEATURES

• -BATCH option designed to run in an automated environment. Causes any ”Press Enter” type prompt due to error
to be suppressed. Exit code will be 1 on success, 0 on failure as normal.

• -TEST option allows for editing/IDE environments to perform a syntax check on the euphoria code in question.
Causes euphoria interpreter to do all parsing, syntax checking, etc... but does not execute the code. Exit code will
be 1 on success, 0 on failure as normal. Editors/IDE’s may need both -test and -batch.

• dis.ex (in the source directory) will parse a euphoria program and output the symbol table and the IL code in a
readable format.

• Variables may be in any part of a routine, or in for, while, if, loop and switch blocks, in which case the scope of
the variable ends when its block ends.

794

	I Euphoria Programming Language v4.0
	Quick Overview
	Introduction
	Yet Another Programming Language?
	Great Features
	Euphoria is unique
	Beyond Elegance Sequences
	As a first programming language
	But, my favorite language is...
	Products
	Requirements
	Conventions used in the manual
	Discover Euphoria
	Disclaimer

	What's new in 4.0?
	General Changes
	Executable name changes
	Language Enhancements
	Tool Additions / Enhancements

	Licensing
	Euphoria Credits
	Current Authors
	Past Authors
	Contributors

	II Installing Euphoria
	Installation
	Windows
	Linux and FreeBSD
	OS X
	DOS

	Post Install
	Set Up the Euphoria Configuration File (eu.cfg)
	Configuration file format
	Config File Locations
	Config File Notes

	III Using Euphoria
	Example Programs
	Hello, World
	Sorting
	What to Do?

	Creating Euphoria programs
	Running a Program
	Running under Windows

	Editing a Program
	Distributing a Program
	Command Line Switches
	Further Notes

	IV Language Reference
	Definition
	Objects
	Identifiers
	Comments
	Expressions
	Precedence Chart

	Declarations
	Identifiers
	Specifying the type of a variable
	Scope
	Deprecation

	Assignment statement
	Assignment with Operator

	Branching Statements
	if statement
	switch statement
	ifdef statement

	Loop statements
	while statement
	loop until statement
	for statement

	Flow control statements
	exit statement
	break statement
	continue statement
	retry statement
	with entry statement
	goto statement
	Header Labels

	Short-Circuit Evaluation
	Special Top-Level Statements
	include statement
	with / without

	V Formal Syntax
	Formal Syntax
	Basics
	Statements
	Sequence Slice
	if
	ifdef
	break
	continue
	retry
	exit
	fallthru
	for
	while
	loop
	goto
	declare a variable
	declare a constant
	declare an enumerated value
	call a procedure or function
	declare a procedure
	declare a function
	declare a user defined type
	return the result of a function
	default namespace
	with options

	Euphoria Internals
	The Euphoria Data Structures
	The C Representations of a Euphoria Sequence and a Euphoria Atom
	The Euphoria Object Macros and Functions
	Type Value Functions and Macros
	Type Conversion Functions and Macros
	Creating Objects
	Object Constants

	VI Mini-Guides
	Debugging and Profiling
	Debugging
	The Trace Screen
	The Trace File
	Profiling
	Some Further Notes on Time Profiling

	Shrouding and Binding
	The eushroud Command
	The Bind Command

	Euphoria To C Translator
	Introduction
	C Compilers Supported
	How to Run the Translator
	Command-Line Options
	Dynamic Link Libraries
	Using Resource Files
	Executable Size and Compression
	Interpreter vs. Translator
	Legal Restrictions
	Disclaimer:
	Frequently Asked Questions
	Common Problems

	Indirect routine calling
	Indirect calling a routine coded in Euphoria
	Calling Euphoria's internals

	Multitasking in Euphoria
	Introduction
	Why Multitask?
	Types of Tasks
	A Small Example
	Comparison with earlier multitasking schemes
	Comparison with multithreading
	Summary

	Euphoria Database System (EDS)
	Introduction
	Structure of an EDS database
	How to access the data
	How does storage get recycled?
	Security / Multi-user Access
	Scalability
	EDS API
	Disclaimer
	Warning: Use the right file mode

	The User Defined Pre-Processor
	A Quick Example
	Pre-process Details
	Command Line Options
	DLL/Shared Library Interface
	Advanced Examples

	Euphoria Trouble-Shooting Guide
	Common Problems and Solutions

	Platform Specific Issues
	Introduction
	The Discontinued DOS32 Platform
	The Windows Platform
	The Unix Platforms
	Interfacing with C Code

	Performance Tips
	General Tips
	Measuring Performance
	How to Speed-Up Loops
	Converting Multiplies to Adds in a Loop
	Saving Results in Variables
	In-lining of Routine Calls
	Operations on Sequences
	Some Special Case Optimizations
	Assignment with Operators
	Library / Built-In Routines
	Searching
	Sorting
	Taking Advantage of Cache Memory
	Using Machine Code and C
	Using The Euphoria To C Translator

	VII Included Tools
	EuTEST - Unit Testing
	Introduction
	The eutest Program
	The Unit Test Files
	The Error Control Files
	Test Coverage

	EuDOC - Source Documentation Tool
	Documentation tags
	Generic documentation
	Source documentation
	Assembly file
	Creole markup
	Documentation software

	Ed - Euphoria Editor
	Introduction
	Summary
	Special Keys
	Escape Commands
	Recalling Previous Strings
	Cutting and Pasting
	Use of Tabs
	Long Lines
	Maximum File Size
	Non-text Files
	Line Terminator
	Source Code

	EuDis - Disassembling Euphoria code
	Introduction
	HTML Output

	EuDist - Distributing Programs
	Introduction
	Command Line Switches

	VIII API Reference
	Built-in Routines
	Command Line Handling
	Constants
	Routines

	Console
	Information
	Key Code Names
	Cursor Style Constants
	Keyboard Related Routines
	Cross Platform Text Graphics

	Date and Time
	Localized Variables
	Date and Time Type Accessors
	Intervals
	Types
	Routines

	File System
	Constants
	Directory Handling
	File Name Parsing
	File Types
	File Handling

	I/O
	Constants
	Read and Write Routines
	Low Level File and Device Handling
	File Reading and Writing

	Operating System Helpers
	Operating System Constants
	Environment
	Interacting with the OS
	Miscellaneous

	Pipe Input and Output
	Notes
	Accessor Constants
	Opening and Closing
	Read and Write Process

	Pretty Printing
	Routines

	Multi-Tasking
	General Notes
	Warning
	Routines

	Types - Extended
	Predefined Character Sets
	Support Functions
	Types

	Utilities
	Routines

	Data Type Conversion
	Routines

	Input Routines
	Error Status Constants
	Answer Types
	Routines

	Searching
	Equality
	Finding
	Matching

	Sequence Manipulation
	Constants
	Basic Routines
	Building Sequences
	Adding to Sequences
	Extracting, Removing, Replacing
	Changing the Shape of a Sequence

	Serialization of Euphoria Objects
	Routines

	Sorting
	Constants
	Routines

	Locale Routines
	Message Translation Functions
	Time and Number Translation

	Locale Names
	Constants
	Locale Name Translation

	Regular Expressions
	Introduction
	General Use
	Option Constants
	Error Constants
	Create and Destroy
	Utility Routines
	Match
	Splitting
	Replacement

	Text Manipulation
	Routines

	Wildcard Matching
	Routines

	Base 64 Encoding and Decoding
	Routines

	Math
	Sign and Comparisons
	Roundings and Remainders
	Trigonometry
	Logarithms and Powers
	Hyperbolic Trigonometry
	Accumulation
	Bitwise Operations

	Math Constants
	Constants

	Random Numbers
	Statistics
	Routines

	Euphoria Database (EDS)
	Error Status Constants
	Lock Type Constants
	Error Code Constants
	Indexes for Connection Option Structure.
	Database Connection Options
	Variables
	Routines
	Managing Databases
	Managing Tables
	Managing Records

	Prime Numbers
	Routines

	Flags
	Routines

	Hashing Algorithms
	Type Constants
	Routines

	Map (Hash Table)
	Operation Codes for Put
	Types
	Routines

	Stack
	Constants
	Stack types
	Types
	Routines

	Scientific Notation Parsing
	Parsing routines
	Floating Point Types

	Core Sockets
	Error Information
	Socket Backend Constants
	Socket Type Euphoria Constants
	Socket Type Constants
	Select Accessor Constants
	Shutdown Options
	Socket Options
	Send Flags
	Server and Client Sides
	Client Side Only
	Server Side Only
	UDP Only
	Information

	Common Internet Routines
	IP Address Handling
	URL Parsing

	DNS
	Constants
	General Routines

	HTTP Client
	Error Codes
	Constants
	Configuration Routines
	Get/Post Routines

	URL handling
	Parsing
	URL Parse Accessor Constants
	URL encoding and decoding

	Dynamic Linking to External Code
	C Type Constants
	External Euphoria Type Constants
	Constants
	Routines

	Errors and Warnings
	Routines

	Pseudo Memory
	Machine Level Access
	Safe Mode
	Data Execute Mode and Data Execute Protection
	Type Sorted Function List
	Memory Allocation
	Reading from Memory
	Writing to Memory
	Memory Manipulation
	Calling Into Memory
	Allocating and Writing to memory:
	Memory Disposal
	Automatic Resource Management
	Types and Constants

	Indirect Routine Calling
	Accessing Euphoria coded routines
	Accessing Euphoria Internals

	Memory Constants
	Microsoft Windows Memory Protection Constants
	Standard Library Memory Protection Constants

	Graphics Constants
	Error Code Constants
	video_config Sequence Accessors
	Routines
	Color Set Selection

	Graphics - Cross Platform
	Routines
	Graphics Modes

	Graphics - Image Routines
	Bitmap Handling

	Euphoria Information
	Build Type Constants
	Numeric Version Information
	Compiled Platform Information
	String Version Information
	Copyright Information
	Timing Information
	Configure Information

	Keyword Data
	Constants

	Syntax Coloring
	Routines

	Euphoria Source Tokenizer
	tokenize return sequence key
	Tokens
	T_NUMBER formats and T_types
	Token accessors
	ET error codes
	get/set options
	Routines
	Debugging

	Unit Testing Framework
	Background
	Constants
	Setup Routines
	Reporting
	Tests

	Debugging tools
	Call Stack Constants
	DEBUG_ROUTINE Enum Type
	Debugging Routines

	Windows Message Box
	Style Constants
	Return Value Constants
	Routines

	Windows Sound
	Unsupported Features
	UTF Encoded String Literals

	IX Release Notes
	Version 4.1.0 Date TBD
	Bug Fixes
	Enhancements
	Version 4.0.6 Date TBD
	Bug Fixes
	Enhancements

	Version 4.0.5 October 19, 2012
	Bug Fixes
	Enhancements

	Version 4.0.4 April 4, 2012
	Bug Fixes
	Enhancements

	Version 4.0.3 June 23, 2011
	Bug Fixes
	Enhancements

	Version 4.0.2 April 5, 2011
	Bug Fixes
	New Functionality

	Version 4.0.1 March 29, 2011
	Bug Fixes
	Enhancements

	Version 4.0.0 December 22, 2010
	Deprecation
	Possible Breaking Changes
	Removed
	Bug Fixes
	Enhancements/Changes

	Version 4.0.0 Release Candidate 2 December 8, 2010
	Deprecation
	Removed
	Bug Fixes
	Enhancements/Changes

	Version 4.0.0 Release Candidate 1 November 8, 2010
	Contributors
	Bug Fixes
	Changes
	New Programs
	New Features

