
Bob Ray

MODX: The Official Guide
Building dynamic websites with the
MODX content management platform.

Bob Ray
MODX: The Offi cial Guide

“No components should EVER alter core tables or fi les.
That’s all I’m gonna say on that one.”
 Jason Coward (OpenGeek) March 28, 2010

“The mantra we must remember in Open Source is that
you get what you give.”
 Shaun McCormick (splittingred) July 21, 2010

“Unequivocably, there's no way anyone can now claim
the documentation for MODX isn’t up to snuff .”
 Ryan Thrash (rthrash) August 3, 2011

Copyright © 2011 Bob Ray. All rights reserved

Publisher: MODX Press
Editor: Haven Stephens
Technical Editor: Shaun McCormick
Cover Design: äkta
Interior Design: Ryan Th rash
Production Coordinator: Michael Hickey
Indexer: Bob Ray

ISBN: 978-0-9836194-0-6

MODX, LLC
25 Highland Park Village, Ste 100-413
Dallas, TX 75205-2789
http://modx.com/press/

42 11 04 10 9 8 7 6 5 3 2 1

1 |How MODX Works
Th e MODX Database . 2
MODX vs. Th ird-Party Components 2
Th e Back End vs. the Front End 5
Basic Building Blocks . 6
How MODX Delivers a Web Page 21
Transport Packages . 22
Other MODX Concepts 23
Summary . 29
MODX Evolution Notes 30

2 | Installing MODX
Installing the Current Stable Release 36
Installing Add-on Components 52
Friendly URLs, Friendly Aliases 55
Installing MODX on Your Local Machine 62
Porting an Existing Site to MODX 89
Summary . 94
MODX Evolution Notes 95

3 | The MODX Manager
Th e Resource, Element, and File Trees 99
Th e Top Menu . 109
Summary . 129
MODX Evolution Notes 130

4 | Resources
Documents . 136
Weblinks . 176
Symlinks . 177
Static Resources . 178
Template Variables and Access Permissions 179
Other Resource Operations 179
Summary . 183
MODX Evolution Notes 184

5 | Templates and Template Variables
Templates . 190
Creating a Template . 190
An Example Template 191
Example Template: A Closer Look 192
Deciding What to Put in a Template 198
Using Tags in a Template 199
Template Variables . 199
Summary . 226
MODX Evolution Notes 227

6 | Chunks and Properties
Introducing Chunks . 230
Creating a Simple Chunk 230
Using Chunks with Other Tags 232
Other Uses for Chunks 236
Introducing Properties 247
Sending Properties in the Chunk Tag 249
Default Properties Versus Property Sets 249
Working with Default Properties 252
How Default Properties are Used 255
Property Sets . 256
Summary . 263
MODX Evolution Notes 264

7 | Snippets and Plugins
Working with Snippets 268
Working with Plugins 289
Summary . 305
MODX Evolution Notes 306

8 | Advanced Snippet Operations
MODX get*() Methods 310
Object Methods . 326
Working with Resources, Elements, and Users 352
Summary . 415
MODX Evolution Notes 416

9 | Site Organization and Contexts
Site Organization . 419
Contexts. . 424
Summary . 434
MODX Evolution Notes 435

10 | MODX Security
Security System Overview 438
Security Elements . 442
Working with MODX Security 454
Controlling Access in the Front End 468
Summary . 496
MODX Evolution Notes 497

11 | Customizing the MODX Manager
Altering the Top Menu 502
Form Customization 513
Custom Manager Pages 523
Summary . 533
MODX Evolution Notes 533

12 | Using Common Components
Installing Components and Property Sets 536
Creating an FAQ Page with EZfaq 539
Creating a Contact Page with SPForm 543
Using Breadcrumbs to Show the Current Path 551
Using Wayfi nder to Create a Menu 555
Using getResources to Aggregate Content 565
Using FormIt to Create and Process Forms 571
Summary . 594
MODX Evolution Notes 594

13 | Creating Transport Packages
Transport Package Overview 600
A Simple Transport Package 605
Summary . 625
MODX Evolution Notes 626

Appendix
MODX API . 629
PHP Primer . 652
MODX Objects Reference 690
Using SMTP to Send Mail in MODX 696
MODX System Events 697

Table of Contents

Acknowledgments
Countless people have been invaluable in the production of this book. First and foremost, I
owe a debt of gratitude to the founders and core developers of MODX: Ryan Th rash (rthrash),
Jason Coward (OpenGeek), and Shaun McCormick (splittingred). Th ey have developed a fi rst-
class Open Source CMS, and this book would not have been possible without their support
and patience. Shaun served as the book’s technical editor and deserves special credit for
ensuring its accuracy. Haven Stephens, the book’s editor, played a critical role in eliminating
countless errors and making sure that the explanations in the book were as clear as possible.

I would also like to thank the many users of the MODX Forums, both those whose answers
have taught me almost everything I know about MODX and those whose questions led to
the creation of this book. In particular, I’d like to thank the following people (MODX Forum
usernames in parentheses):

Susan Ottwell (sottwell), Jelle Jager (TobyL), (ganeshXL), David Molliere (davidm), (kon-
gondo), (doze), (ZAP), Zaigham Rana (Zi), Andreas Wettainen (mrhaw), Jay Gilmore
(smashingred), Shane Sponagle (dev_cw), (coroico), Kyle Jaebker (kylej), Garry Nutting
(garryn), Jeff Whitfi eld (Bravado), (Everett), (fl inx), Mike Reid (pixelchutes), Jared Carlow
(jaredc), (Dr. Scotty Delicious), (Carsten), Steve Hamblett (shamblett), (NetProphET),
Adam Crownoble (aNoble), (netnoise), (sirlancelot), Aaron Wardle (Onesmarthost), (Pho-
towebmax), Erik Bjorn (Sylvaticus), (snop), (mademyday), Keith Penton (kp52), (char-
liez), (bob1000), (Chuck), (therebechips), Dimitri Hilverda (Dimmy), (Soshite), Adrian
Lawley (Taff), (sinbad), Bruno Perner (Bruno17), (Breezer), (mmjaeger), (AMDbuilder),
(sharkbait), (chinesedream) (cipa), (ChuckTrukk), (Paprikas), David Bunker (bunk58),
(samba), (paulp), (Byzantium), (SandersDesign), (virtualgadjo), James Ehly (devtrench),
Mark Hamstra (Mark H.), (treigh), (hotdiggity), (ottogal), (anso), (pleth), (lossendae),
(mconsidine), (Jul), (xdom), Luca Reghellin, (microcipcip), (Pandy06269), Helen Warner
(Muggins), Ivan Salcedo (odeclass), Stefan Moser (stefan), Rob Backus (robb), John Hughes,
Zuriel Andrusyshyn (zurie).

My apologies to the many others whose names I’ve omitted either from lack of space or
memory lapse.

I’d also like to thank my cat, Cosmo, who spent many hours each day for over two years
curled up next to me as I worked on the book at my computer. His comments on the book
were invaluable.

Disclaimer of Warranty (Legal Mumbo Jumbo)

All of the information, instructions, and recommendations in this book are provided on a strictly “as is” basis

without any warranty, expressed or implied. In particular, any and all warranties of fi tness for use or merchant-

ability are disclaimed. Neither MODX nor Bob Ray personally shall be held responsible for any direct, indirect,

incidental, or consequential damages that may result from the use of material in this book or anything any reader

does as a result of reading any part of the book or any associated web site. It is up to the reader to determine the

suitability of any directions or information presented in the book. Furthermore, it is the responsibility of the

reader to determine if any information, instructions, or recommendations given in the book are appropriate

based upon his or her particular situation. Th e author and publisher cannot be held accountable for decisions

made based upon material in the book.

MODX: The Offi cial Guide i

Introduction

MODX is an advanced Open Source Content Management System (CMS). If you are not
familiar with the term CMS, think of a word processor for web sites, but on steroids. A
CMS will usually provide you with a graphical view of your web site, a database that stores
the site’s content, and one or more editors for creating web pages and populating them
with links, lists, headings, and formatted text.

Every CMS tries to provide a convenient and powerful user interface for creating and
maintaining web sites, but to some extent, convenience and power are in opposition to
one another. Some CMS platforms, like WordPress, put convenience above power. If you
want a standard blog with a ready-made look and feel, WordPress provides a surprisingly
friendly and intuitive user interface for creating and maintaining one.

MODX, on the other hand, leans more toward the power side of the equation. Th e learning
curve is a little steeper, but MODX allows you much more freedom in the design of your
web site, more powerful tools you can use to make the web site unique, and the ability to
customize the CMS itself.

MODX is also a powerful Content Management Framework (CMF). Th is means that the
building blocks of MODX can actually be used to create any number of diff erent CMS
platforms. We will cover customizing the MODX user interface in later chapters. For the
most part, however, the use of MODX as a CMF is beyond the scope of this book, which
is mainly about MODX the CMS.

One guiding principle of MODX is to put as few restrictions on the web developer as pos-
sible. MODX puts no limits on the CSS and HTML code you use to build your site, and
you can easily add PHP or JavaScript code to meet any need. One illustration of this fl ex-
ibility is that you can take virtually any existing web site and make a MODX web site out
of it that looks exactly the same to a front-end visitor. Trying that with many other CMS
platforms will leave you cursing and tearing your hair out.

By the time you’ve fi nished reading this book, you should be able to use MODX to create
new web sites or to port existing web sites to MODX. It was my goal in writing this book
to provide all the information you need to use the basic building blocks of MODX to meet
your needs as a web designer/developer.

In
tro

d
u

ctio
n

ii MODX: The Offi cial Guide

About This Book
Before we dive into MODX, we need to discuss a few things about this book. In the following
sections, we’ll look at who the book is for, how it is organized, and how the typography of
the book can help you understand what you’re looking at.

Audience
Th is book is for anyone who wants to use MODX for web site design, development, and
maintenance. In order to get the most out of this book, you should have a basic familiarity
with (X)HTML, CSS, and how the two interact in the rendering of web pages.

You will also see some PHP code in the book. You can do a lot with MODX without knowing
PHP, but to get the most out of MODX, you really should have at least some knowledge
of PHP. If you don’t, never fear. PHP is a relatively easy computer language, and the PHP
Primer in this book’s Appendix will help you get started.

Th ere are many excellent PHP tutorials on the Web, and lots of expert MODX users knew
no PHP when they started out. Oft en, they created a web site with no PHP, and then
learned PHP, a little bit at a time, as they began to make their web site more and more
interesting and easier to maintain.

Th is book is perfectly suitable for MODX beginners but contains plenty of in-depth infor-
mation for power users as well. If you are brand new to MODX, some parts of the book
may go over your head the fi rst time you read them. Over time, however, you will grow
more familiar with how MODX works, and they will gradually begin to make sense to you.

At fi rst, I tried to put material for beginners at the beginning of the book and save the
more advanced information for later. Because of the way MODX works, however, it just
wasn’t possible. As a result, you’ll see things that may confuse you on the fi rst pass. You
should be able to ignore them and create a perfectly good web site using the things you
do understand. Later, as things make more sense to you, you’ll be able to refi ne your site
to take advantage of MODX’s more advanced features. Th e book is also meant to serve as
a reference manual for both beginners and experts.

MODX: The Offi cial Guide iii

Organization of The Book
Generally, the book is organized on the basis of MODX objects, such as resources, chunks,
snippets, plugins, placeholders, etc. If you are new to MODX, you won’t be familiar with
these at fi rst. Aft er reading Chapter 1, however, you should have a fair idea of what they
are and how they work together. Later in the book, we’ll look at each MODX object in
depth. Because the objects constantly interact with each other, you’ll be learning about
them all bit-by-bit as we go along.

Conventions
A number of typographical conventions are used throughout the book to make it easier to
understand what you’re looking at. Th ere are two main typefaces for content in the book:
Th e regular font (used for this sentence) and the code font. Th e code font looks like this
when it appears in a regular font paragraph: This is the inline code font. When it
appears in a separate paragraph, it looks like this:

 This is the code snippet font.

Th e code font is used for all (X)HTML, CSS, and JavaScript code and for all MODX tags
and their contents. It is also used for fi le and directory names and for path names and for
text to be entered in a fi eld in the MODX Manager.

MODX internal variables such as system event names, settings, and resource/template
variable fi eld names will also be in the code font, but to make them distinguishable, they
will be in boldface type wherever they appear:

 OnManagerFormSave, site_start, pagetitle.

Key terms will generally be in the regular font in italics when they fi rst appear. Terms
referring to MODX objects (snippets, template variables, chunks, plugins, categories,
placeholders, etc.) will be in lowercase when they appear in text except at the beginning
of a sentence.

Names of resources or elements that you will be creating and editing yourself, will be
in italics in the code font when they fi rst appear, then in the regular font in roman type,
usually in CamelCase:

 Create a chunk called FooterChunk. Th e FooterChunk will contain code for the
 page footer.

Terms referring to specifi c areas of the MODX Manager or to form fi elds in the Manager
will generally be in initial caps and in the regular font:

 Create/Edit Resource panel, Long Title, Alias, Package Manager

In
tro

d
u

ctio
n

iv MODX: The Offi cial Guide

Shorthand references to Manager commands that use menus for navigation will be in bold
and have arrows between them:

 Go to Tools → Package Management

Longer descriptions of Manager actions in the text will use initial caps and quotation marks
around buttons and menu choices that you are meant to select:

 Select “System” on the Top Menu, then click on “Package Management.”

Field names and tab names used in the MODX Manager will be in initial caps when refer-
ring to the specifi c area of the Manager, but in lowercase when discussing them as general
objects. Th ey will be enclosed in quotation marks when they are included in directions to
click or select them, but used without the quotation marks in general discussion:

 Click on the “Elements” tab.

 Chunks are listed on the Elements tab.

 Chunks are classifi ed as elements.

Th e names of specifi c resources and elements will generally be in CamelCase in the text.
Th ey will usually be in the code font and italics when they fi rst appear (especially in direc-
tions to create them):

 Create a resource called News.

 Let’s create our ShowList snippet.

Later references to them will be in the regular font in CamelCase:

 Th e FooterChunk contains all the elements shown in the footer of the page.

Th ey will be enclosed in quotation marks in instructions to click or select them in the
Manager:

 Click on the “ShowList” snippet on the “Elements” tab.

Variable names (including snippet properties) will generally start with a lowercase letter
and have the fi rst letter of each following word capitalized. Th ey will be in the code font:
$wordLength, $fontColor, $textHeight, though there are some exceptions to this rule.
Property names, MODX settings, and placeholder names, for example, are oft en in all
lowercase with an underscore character between words: site_start, blocked_until.
MODX system event names are in CamelCase and begin with a capital letter. All start
with “On”: OnManagerFormSave. Resource fi eld names are in all lowercase, and a few have
underscores while most don’t: pagetitle, longtitle, pub_date, unpub_date.

As mentioned earlier, MODX settings and system event names will be in the code font
in bold. For resource fi eld names, the caption used in the Manager will be in initial caps

MODX: The Offi cial Guide v

in the regular font (e.g., Page Title, Publish Date). Th e actual fi eld names used internally
by MODX (and by users in tags and snippets) will be in the code font and bold (e.g.,
pagetitle, pub_date).

When a MODX tag or example contains a name that the user will supply, the term will be
in italics:

 [[SnippetName? &property1=`value1` &property2=`value2`]]

In the above example, the user is expected to replace all the words in italics. Th is is important
because new users sometimes type in the example exactly as it is written and are surprised
when it doesn’t work.

I’ve tried to be as faithful to these conventions as possible, but this is a long book with many
complicated references. I hope the reader will forgive the inevitable errors in typography.

n
Because the page width of this book is limited, some lines of PHP and HTML

code that should be on a single line are broken into two or more lines. I tried

to break them in a way that doesn’t harm the user’s understanding of what the

code does, but it wasn’t always possible. The extra lines of code created will

always be indented.

The only time the lines must be combined is for Input Option Values of tem-

plate variables. Here’s an example:

Red==Red as a rose||Blue==Blue as the sky||
 Green==Green as the grass

The lines above must be entered as a single line, but MODX won’t let you use a

carriage return for Input Option Values anyway, so the need to combine them

should be obvious.

In all other cases that I’m aware of, the code can be entered as written and

no harm will be done — the PHP and HTML parsers are very forgiving about

formatting — but you should feel free to combine the split lines to fi t your

coding style. Generally, the only negative eff ect of the split lines will be on the

formatting of some raw HTML code you’ll see if you select “View Source” in

your browser.

In
tro

d
u

ctio
n

vi MODX: The Offi cial Guide

About MODX
In the following sections, we’ll look at whether MODX is a good choice for you, learn a
little bit about the history of MODX, and discuss the various versions of MODX. We’ll also
take a look at the architecture and key features of MODX.

Is MODX for you?
MODX is designed to be useful to everyone from beginning web designers to advanced
Content Management System developers, but it is somewhat diffi cult for the former. If
you are looking for a system that will do everything you want out-of-the-box and let you
produce a fi nished web site without getting your hands dirty, MODX is probably not for
you. For a standard blog, for example, WordPress might be a better choice. You install it,
select a theme (or use the default one), and begin entering your posts.

Where MODX shines is in cases where you want a unique web site with active pages that
you design yourself. Its fl exibility and power are unequalled in the CMS world. If you can
describe what you want your web site to do, the odds are good that you can do it in MODX.

My fi rst MODX web site, for example, was a site I designed for a local political organiza-
tion. Th e site had the usual pages: a page describing the organization’s offi cers, a volunteer
page, a page for the local elected offi cials with links to their web sites, a page containing
the organization’s bylaws, a page where users could download issues of the organization’s
newsletter, etc. Th e site also had a front page with excerpts from news posts, each with a
link to the full post.

Next, I added a series of photo galleries for various events and put a random photo from one
of the galleries under the menu on the front page that served as a link to the photo’s gallery.
Th en came a fundraising thermometer that showed the current level of contributions.

I set up one user as the photo editor who could easily create new galleries and upload
photos in the front end. I set up a news editor who could write new articles that would
automatically show up in the news section and be excerpted on the front page. I set up
a newsletter editor who could upload new newsletters in .PDF format. Each editor had
access to only his or her own section of the site.

I learned MODX, created the site, and wrote simple instructions for each user in a surpris-
ingly short time — less than a week. Th e site has been rock-solid ever since with almost
no intervention on my part.

On one of my next MODX sites, the client wanted a page with seasonal photos and a
discount coupon that changed automatically four times a year, with the seasons. I was

MODX: The Offi cial Guide vii

able to add this in MODX using a simple custom snippet in about an hour. Doing this on
most other CMS platforms would have taken much, much longer and would have been
extremely frustrating.

In order to use MODX at all, you’ll need some basic familiarity with CSS and (X)HTML.
It’s best if you have created a few web sites before diving into MODX. You don’t need to
know PHP to use MODX, but it defi nitely helps. Many MODX users end up learning PHP
a little bit at a time as they attempt to get the most out of the CMS.

If you don’t know any PHP at all, don’t be put off by the examples of PHP code in the book.
Th ey are there for advanced users, and you can still do quite a lot with MODX without
knowing PHP. Th e odds are that you will pick it up as you develop your MODX skills and
can then go back and read over any sections that confused you at fi rst. Th ere is a PHP
Primer in the Appendix at the end of the book that will help get you started.

A Brief History of MODX
In 2004, Ryan Th rash and Raymond Irving started working on what was later to become
MODX. Th e initial MODX project was a combination of the DocVars add-on for the Etomite
CMS and Raymond’s web-user add-on. Th ere was resistance to the MODX project at
Etomite, and the two eventually left that community to work on MODX as a separate CMS.

MODX 0.9.0 began as a fork of Etomite but has developed into an independent CMS plat-
form, and as of the release of MODX 2.0 Revolution, all references to Etomite are gone
from the MODX code.

In May of 2005, Jason Coward joined the project, and in 2007, Raymond Irving left (ami-
cably). Jason became the principle architect of the MODX core code. In 2008, Shaun McCor-
mick joined the project and is now primarily responsible for the MODX Manager interface.
MODX has an extremely creative and responsive user community, and countless MODX
users have contributed to the development process over the last few years.

In 2009, MODX Version 0.9.6 was supplanted by two new versions. Th e 0.9.6 designation
was misleading — by that time, MODX was a very robust and mature product. As of this
writing, MODX exists in two forms: MODX 1.x.x Evolution and MODX 2.x.x Revolution.

Versions of MODX
In 2009, both MODX 1.0.0 Evolution and MODX 2.0.0 Revolution were released. If you
visit the MODX Forums, you may see them referred to as “Evo” and “Revo” for short.

In
tro

d
u

ctio
n

viii MODX: The Offi cial Guide

Th ere are many similarities between the two, especially from the point of view of the user.
Under the hood, the two are quite diff erent. We’ll look at some of the similarities and dif-
ferences in the following sections. For now, we’ll say that the main components of MODX
discussed in this book (chunks, snippets, templates, template variables, plugins, resources,
settings, and tags) exist in both versions and play the same role in each.

Th e MODX Manager user interface has been redesigned for MODX Revolution but is similar
enough that most users have little or no trouble making the transition from one to the other.

Th is book is written primarily from the perspective of MODX Revolution since that is
the future of MODX. Th at said, most of the content in the book will apply equally well to
either version, and there is a section at the end of each chapter describing how the content
of that chapter applies in MODX Evolution.

MODX Evolution

MODX 1.0.0 Evolution is a mature, stable release of the original MODX codebase with a set
of standard add-ons for things like menus, photo galleries, user management, and content
aggregation. It provides a fairly seamless upgrade for all legacy MODX sites.

Th e version numbers of earlier versions of MODX (e.g., 0.9.2, 0.9.6) are somewhat mis-
leading. Th e version numbers imply that they were beta versions. In fact, they were (and
still are) very mature and used in thousands of production web sites.

MODX Evolution has been around longer, and as of this writing, is more familiar to most
MODX users than Revolution and has more available add-ons. Evolution also has a smaller
footprint and takes somewhat less memory to install and use. Revolution, however, is
more robust and more secure. Revolution is a signifi cant technical advance compared to
Evolution and represents the future of MODX.

MODX Revolution

MODX 2.0.0 Revolution (which appeared briefl y as version 0.9.7) is a complete re-write
of the MODX core code and Manager with a new tag syntax and many revolutionary fea-
tures (hence the name). Th e Manager is somewhat easier to navigate and has a number
of extremely convenient features like drag-and-drop editing and the ability to create new
elements and resources and clear the cache in pop-up windows without leaving your
current work. Revolution also introduces convenient grids for editing language strings,
system settings, and snippet properties.

By far the most “revolutionary” feature in Revolution from the average user’s perspective
is the Package Management system. In Revolution, add-ons can be downloaded from the

MODX: The Offi cial Guide ix

MODX repository and installed with a few clicks in the Package Manager. In Evolution,
you have to download a .ZIP fi le for each add-on, unzip it, and cut and paste code into
MODX elements and resources you create yourself — a much more time-consuming and
error-prone process.

Th ere is also much for the developer/web programmer to love in MODX Revolution.
Th ere is a completely new database API based on xPDO, which provides an effi cient and
easy-to-use way to read, create, and update all MODX objects. It also allows you to easily
pull data from multiple MODX tables (with one query) in a single, elegant line of code.

Which Version Should I Use?

If you are upgrading an existing site that you don’t work on very oft en, MODX Evolution
may be a better choice for you. Evolution is also a better choice if you need to install and
run your web site with limited memory. As I write this, Revolution needs at least 32M of
memory to install (although there are plans to remedy this), so if your web host restricts you
to 8M or 16M of memory and you are not allowed to change that, Evolution is the better
choice. Most web hosts have higher limits, and many allow you to modify the amount of
available memory.

n
Many of the concepts described in this book are relevant for either version.

If you will be working through the examples in the book, however, MODX

Revolution is really your only choice. All of the tags and much of the code pre-

sented in the book’s examples will only work as written in MODX Revolution.

In other situations, the key to making the choice is the available add-ons. At this writing,
some of the add-ons available for MODX Evolution have not been ported to Revolution —
though most of the important ones have. By the time you read this, there will certainly be
more of them available in Revolution, but some less-popular third-party components may
still not be available. Many of the standard MODX snippets and plugins have been replaced
by faster and better versions for Revolution, and some have also been integrated into the
MODX Manager. You should assess your needs and examine the available components (ask
in the MODX Forums, if necessary) before making your decision.

Another consideration is the permissions system. MODX Revolution off ers much more
sophisticated and fi nd-grained control over what users can do and see in the MODX
Manager. Th e price of that control, however, is a steeper learning curve. Once the per-
missions for Revolution are set correctly, you can usually forget about them, but the initial
process can be somewhat frustrating and time-consuming. If you will be the only user of
the site, Revolution’s default settings will be fi ne for you. If you have several users with

In
tro

d
u

ctio
n

x MODX: The Offi cial Guide

diff erent access rights and the permission system is relatively simple, Evolution may be
a better choice. If you need to have users who will belong to more than one user groups
and want them to have diff erent capabilities for each group’s documents, then Revolution
is the better choice.

Assuming that the add-ons you need are available in Revolution (or you are capable of
developing or adapting them yourself) and the Revolution permission system meets your
needs, I would recommend it for everyone, including beginning MODX users. Revolution
is a robust CMS platform and has many features that make it a superior choice.

Architecture and Key Features
Th e overriding principle in the design of MODX is freedom for the user. To the best of the
designers’ abilities, MODX puts no restrictions on what you can put in your web site. MODX
users are free to use any (X)HTML, CSS, PHP, or JavaScript code to meet their needs.

You could port most existing web sites to MODX simply by pasting the code from each
page into a MODX template, moving any PHP code into snippets, and creating an empty
document for each page that uses that page’s template. Doing this would be a horrible
misuse of MODX’s power, but the fact that it’s possible shows how few restrictions MODX
places on the user.

If you are not a power user/developer, you probably won’t care what’s under the hood in
MODX. For those who do care, here is some information about the structure and design
of MODX. Don’t be put off if some of the following material goes over your head. You can
create very impressive MODX web sites without knowing any of it.

xPDO

MODX’s data handling is based on xPDO. Created by MODX core developer Jason Coward,
xPDO is a PHP-based object-relational bridge that is designed to provide object-ori-
ented access to a variety of underlying database platforms such as MySQL, SQLite, and
PostgreSQL.

Both lightweight and robust, xPDO now requires PHP 5.1.1 or higher. It is signifi cantly
faster now that it no longer has to support PHP 4. It allows simple fi le-based result-set
caching and custom cache implementations that can be optimized for particular needs. It
also supports JSON caching for optimizing Ajax applications.

Using xPDO allows advanced MODX web site developers to easily integrate custom data-
bases into a MODX install using built-in MODX methods. It also provides a relatively simple
API that developers can use to obtain information from the MODX database.

At this writing, xPDO supports MySQL and Microsoft SQL databases, with more to follow.

MODX: The Offi cial Guide xi

User Interface

Th e MODX Manager is an Ajax-based user interface implemented with Smarty and ExtJS.
In the Manager, users can create and edit content as well as perform a wide variety of
administrative tasks like user management, publication scheduling, generating reports,
installing add-on components, and adding user-created custom snippets and plugins. Th e
MODX Manager is designed to be productive and intuitive.

In MODX Revolution, (unlike Evolution) many Manager tasks can be performed in pop-up
windows, so users can create and update resources and elements and clear the MODX
cache without leaving their current location in the Manager. Drag-and-drop functionality
also increases productivity and reduces potential errors in the Manager.

Because the Manager is a web-based application, users can manage their MODX site from
anywhere they have web access using no tools other than a web browser. MODX supports
a wide variety of web browsers.

Th e Manager can be easily customized, and it can look very diff erent for diff erent users.
Users can be restricted to certain areas of the Manager, and the areas they see can be
customized for their particular needs and abilities. Multiple editors can be easily plugged
into the Manager for use in creating and editing content as well as for managing various
kinds of code.

Design Philosophy

MODX is designed around several basic principles. Th ese include security, robustness,
speed and effi ciency, object-oriented design, core independence, and fi ne-grained cache
control and user management.

Security

MODX is designed to be as secure as possible. All user input is analyzed for potential
hazards, and no PHP code is allowed or executed in most MODX resources and elements.
PHP code can only appear in snippets and plugins, and its execution is carefully regulated.
All PHP code in the system can be contained in the database or in the MODX core, which
can be shielded from web access. Th e user security system is also extremely tight and pre-
vents unauthorized users from accessing sensitive areas of the Manager.

In
tro

d
u

ctio
n

xii MODX: The Offi cial Guide

Robustness

MODX is designed from the core outward to be solid and fault-tolerant. Changes are
evaluated and tested to ensure that they cause no problems in the operation of the system.
MODX sites are generally rock-solid with virtually no downtime due to errors in MODX.

Speed and Effi ciency

Th e developers of MODX are constantly profi ling and refactoring MODX objects and their
methods to make MODX as fast and effi cient as possible. Th e caching process ensures that
frequently accessed content and code are cached for maximum performance.

MODX is also designed to be a lightweight platform. Users install only the components
they need for a particular site, and components are designed to be fl exible and powerful
enough that users can meet their needs with a small number of add-on components.

Object-oriented Design

MODX Revolution is object-oriented from the ground up. Every MODX object is a true
PHP object, and all use of objects is through their properties and methods. Chunks, snip-
pets, templates, and template variables, for example, are all subclasses of the modElement
class. Th e MODX parser makes full use of the object methods available through the basic
class. Th is makes the MODX core both effi cient and easily extendable.

MODX also makes it easy to adhere to the principles of the model-view-controller (MVC)
design philosophy by facilitating the separation of content, logic, and presentation.

Core Independence

Another principle is the complete separation of the MODX core from the content of the
site. Th e core can be located in a directory that is not accessible from the Web for security.
One MODX core can also support more than one web site.

Central to the separation of the core is a wide variety of built-in ways to extend and tap
into the core processes. Th ere is a well-developed API for accessing core methods and a
comprehensive list of system events that fi re at various points in the operation of the core.

Users can create PHP snippets that use the API to get information from the core and the
database. Th ey can also create PHP plugins that listen for the appropriate system event
and step in to alter the processing at that point. Th e main purpose of these capabilities is to
give the user the ability to do anything he or she can think of in MODX without touching
the core code. When users upgrade to a new version of MODX, none of their custom work

MODX: The Offi cial Guide xiii

has to be done over again. Advanced developers can even create a custom parser class to
override or extend the behavior of the MODX parser. Custom elements and resources are
also a possibility for users with particular needs.

Fine-grained Cache Control

Another key principle is granular control of the MODX cache. Parts of the core are cached
as needed, and various parts of each front-end page can easily be designated as cached or
uncached by the user. In MODX Revolution, any element or resource can be designated as
cached or uncached. As a result, nothing is cached but content and code that needs to be
rapidly accessible. Because of MODX’s xPDO base, database result-sets are also cached on
an as-needed basis. In addition, there are a number of system settings that control whether
certain MODX objects are cached and for how long.

Fine-Grained User Management

Like the caching process, user management is extremely granular in MODX Revolution.
Since resources such as documents are in a hierarchical structure on the Resources tab,
users can be limited to particular branches of the Resource tree shown on the Resources
tab. In addition, individual resources can be placed in resource groups and individual ele-
ments can be placed in categories. Specifi c resource groups and categories can be made
accessible only to members of specifi c user groups. Users can have designated roles that
restrict them to specifi c actions in the Manager such as viewing, saving, editing, publishing,
and unpublishing documents. Finally, the MODX Manager can be customized so that each
user sees a completely diff erent version of the Manager.

Chapter 1

How MODX Works

Using a Content Management System (CMS) is quite a bit diff erent from just creating

web pages and linking them together to make a site. A CMS takes a while to learn (and

one as fl exible and powerful as MODX takes a little longer). Th e time you spend getting

familiar with MODX, however, will pay off many times over. It will make maintaining web

sites easier and faster. It will also allow you to easily create web-site features that would

be extremely diffi cult and time-consuming to produce without a CMS backing you up.

While many CMS platforms make life easy by severely restricting what you can do (with

structured templates, built-in and add-on components that are hard to modify, hard-coded

entity and directory names, etc.), MODX does just the opposite. Letting users do what-

ever they want is a primary goal of the MODX development team. Th e fl exibility and

freedom of MODX come with a price, however. Because there are fewer rules, it’s harder to

know how to solve any given problem. It’s also a little easier to shoot yourself in the foot.

In this chapter, we’ll touch on the various parts of MODX and how they work together to

let you manage web sites. In later chapters, we’ll cover the mechanics of using the MODX

Manager, and the details of the various parts of MODX such as web resources, content ele-

ments, and fi les. Th is chapter is just to get your feet wet, introduce these elements, and give

you an overall sense of how MODX does its job.

MODX: The Offi cial Guide 1

The MODX Database
If you are coming to MODX from another Content Management System (CMS) such as
Drupal or Joomla!, you probably already have some sense of how such systems work. If,
instead, you’re used to working in straight (X)HTML and CSS, you may not be aware of
how a CMS like MODX stores and presents the site’s content. New users of MODX some-
times install the MODX sample site then look (unsuccessfully) for the HTML page fi les.

Th e reason they don’t fi nd the HTML fi les is that MODX, like most other CMS platforms,
stores the page content in a MySQL or Microsoft SQL database (although future versions
of MODX will be able to use a variety of other database platforms and will allow you to
store web resources and content elements in fi les rather than the database if you wish).

When a user visits one of your pages, MODX goes to the MODX database, gets the infor-
mation it needs for the requested page, assembles it, and sends it off to the user’s browser
for display. Th is all happens behind the scenes. Many MODX users create sites without
ever dealing with the database or the process of saving and retrieving the information. To
really make MODX sing, however, you’ll eventually want to learn about how some of the
behind-the-scenes processes work. For now, we’ll just say that you create web resources
(most of which will be documents) in the MODX Manager (also called the back end)
and save them. When a user visits a particular web page at your site, MODX retrieves the
appropriate content and sends it off to the user’s browser for display. A lot can happen to
that content before the user sees it, but we’ll get to that later. First, let’s look at the dif-
ferences between MODX and its add-on components and between the back end and the
front end of a MODX site.

MODX vs. Third-Party
Components
In MODX Revolution, there has been a very determined eff ort to separate MODX itself
from components contributed by others that extend or add to the functionality of MODX. A
number of third-party components (also called add-ons, 3PCs, extras, add-on components,
or just components) were distributed and installed with earlier versions of MODX as a
convenience to users. Th ey added functions like custom menus, aggregated content display,

1 | H
o

w
 M

O
D

X
 W

o
rk

s

2 MODX: The Offi cial Guide

text editors, photo galleries, etc. People oft en assumed that these were part of MODX itself,
and when problems occurred, people complained about bugs in MODX. Th e MODX core
developers would have to explain, over and over, that these were not part of MODX.

With MODX Revolution and future versions, only MODX is installed to begin with. It
includes just three directories: /core, /connectors, and /manager (a setup/ directory is
present at fi rst but is usually removed aft er a successful install). Users are also free to move
and rename those three directories if they wish or even to install a diff erent or customized
manager to administer their sites.

Once you’ve completed the MODX base install, you can then easily add whatever third-party
components meet your needs. Th is helps keep your MODX site from being loaded down
with components you don’t need. Th e download and install process for components is
all done in the Manager, and it allows you to browse through the available components,
download them, and install them with a few mouse clicks.

If you fi nd you need more components later, new components become available, or new
versions of existing components are released, it’s a simple matter to browse the package
repository and install them. Another advantage of this separation of the base install from
third-party components is that the base install can remain “pure.” It is unaff ected by the
installation and upgrading of components, and conversely, updating the base install to a
new version of MODX is unlikely to aff ect any installed components.

Although the base MODX install contains no third-party components, by the time you
read this, there may be additional distribution versions of MODX available that include
various third-party components tailored to a specifi c purpose, such as a blog site, a photo
gallery site, etc.

MODX Itself
Th e heart of MODX is in the /core directory (although you are free to rename and/or
relocate that directory during the install, this is not recommended for new users). Th e
/core directory contains the essential parts of the MODX content management engine.
You could create a working web site with the tools available in the initial install, but it
would have no dynamic menus, no WYSIWYG editor, no content aggregators — none of
the things that really make MODX worthwhile for users. In order to gain those features,
users need to add third-party components.

MODX: The Offi cial Guide 3

MODX Third-Party Components
Th e offi cial term for anything added to the base MODX install is third-party component.

“Th ird-party component” is kind of a mouthful, so they are oft en referred to as 3PCs, extras,
or just components for short. At this writing, “components” is the more common term,
but “extras” is gaining ground. Components are usually installed with a few mouse clicks
in the Package Management section of the MODX Manager.

Components are divided into two groups: add-ons and core extensions. Add-ons do not
modify or extend the MODX core but provide extra functionality for MODX. Core extensions
(sometimes referred to as just “extensions”) actually change or extend the MODX Core.

An extension might, for example, replace the MODX user class with a class that contains the
same methods and member variables but adds some new ones (e.g., the user’s astrological
sign or income level). Another way to think about add-ons and extensions is that add-ons
work with MODX and extensions change MODX. Most of the components you might
install are add-ons. MODX is designed to make use of a wide variety of add-ons that can
use a combination of chunks, snippets, and plugins (more on these later in this chapter)
to do almost anything you want without altering MODX itself.

For most MODX users, the diff erence between add-ons and core extensions is not impor-
tant. Users install components that meet their needs and don’t really care about what
goes on under the hood. For advanced MODX developers, however, the diff erence is an
important one.

Even beginning users of MODX should know that components of all kinds are not offi cially
part of MODX. Th ird-party components are contributed by volunteers of varying abilities.
Some are carefully constructed and highly robust while others are less so. You should also
be aware of the term “Sponsored Extras.” Sponsored Extras are third-party components
that have been created, edited, or reviewed by the MODX core programmers to assure
that they adhere to MODX coding standards and will not interfere with the MODX core.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

4 MODX: The Offi cial Guide

The Back End vs.
the Front End
MODX is divided into two basic parts: the back end and the front end. Th e back end is
another name for the MODX Manager. Th e fr ont end is what visitors to your site see in
their browsers.

The Back End
Th e MODX Manager (or back end) is where you do the main work of building and man-
aging your site. In the Manager, you can create and edit content. You can also perform a
whole array of administrative tasks such as creating users and controlling what those users
can do and see at the site. You can create administrative users who can share the workload
with you. You can also create and edit any of the various MODX objects such as resources
(including documents), templates, template variables, snippets, chunks, plugins, lexicons,
namespaces, categories, property sets, system settings, etc.

Th is list of MODX objects is oft en daunting for newcomers to MODX, but each of them
has a useful part to play in the development of your site, and together, they’ll let you do
things with your site that you never thought possible. Th ey’ll also make your life as a web
developer much easier and more productive (trust me). We’ll cover each of them in depth,
and by the time you fi nish the book, you should be comfortable with all the ones you need
for your site.

The Front End
Th e fr ont end is the part that visitors to your site see. Th ere may be parts of your site that
only logged-in users can see, but aft er logging in, they’re still in the front end of the site.
Depending on how you set things up, front-end users may still be able to add or edit site
content and perform specifi c administrative tasks, but the key diff erence is that they are
not in the MODX Manager — they are in the fr ont end of the site. Because they are not in
the Manager, what they can do is strictly limited (unless you create and implement code
that bypasses the restrictions). Th is protects the security of your site. It also lets users
contribute without learning the Manager interface.

MODX: The Offi cial Guide 5

If you have naïve users who need to perform administrative tasks but would be intimidated
by the MODX Manager, you have two options. You can customize the MODX Manager to
simplify and/or hide the intimidating parts, or you can install or create add-on components
that let them perform their administrative tasks in the front end of the site.

Basic Building Blocks
Th e basic building blocks of a MODX site are web resources, content elements, and
fi les. Web resources include documents, weblinks, symlinks, and static resources.
Content elements include templates, template variables, chunks, snippets, and plugins.
Files are just plain old fi les. We’ll look at how to manage these things in more depth later
in the book, but fi rst, let’s take a brief look now at what they are.

Web Resources
Web resources (usually referred to as just resources) are the easiest to defi ne of the MODX
objects: Th ey’re simply things that can be accessed via a URL. Th e most commonly used
resources, by far, in MODX are documents. In fact, the document is the default resource
type. Many MODX users never create a symlink, weblink, or static resource, but everyone
creates lots of documents. Th e most convenient way to create a resource is to right-click
somewhere in the Resource tree (on the Resources tab at the left side of the Manager) and
hover over Create. Th is will open a fl yout with four choices:

 ■ Create a Document Here

 ■ Create a Weblink Here

 ■ Create a Symlink Here

 ■ Create a Static Resource Here

Clicking on one of the choices will open the Create/Edit Resource panel. On the right
side, you’ll see the Create/Edit Resource panel showing some of the various resource
fi elds for the resource and several tabs at the top for accessing others. We’ll discuss these
in more detail later.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

6 MODX: The Offi cial Guide

n
You can also create new resources by clicking on “Site” in the Top Menu and

selecting the type of resource you want to create. There is also a small icon at

the top of the Resource tree that will do the same thing. Doing this will create

the resource at the top level of the Resource tree (under the web context icon).

Usually, you’ll want to put new resources at a particular place in the Resource

tree, so right-clicking on the resource or folder that you want as the parent of

your new resource is often a better method.

Documents

Before getting into the details of documents, let’s take a moment to look at an important
distinction that trips up some new MODX users: the diff erence between a document and a
web page. In MODX, a web page is what the user sees in the browser window at any given
time when visiting your site. Th e web page is rendered by the browser, which bases the
rendering on the information sent to it by MODX. Th at web page may involve any and all
of the basic building blocks we listed above, although the visitors won’t know that because
all they see is the fi nal rendering.

A document, on the other hand, is a specifi c MODX object created in the MODX Manager.
If you have used a word-processing program such as Microsoft Word, you’ve already created
documents. Th ose documents had a title, some content, a creation date, an author, etc.
Documents in MODX are very similar but are adapted for use in web pages. For example,
they have more than one title. Th ere is a short title (Title), a longer title oft en used as a
page heading (Long Title), a title for use in menus (Menu Title), and a title for use in URLs
that link to the document (Alias).

Th ese characteristics of a MODX document are called “resource fi elds” (formerly
“document attributes”), and they also include a Template, a Publish and/or Unpublish
date, a Description, a Summary, etc. Some of these resource fi elds may be blank, but the
document still has them.

Th ere is another distinction we should mention. Many of the resource fi elds are known
by two names. One is the actual name of the fi eld in the MODX database. Th is is the name
that must be used in code or in MODX tags (more on those later). Th e other is the general
name for the fi eld, usually taken from the Create/Edit Resource panel in the Manager where
you actually fi ll in the values for the resource fi elds. One fi eld, for example, is referred to
on the Create/Edit Resource panel as “Summary,” but it sets the introtext fi eld in the
MODX database. When we’re talking about the general name for the fi eld, we’ll use the

MODX: The Offi cial Guide 7

regular font and capitalize the fi rst letter of each word in the fi eld name (Summary, Menu
Title, Long Title). When we’re talking about the specifi c fi eld in the database, we’ll use
bold type, lowercase, and a diff erent font (introtext, menutitle, longtitle). Th ere are
no capital letters in any fi eld name. Th is diff erence is not that important now, but will be
critical when we talk about setting these fi elds in later chapters.

n
In the book, we’ll often refer to documents as resources (which they are). The

document is the default type of resource and the most often used, but it is not

the only one — weblinks, symlinks, and static resources are also resources. So

all documents are resources, but not all resources are documents.

When users visit a web page at your site, the URL they are visiting is associated with a single
document. Th e web page does more than just display the document’s content, however.
It will usually also show the document’s content embedded in the template associated
with that document (we’ll discuss templates in the section below). It may also show the
document’s Title or some of the other resource fi elds. If the document is not currently
published, the browser may not show it at all.

To complicate things slightly, a web page may be associated in various ways with more than
one document. It might show a document that contains the summary fi elds of a number
of other documents with links that will send the viewer to a full version of each document.
A blog web page in MODX, for example, might show several diff erent blog posts, each
listing the author and date. Each of those posts is the content fi eld of a separate docu-
ment, and the author and date come from the createdby and createdon resource fi elds
of that particular document. Th e summary presented for each item normally comes from
the introtext resource fi eld.

Given the complex relationships possible here, you can see why it’s important to understand
that web pages and documents are very diff erent things in MODX. When we talk about
documents in the book, we’re always referring to the MODX document object created in
the Manager, not to a web page viewed by a site visitor. We’ll always refer to a single page
displayed in a browser as a “web page.”

Weblinks, Symlinks, and Static Resources

A weblink is a MODX Resource that contains a URL (also called a link) in its content fi eld.
With a weblink, the URL can be to a page at the MODX site or any other site on the Web.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

8 MODX: The Offi cial Guide

In MODX, a link can be expressed as a full URL like this:

http://yoursite.com/home.html

If, instead, it is a link to a page on your own MODX site, it can be expressed as a link tag
(e.g., [[~1]]). If your Home page is resource 1 on your site (in other words, its Resource
ID number is 1), MODX will replace the link tag with a full URL that will take users to
your Home page.

You should use link tags whenever you can because they will take you to the same page
even if the title of the page changes or it is moved to another location in the Resource tree.

A symlink is also a MODX resource that refers to another document, but the Symlink fi eld
contains only the Resource ID of the document being referred to, and it must refer to a
page on the MODX site.

Th e main use of weblinks and symlinks is to serve as links in a MODX menu. Th is is a
somewhat advanced topic, and we’ll cover it in more detail later in the book.

Static resources are resources that contain a fi le path in their content fi eld. Most MODX
pages have dynamic content because they contain elements, such as snippets and chunks,
which may change over time. Th at means that the content of the page will be created on
the fl y before being seen by the site visitor. When you have content that you know won’t
change unless you edit it yourself, however, you can save it as a fi le and use a static resource
to display it. Th e page will display faster and will put less strain on MODX and the Database.

Static Resources may also contain links to fi les you want to deliver to the visitor such as
.PDF fi les or .DOC fi les for display or download. You can even use PHP code to create
dynamic .PDF fi les, for example, that the user can view or download by following a link
to the static resource. Th is also allows you to control access to the fi les so that some users
can reach them and others can’t.

Content Elements
Content elements (usually referred to as just “elements”) in MODX are just what their name
suggests: they are MODX objects that create, control, format, organize, and/or contain
content. Th e phrase “content element” is somewhat fl exible, and as MODX evolves, new
elements are created, and sometimes things that were formerly resource fi elds may become
elements. Sometimes elements can lose that status and be reclassifi ed as something else.
Th e best working defi nition of content elements is: “things that appear in the Element tree
on the Elements tab at the left side of the MODX Manager.”

MODX: The Offi cial Guide 9

Th e section below discusses the elements that existed at the time this book was written:
templates, template variables, chunks, snippets, plugins, and categories. You should be
aware, however, that a few of them may not be found in the Element tree in your version
of MODX.

Templates

Most businesses have a standard letterhead they use when sending letters. It gives every
letter the same look and saves time since the letter writer doesn’t have to type the company
name, address, and telephone/fax numbers on each letter. A MODX template performs the
same function. It contains the basic information that will appear on a number of diff erent
web pages. It will usually contain the basic (X)HTML for a web page (DOCTYPE, <head>,
<body>, etc.) as well as the banner at the top of the page and the footer at the bottom. It
may also contain other MODX objects, as we’ll see in the section below.

Like the company letterhead, the template will probably contain a header and footer (pos-
sibly with images) that will appear on every page that uses the template. Unlike a letterhead,
however, a MODX template can also contain other MODX objects. It might contain a
document’s Title (and/or Long Title) and a menu. Th ese will change on every page, but
they will always appear in the same place and with the same styling for every page that
uses that template.

When MODX receives a request for a web page from a browser, it fi nds the appropriate
resource (usually a document), then checks to see what template is attached to that resource.
Th e template contains (X)HTML code interspersed with MODX tags. MODX retrieves the
template from the database and begins fi lling it with the appropriate content (by replacing
the MODX tags) as the fi rst step in preparing the web page to be returned to the browser.

Beginning MODX users sometimes create more templates than they need because they
don’t fully understand how fl exible MODX templates can be. Some MODX sites (but not
all) can get by with a single template even though there are things that will appear on some
pages but not others. We’ll look at templates in more detail later in the book.

Template Variables

“Template variable” is a confusing phrase for some users because it hasn’t always been
used consistently. Sometimes, the resource fi elds we discussed above (Title, Menu Title,
Alias, etc.) have been referred to as template variables, even in the offi cial MODX docu-
mentation. Th is is incorrect, however. Th ose things should be called “resource fi elds.”
Template variables are always created by a user who needs additional resource fi elds.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

10 MODX: The Offi cial Guide

Template variables (oft en called TVs for short) provide a way of extending the list of
resource fi elds. Imagine that you let registered users create some content on your site.
When a page created by a user is displayed, you could show the document’s Title and the
date it was posted by using the document’s pagetitle and createdon resource fi elds. What
if you also wanted to show the author’s astrological sign? You need another resource fi eld.
Luckily, you can easily add a TV called “Sign” to hold that information (we’ll talk about
exactly how to do this in a later chapter). Now, when someone edits the document in the
MODX Manager, they’ll see an extra fi eld labeled “Sign” with a blank space for entering
the user’s astrological sign.

Template Variables are very fl exible and can be used to hold many things such as text, images,
(X)HTML code, dates, directory contents, etc. In fact, we could easily present our “Sign”
TV as a drop-down list of the twelve astrological signs or as twelve radio buttons. Th is is
quite easy to do in MODX, and we’ll discuss how later in the book.

At this point, you might be wondering how the content of the “Sign” TV gets on the web
page. Th e easiest way is just to place a resource tag in the template associated with that
document (we’ll discuss tags in more detail later in this chapter). A resource tag looks like
this: [[*Field/TvName]]. Both template variables and resource fi elds can be displayed
using resource tags. Th e following code in the template would display the title, date, and
sign, on the page:

<p>Post Title: [[*pagetitle]]

Created on: [[*createdon]]

Author's sign: [[*sign]]</p>

Template variables are a powerful and underused part of MODX. Th ey can hold strings
of text, such as a person’s sign, but they can also hold other objects you might want to
put on a web page such as drop-down lists, date pickers, and even the content from other
documents on the site. We’ll talk about how to create them and use them in more detail
later in the book.

Chunks

A MODX chunk is just a piece of reusable content. Th e key thing to remember about chunks
is that they can’t contain raw PHP code (that’s the job of snippets). Many chunks are just
bits of content embedded in (X)HTML code that you want to appear on multiple pages.
Th e banner at the top of a page, the footer at the bottom, and the menu are oft en contained
in chunks. Th at way, if you edit the chunk, it changes things on every page.

MODX: The Offi cial Guide 11

Special-purpose chunks called Tpl chunks are used as mini-templates. Th ey usually contain
text and placeholder tags (more on those later) and are used format output. Here is a simple
example that could be used to display the name of the current president and vice-president
of a company:

<h3>Officers</h3>
<p>President: [[+president]]</p>
<p>Vice-president: [[+vice-president]]</p>

Typically, code in a snippet would set the values for the two placeholder tags above so that
the appropriate names would appear when the chunk is rendered.

Tpl chunks are also used for web forms and as mini-templates for the output of standard
add-on components. Tpl chunks are sometimes referred to as “templates,” but this is
incorrect.

Th e content of a chunk makes it into a page in various ways. Th e most common method for
displaying chunks is to put a chunk tag in the template or the content fi eld of a document.
A chunk tag looks like this: [[$ChunkName]]. We’ll see some other methods of injecting
chunk content later in the book, and we’ll discuss tags in general a little later in this chapter.

Snippets

A snippet is simply a piece of executable PHP code. If your users can submit content (such
as blog comments) that immediately appears on the site, what happens if a malicious
user puts PHP code that erases your hard disk in a comment? In an unprotected site, the
fi rst time someone visits the page that shows that comment, it’s goodbye site. In MODX,
however, nothing happens at all because PHP code in a page’s content is stripped out. To
be executed, the code must be in a snippet. What appears in the page content, then, is the
snippet tag (sometimes called a snippet call). A snippet tag looks like this:

[[SnippetName]]

or

[[SnippetName? &firstName=`John` &lastName=`Doe`]]

In the second example above &fi rstName and &lastName are just pieces of information
called snippet properties (formerly called parameters) that we want to send to the snippet
being called. Whatever is returned or printed by the snippet will replace the snippet tag
in the page sent to the browser for display.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

12 MODX: The Offi cial Guide

n
Important: Note that the values of the snippet properties are enclosed

in back-ticks, not single-quotes. This allows you to use single- and

double-quotes in your snippet properties (e.g., &lastName=̀ O'Connor̀). The

back-tick is under the ~ at the upper-left on most keyboards.

Using single-quotes, double-quotes, or nothing at all around snippet properties is the most
common error made by new users of MODX. If you do that, your snippet simply won’t
work. Other common errors are forgetting the question mark aft er the snippet name or
the ampersand before every snippet property, and misspelling the name of the snippet
or a snippet property (the names are case-sensitive, so type carefully). One last common
snippet error to check for is that a Rich Text Editor like TinyMCE may be changing the
ampersands in your snippet tags to the “&” entity every time you save your work. To
fi x this, click on the “HTML” button in the editor and convert & or && to a
single ampersand character inside snippet tags.

n
Although we often put spaces around equal signs in PHP code to improve

readability, we don’t do it with snippet tags because it can confuse the parser

in some older versions of MODX Evolution.

We’ll discuss snippets and snippet tags in detail later in the book. If you don’t know PHP,
you won’t be writing or editing snippets, but you’ll still need to understand a little bit about
how snippets do their jobs and how to work with snippet properties.

Many beginning MODX users know no PHP at all and have no intention of learning it. Some
of them are able to create very sophisticated MODX sites without using PHP code. Many
others, however, learn PHP gradually as they continue to use MODX, and some become
quite good at it and begin writing their own snippets and plugins. As we said earlier, PHP
is not a diffi cult language, and there is a short MODX PHP Primer at the end of the book
to get you started. One of the great things about MODX is that no matter how much you
know, there’s always more to learn.

Plugins

Plugins are kind of an anomaly among the MODX elements. Th ey oft en alter content, but
you don’t display them on a web page using tags. Plugins are used to interrupt the pro-
cessing of the MODX engine and add custom functions.

MODX: The Offi cial Guide 13

Th ere are a number of hooks into the MODX engine (called system events) that let you
perform just about any kind of operation at key points in the processing. As MODX goes
about its job, it periodically “fi res” one of a number of system events. Th ere are events that
fi re just before a page is rendered in the browser, just aft er a user attempts to log in, and
just before a document or user is saved in the Manager, for example. Each system event has
a name, and MODX plugins can listen for a particular system event and act when it fi res.

A plugin, then, is just a bit of PHP code that listens for a particular system event. When
that event “fi res,” the plugin’s code executes. For example, a plugin can give you access
to a document’s content just before it is rendered as a web page by having it listen for the
OnWebPagePrerender event. You could translate the document’s content, emphasize key
words, strip out HTML comments, turn some items into hyperlinks, etc.

You can also use a plugin to process documents before they’re saved in the Manager, process
a user’s information during the process of logging in, or do any number of other transfor-
mations. Plugins are written in PHP code, and you can do anything with them that you
can write code for.

Th e beauty of plugins is that they allow you to put custom processing in place without
hacking the MODX core. Th at means your work will be unaff ected by upgrading to newer
versions of MODX. Because of the many built-in ways of expanding and extending MODX,
you can do almost anything you can think of without touching the MODX core code.

Categories

Categories are basically just labels that you can apply to elements to help you organize them
and control access to them. When you create or edit a snippet, plugin, chunk, template,
or template variable, you can assign it to an existing category or create a new category for
it. When that element is shown in the Element tree in the Manager, it will appear below
its category name.

In MODX Revolution, you can assign elements to categories by dragging and dropping
them onto the category folder at the bottom of the Element tree.

Note that categorized elements will not show in the Category section of the tree (even
though that’s where you dragged them). Instead, they’ll show under a category folder in their
respective sections. For example, a snippet added to the category MyCategory will appear
in the Element tree in a MyCategory folder that appears in the Snippet section of the tree.

n
Resources and fi les don’t have categories. Resources in the Resource tree are

organized into a hierarchy under their respective parents and fi les are orga-

nized by the physical directories in which they are stored.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

14 MODX: The Offi cial Guide

You can have as many categories as you like, and you can have categories within categories.
You might, for example, have a category called MyChunks to keep the chunks you create
separate from the ones used by various MODX components. If you create a lot of chunks,
you might have subcategories under MyChunks.

Once elements are placed in a category, you can hide them or control what users can do
with them by creating Element Category Access ACL entries in the Manager (see Chapter
10 for more details on MODX security).

If you don’t use categories to control access to elements, they are just there for your con-
venience in organizing your elements and making them easier for you to fi nd when you
want to edit them. Categories are completely optional. Some people don’t use them at all.
Others, especially those with very complex sites, use lots of them. As with so many things
in MODX, it’s up to you.

Other Elements
Th e following elements are not found in the Element tree, but they serve to store and
present content on your site. Th ey include placeholders, links, settings, tags, and fi les.

Placeholders, Links, and Settings

Placeholders are not shown in the Element tree in the Manager, but they qualify as ele-
ments because they hold content and can be displayed using resource tags. Th e reason
they don’t show in the Element tree is that their value is always set in snippets or plugins
rather than being entered in the Manager. A snippet or plugin sets a placeholder by using
the following bit of PHP code:

$modx->setPlaceholder('placeholderName','value');

Once the placeholder has been set, its value will replace any instance of the corresponding
placeholder tag:

[[+placeholderName]]

Many MODX snippets set placeholders. You can display the values set for those placeholders
with placeholder tags. Th e tags can go in a resource’s content fi eld, in a chunk, or in a tem-
plate variable or template. If you have a snippet (let’s call it SetAuthor), for example, that
sets a placeholder called author_name to the name of the author of the current document,

MODX: The Offi cial Guide 15

you could put the following snippet tag in your template: [[SetAuthor]]. Th e snippet
tag would produce no output because your snippet neither prints anything nor returns
anything — it just sets the placeholder. Anywhere in the content of your document, then,
you could insert a placeholder that would be replaced by the author’s name:

The author of this document is [[+author_name]].

Note that for the [[+author_name]] tag to work, the snippet tag must come before it in
the code so that the placeholder will be set.

MODX does set a couple of placeholders for you on every page request that you can use
to display the ID or username of the currently logged-in user (if any).

ID of the current user: [[+modx.user.id]]
Username of the current user: [[+modx.user.username]]

Links are a MODX shorthand for a URL to a page at the site and are based on one of the
resource fi elds — the Resource ID. Most of the time, links are used to refer to documents.
Th e Resource ID of a document is sometimes called the document ID or document identifi er,
but the correct term is “Resource ID.” Th e ID is shown in parentheses in the Resource tree
in the Manager following the resource’s name. You can place a link pretty much anywhere
by using the link tag:

[[~##]]

In the code above, you would replace ## with the Resource ID of the resource (document)
you want a link to. Th at may sound complicated, but it’s really pretty simple. Let’s look at
an example. Suppose you have a page about aardvarks that has a Resource ID of 12. You
would see the number 12 in parentheses next to the name of the document in the Resource
tree (on the Resources tab) in the Manager. Anywhere you would put http://mysite.
com/aardvark.html, you could put [[~12]] instead. Th e name of the document might
change, and its location on your site might change, but [[~12]] will always provide a reli-
able link to it because its Resource ID will never change. You should always use a link tag
when creating a link to any page at your site.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

16 MODX: The Offi cial Guide

Like placeholders, settings don’t show in the Element tree but can be displayed using tags
(setting tags, to be precise). A setting is essentially a variable whose value is available across
the MODX site. Th ey include system settings, context settings, and user settings (more on
these later in this chapter). All are displayed with a setting tag:

[[++setting_name]]

You can use setting tags freely to display or use the values of any system, context, or user
settings. Some system settings are critical to the operation of MODX, however, so don’t
change a system setting unless you’re sure of what it does.

Tags

We’ve already seen some MODX tags in this chapter, but let’s look at them a little more
closely. All MODX tags are replaced by the object they represent. Here is a quick list
showing what each tag will be replaced by:

 ■ Chunk tag — Contents of the chunk

 ■ Resource tag — Value of the resource fi eld or template variable it represents

 ■ Snippet tag — Output or return value of the PHP code in the snippet

 ■ Link tag — Th e URL of the resource it refers to

 ■ Placeholder tag — Th e value of the placeholder (oft en set in a snippet or plugin)

 ■ Setting tag — Th e value of the context, user, or system setting

 ■ Language tag — A particular language string from the current lexicon

In MODX Revolution and beyond, all tags begin with [[and end with]]. We’ve discussed
most of the tags, but Table 1-1 gives a summary of the new tag style used in MODX Revolu-
tion and later and the tags used in earlier versions of MODX:

Table 1-1: Old and New Tag Styles

 Tag Type MODX Evolution (old) MODX Revolution

Resource [*ResourceField/TvName*] [[*ResourceField/TvName]]

Chunk {{ChunkName}} [[$ChunkName]]

Snippet [[SnippetName]] [[SnippetName]]

Setting [(SettingName)] [[++SettingName]]

Placeholder [+PlaceholderName+] [[+PlaceholderName]]

Link [~ResourceId~] [[~ResourceId]]

Language No Tag [[%LanguageStringKey]]

Note that those symbols aft er the opening braces ($, +, ++, *, ~, and %) are called tokens
in MODX. Th ey tell MODX what kind of tag is being processed.

MODX: The Offi cial Guide 17

New users of MODX oft en don’t realize that tags can be used almost anywhere in MODX
and that you can nest them. A snippet tag can contain a chunk tag as a property, and the
chunk could contain resource tags that might contain link tags.

Here’s an example of a setting tag nested inside a link tag. It will display a link to the site’s
Home page:

[[~[[++site_start]]]]

Let’s break that down and look fi rst at the outer tag, which is a link tag.

[[~X]] is a link tag where X is the Resource ID of the document you want to link to. It will
be replaced by the URL associated with that document. In other words, the tag [[~12]]
will be replaced by the URL of the document whose Resource ID is 12.

n
There is nothing special about the Home page of a MODX site. The site_start

system setting can point to any page on the site and MODX treats the page like

any other when it is rendered.

[[++site_start]] is a setting tag that will be replaced by the Resource ID of your site’s
Home page. So if the Resource ID of your site’s Home resource is 1 (and it oft en is), this
tag will be replaced by the number 1.

So [[~[[++site_start]]]] will be replaced by [[~1]] which will be replaced by some-
thing like http://yoursite.com/home.html. For an actual link to your Home page,
you’d want something like the following (X)HTML code:

Home

t
When creating nested tags in MODX, always count the number of left and

right brackets. The two numbers must be equal, and in MODX Revolution,

each must be an even number.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

18 MODX: The Offi cial Guide

For the more technically minded, here is a specifi cation of the MODX tag syntax:

[[— opening brackets.

! — (optional) do-not-cache fl ag.

elementToken — token identifying the element type if it’s not a snippet:

no token — snippet.
$ — chunk.
* — resource fi eld/template variable (TV).
+ — placeholder.
++ — setting.
~ — link.
% — language.

elementName — name of element (e.g., Wayfi nder, MyChunk).

@propertysetName — (optional) property set identifi er.

:modifi erName=`modifi erData`:… — (optional) one or more output modifi ers.

? — indicates that properties are coming; required if there are properties.

&propertyName=`propertyValue` &… — properties prefi xed with &

]] — closing brackets.

Here is a complex tag example with every possible type of tag element:

[[!getResources@propset1:default=`No resources found.`? &parents=`1`
&sortby=`RAND()`]]

Th e tag above tells MODX to process the getResources snippet uncached specifying
propset1 to override the default properties. Th e :default output modifi er will produce
a message if getResources returns nothing. Two properties, &parents and &sortby will
be sent to the snippet and will override any other properties with the same names.

Files
In MODX, fi les are simply fi les that exist within the MODX site. As we’ve seen in the sec-
tions above, much of the content and format of a MODX web site is contained in docu-
ments, chunks, templates, and other MODX objects that exist in the MODX database. Files
still play a role, however. You will probably have some fi les of your own. You might have
image fi les, CSS fi les, JavaScript fi les, or other fi les that are used in your site. In addition,
many MODX components have readme.txt fi les, class fi les, CSS fi les, example fi les, etc.

MODX: The Offi cial Guide 19

Th e fi les used by components are generally found in one of two places. Files that need to
be web-accessible are located below this directory (where component_name is the name
of the component):

assets/components/component_name

Files that don’t need to be web-accessible are located below this directory:

core/components/component_name

Th e fi les for the Wayfi nder snippet, for example, will be in these two directories:

assets/components/wayfinder/
core/components/wayfinder/

In MODX Revolution, the /core directory containing all of the critical MODX PHP fi les can
be located outside of the public_html directory so that its fi les can’t be accessed directly
from the Web. Th is makes MODX much more secure. A good security principle for fi les
is that fi les containing executable code (e.g., executable PHP fi les) or sensitive material
like Social Security Numbers should go under the relocated /core directory so they can’t
be reached directly via the Web.

New users of MODX are oft en confused about where to put their own fi les. Th e offi cial
MODX answer is an emphatic, but somewhat unhelpful, “anywhere you want.” It is a guiding
principle of MODX not to restrict users in any way unless it’s absolutely necessary for MODX
to function correctly (and MODX is designed so that there are very few restrictions). As
long as you know where the fi les are and you tell MODX where they are, anything goes.

Some users like to put the fi les in, or just under, the root directory for faster loading in
/images, /css, /js, etc. Another good place to put them is somewhere under the MODX
/assets directory (i.e., assets/images, assets/css, assets/js). Properly written
third-party components always refer to the assets directory by the MODX_ASSETS_PATH
setting, which you can set.

Th e /assets directory is never used directly by the MODX core. Because of the way the
/assets directory is handled by MODX, you can be confi dent that it won’t be touched
when you upgrade your MODX installation to a new version. If all of your personal fi les
are below the /assets directory, you can be certain that they won’t be touched by an
upgrade. Placing them there also makes it possible to rename, relocate, or re-upload the
other MODX directories without worrying about your own fi les.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

20 MODX: The Offi cial Guide

How MODX Delivers
a Web Page
Now that you have some sense of the basic building blocks MODX uses to create a web
page, let’s look briefl y at how MODX does the job.

When a user’s browser requests a web page from the site, MODX fi rst checks to make
sure that the page exists. If it does not, the user is forwarded to the site’s Error (page not
found) page. Next, MODX checks to make sure that there are no security restrictions that
would prevent the current user from viewing the page. If there are, the user is forwarded
to either the Error page, or the site’s Unauthorized page (depending on the security set-
tings) and processing stops.

Assuming that there are no security restrictions that would prevent the user from seeing
the page, MODX retrieves the document associated with that URL and checks to see
what template is associated with that document. It then gets the template, and the MODX
document parser goes to work.

Th e document parser loads the template into its own internal text editor. Th e template
will contain tags identifying the various building blocks. Th e document parser replaces
those tags with the things they represent. For example, a chunk tag will be replaced by
the contents of the chunk and a snippet tag will be replaced by the output of the snippet.
Once that replacement has been made, there may be some tags left in the page (the chunk
might contain some tags, or the snippet might put some tags in the output it returns). Th e
snippet might also pull content from another snippet or chunk or from a fi le and insert it
into the output it returns.

Th e parser continues replacing tags until there are no more left . If any plugins are listening
for the events that fi re during this process, they may also alter the page content at various
points in the process. In addition, if some of the content is cached, the parser will get the
content from the MODX cache instead of the database. When the process is complete
and there are no more tags to process, MODX delivers the page to the web browser for
display. If the resulting page contains a reference to a fi le to be included (such as a CSS
fi le, a JavaScript fi le, or an image fi le), the browser will handle that appropriately and then,
fi nally, show the page to the user.

MODX: The Offi cial Guide 21

Transport Packages
Transport packages are new in MODX Revolution and are one of the best reasons to upgrade
to the new version. A transport package is a .ZIP fi le that can contain fi les, MODX objects,
and PHP scripts packaged for automatic installation in a MODX site. Th e most common
transport package is used to install a specifi c third-party component, but transport pack-
ages can contain core extensions, updates, templates, simple collections of fi les, or even
an entire MODX site.

In earlier versions of MODX, in order to install a third-party component, you needed
to download the component, unzip the fi les in the appropriate directory at the MODX
site, create elements, and cut-and-paste code from the component fi les into the elements.
Sometimes the process was not very well-documented and it was easy to make mistakes
that would make the component unusable. With Transport packages, you go to Package
Management in the MODX Manager, search for available packages, download them, and
click on “Install.” All the work is done for you and done without errors.

Even better, Transport packages can interact with the user during the install process, so
you can oft en set confi gurations and preferences during the install. Th e SPForm package,
for example, creates a simple, spam-proof contact form for your site. During the install,
you’re asked for your return email address and you specify whether you want the sample
Contact page installed. If you say yes, the package automatically installs all the necessary
resources, elements, and fi les. It creates a Contact Us page and a Thank You page. At the
end of the installation, you have a working contact form on your site that automatically
appears in your menu.

Th e downside of Transport packages is that they are more work for developers who have
to learn how to create them. Th is means that it may be a while before some of the existing
components for MODX are available as Transport packages. Fortunately, the old instal-
lation method will still work as long as the component has been rewritten to work with
MODX Revolution.

If you try to install a MODX add-on component in Revolution the old-fashioned way
by downloading and cutting and pasting, make sure it has been rewritten to work with
MODX Revolution.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

22 MODX: The Offi cial Guide

Other MODX Concepts
In this section, we’ll look at some other MODX objects: namespaces, the lexicon, topics,
settings, workspaces, properties, and the MODX cache. With the exception of properties,
they are less likely to be used by beginning users than the topics we discussed earlier in
the chapter, but it’s still useful to know a little bit about them.

Namespaces
A namespace is like a category tag for MODX components. It allows component devel-
opers to identify the various MODX objects that go with their component, such as topics
in the MODX lexicon, resources, elements, and transport packages. Th e namespace also
contains the path where the component can be found. For low-level development, the
most important use of namespaces is with the MODX lexicon. We’ll explain that when we
discuss the lexicon in the next section.

If you are not developing components for distribution to other users, you probably won’t
need to know anything about namespaces. We’ll discuss namespaces in more detail in
later chapters.

The MODX Lexicon,
Namespaces, and Topics
In MODX, the lexicon is just a dictionary of words and phrases that can be used in the MODX
Manager or in web pages at your site. Entries in the lexicon (called language strings) are
read from language fi les. Each language string has a key (used to retrieve it), a namespace,
a language, and a topic. Th at way, third-party components can load the language strings
they need into the lexicon and their keys can be used to retrieve them.

Th e term “language” is somewhat misleading since what constitutes a language in MODX
is actually based on a particular culture rather than a language. Th at is, you could specify
British English or American English as the language to be loaded into the lexicon. You could
even have a “beginning user” language and an “advanced user” language if you wanted to.
In some cases, you will see the word “culture” instead of “language.” Th e system setting
that controls the lexicon strings used in the front end of a MODX site, for example, is
called culture_key.

MODX: The Offi cial Guide 23

As you might imagine, the lexicon is a great tool for internationalizing your site. You can
change the language used in the MODX manager just by changing the lexicon used without
directly altering the content of any panels, forms, or menus.

When you are using some part of the Manager, each word or phrase on the screen has its
own lexicon entry. Th ey all come from the language specifi ed by the manager_language
setting in the System Settings grid. If you change this system setting and the appropriate
language is available, all the text in the Manager will change to the new language (you may
have to log out and log back in to have this take eff ect).

n
Note that using the lexicon doesn’t mean that MODX will translate your site for

you. It will just replace language tags on a web page or Manager page with the

appropriate content from whatever language is currently loaded in the lexicon.

A namespace, when used with the lexicon, is just a group of language strings used for a
specifi c purpose. All the strings used with a particular add-on component, for example,
will usually be in their own namespace. A topic is just a subdivision of a namespace.

Th e MODX core namespace contains all the language strings used in the Manager. Th e core
namespace has a diff erent topic for each part of the Manager (e.g., a snippet topic, a chunk
topic, etc.). Language strings from the snippet topic, for example, are used as prompts
when you are creating or editing a snippet in the Manager.

MODX Revolution only loads the topics it needs for a specifi c page to make things faster
and more effi cient. When you are editing a chunk in the Manager, for example, MODX
loads the chunk topic and knows that it only has to search that topic for the language
strings on the page.

If you don’t like the wording of any string printed in the Manager or by a component, you
can go to the lexicon grid in the Lexicon Management section of the Manager and change
it. Your changes will survive upgrades to MODX or to any add-on components.

We’ll discuss the lexicon in more detail later in the book.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

24 MODX: The Offi cial Guide

System Settings
A system setting is a site-wide variable available across a particular MODX site. Sometimes
a system setting contains a string of text such as the site name (contained in the site_name
system setting). Others contain a value that controls some aspect of MODX such as the
number of times a user can enter incorrect login information before being blocked (failed_
login_attempts) or for how many minutes the user will be blocked aft er exceeding the
number of failed attempts (blocked_minutes). System settings are divided into areas for
your convenience in fi nding them.

Every system setting has a description that explains what it does and what the accept-
able values are, and you can search for system settings by any key word in their names or
descriptions. All system settings can be changed in the System Setting grid in the Manager.
As you might guess, if you have no idea what a system setting does, it’s best not to modify
it. System settings are overridden by context settings and context settings are overridden
by user settings — more on those later.

If you go to System → System Settings in the Manager Top Menu, you will see the System
Settings grid. You can also edit any of the system settings there. Sometimes, you want to
show a system setting on a web page. To do that, you simply put a setting tag on the page
where you want the information to appear:

[[++site_name]]

Th e setting tag above would be replaced by the value of the site_name setting in the
System Settings grid.

Context Settings and Workspaces
Contexts are a new concept in MODX Revolution. Many MODX users will not deal with
contexts at all. Contexts are somewhat diffi cult to explain but are very useful in certain situ-
ations. Th e main thing to understand about contexts is that a context has its own resources
and settings. If you want to host two diff erent sites within one MODX site that share the
same MODX database, you could create a new context for the second site. Th e second
site could use a diff erent language, for example, but would still be able to use the MODX
core and any installed components. It could also have the same users but with diff erent
privileges and settings (e.g., the same user could have a diff erent personal Home page in
each context).

MODX: The Offi cial Guide 25

When you are using the MODX Manager, you are in the mgr context. Th e default front-end
context is called web in MODX Revolution, and you can see it at the top of the Resource
tree. All resources in that context will appear below web. For many sites, this is the only
context you need.

If you are using an early release of MODX Revolution, you probably won’t see workspaces
at all. In later releases, each workspace will provide an area where you can work on the
settings, lexicons, components, and resources for a particular context. MODX Revolution
has a “core workspace,” but since there is only one, you probably won’t know it’s there.

To modify or create context settings for a particular context, go to System → Contexts,
then either click on “Create New” or right-click on an existing context and select “Update
Context,” then click on the “Context Settings” tab. Any context settings you create here
will override any system settings with the same key (name). Creating new contexts com-
plicates things in many ways, so be sure you really need a new context before creating one.

User Settings
User settings are just system settings that only apply to a particular user. When you create
a new user at your site, that user has no user settings. All the site’s system settings apply
to that user (unless overridden by context settings). If you add user settings for that user
that have the same names as system settings, those user settings will override both system
settings and context settings for that user alone. To create user settings for a particular
user, go to Security → Manage Users, right-click on a user and select “Update User,” then
click on the “Settings” tab.

Suppose that the Manager Language system setting (manager_language) is set to en in
the System Settings grid. All the strings used in the Manager will be in English. If you
have a user that speaks German, though, you can create a user setting for that user called
manager_language and set it to de so that user will see nothing but German in the Manager.
Th e user setting will override the system setting.

A user could also have a particular Home page on the site. If you create a site_start user
setting and set its value to the Resource ID of a particular page on the site, when a user is
logged in, any page that contains a MODX tag with a link to the Home page of the site will
show a link to that user’s particular Home page:

[[~[[++site_start]]]]

User Setting names don’t have to match any of the system settings. You can add any settings
you need. You could add user settings that stored a user’s height and weight, for example,

1 | H
o

w
 M

O
D

X
 W

o
rk

s

26 MODX: The Offi cial Guide

and they could be displayed on any page that the user visited at the site using a standard
setting tag. For that particular example, though, it is more likely that you would put that
information in an extended fi eld of the user profi le.

Properties
Most of the elements described earlier in this chapter can have properties. Properties are
a lot like the settings we described in the three previous sections. Th ey are a collection of
variables each with a name (technically called the key), a value, and a description. Like
settings, they can be created and edited in a grid in the Manager. Properties are most oft en
used with snippets, but are also used with plugins, chunks, templates, and template variables.

Th is might make properties sound redundant, but there is an important diff erence between
properties and settings. Settings are available to every page in the site. Properties, in con-
trast, are attached to individual MODX elements (chunks, snippets, plugins, templates,
and template variables), so their scope is limited to the element they are attached to. Th is
makes them a more effi cient choice when you want a value available in a single element
or a group of elements but not across the whole site.

When properties are attached to a snippet or plugin, the property values can contain
information used in the element. When properties are attached to another element, the
values are available in that element via placeholder tags.

Properties exist in three forms. Th ey can be defi ned in an element tag, in the element’s
default properties, or in a property set. In all three cases, the properties serve the same
function: to provide a set of key/value pairs that can be used with specifi c elements.

When sent in a tag, properties are always preceded by an ampersand character and their
values are surrounded with back-ticks. Th e following example shows two properties sent
in a snippet tag:

[[SnippetName? &color=`red` &size=`large`]]

In the example above, the value of the color property is set to “red” and the value of
the size property is set to “large.” Many standard MODX snippets use properties to
provide information the snippet needs to do its job and to control the actions of the snippet.

MODX: The Offi cial Guide 27

A snippet like Wayfi nder that produces a menu, for example, might have a property that
determines whether the menu shows unpublished resources. Th at property might look
like this in the snippet tag:

&showUnpublished=`1`

In addition to being sent in tags, properties can be created and edited in the
Tools → Property Sets section of the Manager. Th ey can also be created and edited on
the Properties tab of any element they are attached to. Th e second method is usually a
much better choice if you intend to use the property set with a particular element. If you
just want to override a few default properties, it’s easiest just to send them as properties
in the element tag.

n
In earlier versions of MODX, properties sent in a tag were referred to as

parameters. You may still see that term used in older documentation and MODX

forum posts.

We’ll discuss properties and all their uses in much more detail later in the book.

The MODX Cache
MODX keeps much of the content of a site in the MODX cache. Th is makes web page access
much faster because MODX doesn’t have to query the database for the content. Very few
users will deal with the MODX cache directly, but you still need to know a little about it
because you can control what content is cached.

Th e rule for what to cache is simple: Let MODX cache content that doesn’t change oft en.
If you have a web page that shows the current time and the page is cached, every visitor
to the site will see the time that the page was fi rst visited instead of the current time. Th is
will continue until the MODX cache is cleared. Th en a new time will be cached until the
next time the cache is cleared.

Caching is controlled in two ways. Th e caching of MODX resources is controlled by two
checkboxes on the Page Settings tab of the Create/Edit Resource panel in the Manager. If
you uncheck the “Cacheable” checkbox, MODX will get a new version of the page every
time someone visits it. If the “Empty Cache” checkbox is checked (which it is by default),
the cache will be cleared when you save the page.

For all MODX tags (including those for snippets, chunks, and template variables), the
format of the tag controls whether caching will be in eff ect. Putting an exclamation point

1 | H
o

w
 M

O
D

X
 W

o
rk

s

28 MODX: The Offi cial Guide

aft er the opening braces of the tag will make the object uncached; leaving it out will make
it cached. Th e exclamation point means “get me a fresh version of this.” If the contents of
a chunk seldom change, for example, you can let MODX cache it by using this tag:

[[$ChunkName]]

You can clear the MODX cache manually whenever you change the chunk’s content. Snip-
pets oft en produce diff erent output at diff erent times. In those cases, you’ll want to have
them uncached:

[[!SnippetName]]

Remember that the caching of diff erent things in MODX Revolution is independent. For
our example above about a page that shows the current time, the time would probably be
calculated, formatted, and displayed by a snippet (let’s call it ShowTime). If the rest of the
page never changed, you could leave the page itself cached but call the snippet with this tag:

[[!ShowTime]]

Th at way, the page content would be cached, but the snippet’s output would always be
fresh because the snippet is called uncached.

Th e cache is also a source of confusion for some users because if the content is cached,
changes they make may not show up when they view the site. MODX may be showing you
the old cached content. Remember, too, that your browser may be showing you a cached
version of a page you have visited before. When you make changes and can’t see them, or
correct a problem but still see it, clear the MODX site cache and your browser cache and
check again.

Summary
By now you should have a basic idea of how MODX stores the information for a web site
and transforms that information into fi nished web pages. Don’t worry if some of the details
aren’t completely clear. We’ll be covering all the topics in more detail later in the book.

Although you could create a fairly polished site using the techniques described in this
chapter, we’ve only just scratched the surface of the power and fl exibility MODX brings
to web design.

MODX: The Offi cial Guide 29

Once users master the basic techniques involved in creating a MODX web site, they soon
discover that they want more. Th ey begin thinking about their site (or sites) in new ways
and considering things like allowing subsets of users to access certain parts of the site
(or certain functions in the Manager), letting users create and edit pages in the front end
without logging in to the Manager, customizing pages for individual users, or automatically
highlighting certain key terms on various pages. Th ey wonder if what they’re thinking of
is possible in MODX, and the answer is almost always “yes.”

MODX Evolution Notes
If you are using a pre 2.0.0 version of MODX, most of the sections of this chapter will still
apply. Th e core of MODX has been completely rewritten for MODX Revolution. From the
user’s point of view, however, it still has much in common with previous versions. Th ere
have been a few minor changes in the database, but the table names and structures of the
tables are unchanged for the most part.

General Diff erences
MODX Evolution and earlier versions still store information in the database and still have
a front end and a back end (MODX Manager). Th e Manager interface is diff erent, but most
of the same functions are there and most users switching from one to the other have little
trouble fi nding the familiar areas of the Manager.

As we mentioned earlier in this chapter, there is still a distinction between MODX itself
and the third-party components that extend and expand it. In MODX Evolution, however,
the distinction is somewhat blurred by the fact that a number of third-party components
are included in the base install. Th ere is also an option to install a complete sample MODX
site, which includes a template, user permissions, user logins, and a working blog.

Terminology
If you are using a version of MODX prior to Version 1.0.0 (e.g., MODX 0.9.6), there is also
a diff erence in the terminology used for various resources and components between the
two versions (in fact, the meanings of the terms “resource” and “element” are diff erent).

1 | H
o

w
 M

O
D

X
 W

o
rk

s

30 MODX: The Offi cial Guide

In earlier versions of MODX, documents were historically called “documents” and elements
such as snippets, chunks, and fi les were referred to as “resources.” Th at terminology has
shift ed to match that of MODX Revolution, but not all the documentation has caught up.

In current versions of MODX (both Evolution and Revolution), documents are classifi ed
as resources; chunks, snippets, plugins, templates, and template variables are classifi ed as
elements; and fi les are just fi les.

Th e new terminology does a better job of matching the way the resources and elements
are actually used and how they exist in the database and in the MODX code. Th is switch
sounds confusing, but in practice, people have little trouble making the transition.

Navigation
Navigation in the Manager is a little more cumbersome in Evolution. In order to edit a
chunk, for example, you have to go to Elements → Manage Elements → Chunks and then
select the chunk name. In Revolution, you simply expose the Element tree (by clicking
on the “Elements” tab) and click on the chunk you want to edit.

Content Elements
As for the elements themselves, they are largely unchanged. Chunks, snippets, plugins,
placeholders, links, and system settings are essentially the same, although there are minor
changes in the tags used to insert them (see the table earlier in this chapter), and there is
no language tag in Evolution.

Core Code
Th e code that MODX uses to deliver a document has been revamped in Revolution, but
on the surface, the process is much the same. Th e Evolution parser still cycles through
the content replacing the tags until they’re all replaced. One change is that all tags can be
cached or uncached in Revolution. In Evolution, only snippets can be designated as cached
or uncached. In addition, the caching process has been made much more consistent in
Revolution.

MODX: The Offi cial Guide 31

Language
MODX Evolution has no lexicon or topics. It simply has language fi les that are pulled in
explicitly in the code of components or the Manager. Loading of these fi les is not automatic
as it is in Revolution, and creating and changing language strings in Evolution involves
editing the physical language fi les in a text editor — there is no option to override the
strings in the Manager. Evolution also has no namespaces.

System Settings
System settings are essentially the same in Evolution, but editing them is more cumber-
some. In Revolution, they all appear in the System Settings grid, organized by areas, and
can be searched for using key terms. In Evolution, they are spread across fi ve diff erent tabs
with no search function. Individual settings can sometimes be diffi cult to fi nd. Th e system
settings in Evolution are reached by going to Tools → Confi guration on the Top Menu.

Context, Settings, Workspaces,
and Add-ons
Evolution has no context settings, user settings, or workspaces, and probably the most
important diff erence in terms of convenience, no transport packages. In Evolution, you
must install third-party components by manually copying fi les to the correct locations,
creating new chunks, snippets, and documents, and pasting the code from the source fi les
directly into them. Usually, the third-party component will come with a readme.txt fi le
explaining how to perform the installation. It’s easy to make a mistake during this process,
and it’s oft en diffi cult to discover what mistake you have made.

In Revolution, you can install any third-party component that has a transport package by
selecting it in the Repository, waiting a few seconds for it to download, and then clicking on
the “Install” button. All this is done without leaving the Manager. In Revolution, transport
packages can automatically create any necessary elements, tags, resources, system settings,
etc. Transport packages can also interact with the user to allow you to set confi guration
options during the install.

1 | H
o

w
 M

O
D

X
 W

o
rk

s

32 MODX: The Offi cial Guide

Properties and Caching
Th ere are properties in Evolution, but in practice, they are only used with snippets. Th ey
are almost always sent in snippet tags. Snippets can have default properties in Evolution,
but they are somewhat cumbersome and are seldom used.

Th e MODX cache performs the same function in both Evolution and Revolution. Th e only
diff erences are that in Revolution more elements can be designated as cached or uncached,
the tag usage for caching varies slightly, and the Revolution cache is more consistent.

MODX: The Offi cial Guide 33

Index
!empty (output modifi er), 172

{core_path}, 349, 411, 524, 527

$_COOKIE variable, 699

$_GET array, 528

$_GET parameters, 646

$_GET variable, 528, 646

$_output variable in plugins, 300-

301

$_POST variable, 699

$_SERVER['HTTP_REFERER']

variable, 550

$_SESSION variable, 301, 699

$cacheFlag variable, 631-632,

633, 699

$classKey argument for getObject,

311-312

$key and $value pairs, 344-345

$modx variable, 310, 629, 699

$modx->resource variable, 152,

312-313, 318, 353-355, 387-388
in plugins, 290

reference variable for, 312-313

using get() with, 327, 355, 359

using getMany() with, 359

using getObjectGraph() with,
363-364

using getOne() with, 359

using getTVValue() with, 376, 378

using joinGroup() with, 332

using leaveGroup() with, 332

using save() with, 344

using set() with, 344

using toArray() with, 327, 355

$modx->user variable, 318, 381-

389, 481
checking login status with, 385, 469,

481, 490, 592

checking user group membership
with, 386

setting placeholders for, 345, 384

using get() with, 323, 327, 345, 381-
382, 388-389, 592-593

using getOne() with, 384, 592-593

using hasSessionContext() with,
469, 481, 490, 592

using isMember() with, 385

using joinGroup() with, 332

using leaveGroup() with, 332

$output variable (PHP), 656

$output variable in snippets, 176,

272

$resource variable, 311-313, 354
assignment by reference, 312-313

in plugins, 297-298

in transport packages, 622

using fromArray() with, 638

using get() with, 320, 355, 637

using getCollection() with, 313

using getContent() with, 651

using getMany() with, 318, 321

using getObject() with, 313, 318,
320, 637

using getObjectGraph() with,
323, 363

using getOne() with, 318, 321, 390

using getTVValue() with, 331

using hasChildren() with, 356-357

using joinGroup() with, 332

using newObject() with, 340, 398-
399, 638

using save() with, 339, 340, 399

using set() with, 340, 639

using setContent() with, 340, 399,
651

using toArray() with, 355, 370-373

$scheme argument for

makeUrl(), 646

$scriptProperties array, 366-

367, 374

$scriptProperties variable,

366-367, 374

$value variable, 344-345

$xpdo variable, 310, 325, 405, 629

(anonymous) user, 104, 381-383, 387,

460, 469, 474-475, 481

--ff-only merge (Git), 81, 88

.DOC fi les as static resources, 178

.htaccess fi le, 46-47, 59-60, 426
confi guring for FURLs, 59

Furls and, 59

renaming, 59

RewriteBase, 60

.PDF fi les as static resources, 178

3PCS (see: add-on components)
404 (page-not-found) error, 50

500 server error, 46

= operator (PHP), 661

=& operator (PHP), 312, 354, 388

=== operator (PHP), 336

@ BINDINGS, 220-226

@CHUNK binding, 222-223

@DIRECTORY binding, 225

@EVAL binding, 225-226

@FILE binding, 224

@INHERIT binding, 207, 221-222

@RESOURCE binding, 224

@SELECT binding, 225

[[*content]] tag, 49, 145-146

[[*content]] tag in template,

194

_build directory (transport pack-

ages), 602, 614, 623

A
aborting transport packages, 620

about MODX, vi-xiii, 122

absolute URL in makeUrl() meth-

od, 646

Access Control Lists, 441, 449-454
context access entries, 449-451

creating entries, 449-454

element category access entries,
453-554

entries, 438

resource group access entries, 451-
453, 458-459

Access Controls menu, 115
Access Policies tab, 115

Category Access tab, 116

Context Access tab, 115-116

Flush All Sessions, 117

Flush Permissions, 117

Policy Templates tab, 115

Resource Group Access tab, 115-116

Resource Groups tab, 117

Roles tab, 115

User Groups, 115

User Groups tab, 115-116

access policies, 440, 443
Administrator, 443, 444-445

context access, 444-445

creating, 115, 443-445

duplicating, 444, 456, 459

editing, 115, 444

EditorAdmin, 457, 458

EditorElement, 462, 463

EditorResource, 459

Element, 443, 444-445

element category, 444-445

FeView, 471, 472

FeViewTemplate, 486-487

for context access ACL entries,
450-451

for element category access ACL
entries, 453

for resource group access ACL en-
tries, 452, 458-459

Load, 471

Load List and View, 444, 459

Load Only, 443, 475

MODX: The Offi cial Guide 717

manager action, 444-445

object, 444-445

Resource, 443, 444-445, 458, 483, 484

resource group access ACL entries,
444-445

ResourceViewOnly, 460, 460

types of, 444-445

View, 471

access policy templates, 115, 443
FeViewTemplate, 471

access_permissions permis-

sion, 465

ACL entries, 438, 441
context access, 116, 449-451, 462-463

creating, 449-454

Element Category Access, 116, 453-
554

Resource Group Access, 116, 451-
453, 458-459

actions, 126, 502-508
creating, 524-525

resource/create, 514

resource/update, 514

Actions tree, 505-506

active user fi eld, 479

active users, 479

add (output modifi er), 172

Add Category dialog, 117, 462

add package, 537

Add Permission to Template dialog,

486-487

Add Resource Group dialog, 458, 483

Add User Group dialog (form custom-

ization), 518

Add User To Group dialog, 447-448,

472

add-on components
at http://modx.com, 537

commonly used, 535-594

downloading, 122

in Evolution, 96

installing, 52-54, 536-538

namespaces, 349

overview, 4

PackMan, 600

with no transport package, 538

add_children permission, 459

addEventListener() method,

640

adding
(see also: attaching and assigning)

chunks to categories in transport
packages, 621-623

elements to categories in transport
packages, 621-623

properties to property sets, 257-258

resources to resource groups, 117,
179

snippets to categories in transport
packages, 621-623

tables to database, 409-411

template variables to resource
groups, 219

template variables to templates, 219

template variables to templates in
code, 402-404

Top Menu items, 126

users to user groups, 115, 447-448

addMany() method, 342, 402, 621,

637

addOne() method, 341-342, 403,

404, 406, 408, 409, 497, 637

addPackage() method, 630

admin Super User, 100, 101, 106, 442-

444
accidentally giving users rights as,

457, 464-465

accidentally hiding menu items
from, 512

accidentally hiding resources from,
439

accidentally hiding TVs from, 519,
521

accidentally removing permissions
for, 444

advisability of adding to user
groups, 447, 450

authority level, 450

changing username for security,
420

custom menu for, 510-513

default ACL entries for, 442

detecting in tags, 156

form customization rules and, 516

hiding menu items from others,
510-513

hiding resources from others, 433,
439, 458-459

hiding template variables from oth-
ers, 483-484

inheriting permissions, 450

minimum role of, 450

previewing from Manager, 382, 468

restricting access for others, 466

restricting package installation to,
620

tree_root_id for, 467-468

Administrator policy, 443, 444-445

Administrator user group, 450-451

AdminOnly category, 461

Advanced distribution of MODX, 420-

421

advanced snippet operations, 309-414

advanced transport package tutorial,

611-625

aggregate alias, 319

alias (Resource Alias) resource

fi eld, 142

AllDocs resource group, 455, 458

allow_private permission, 486

alt context, 426-433, 432

and (output modifi er), 168

anonymous user, 104, 381-383, 387,

460, 469, 474-475, 481

Apache Friends, 62

Apache httpd.conf fi le, 60

apache/bin directory, 430

API documentation link, 129

Appendix, 629-715

architecture of MODX, x-xiii

arithmetic operators in PHP, 660

array functions in PHP, 678

array of fi le paths for transport pack-

ages, 623-624

array_merge() PHP function,

375, 384, 388

arrays in PHP, 668-669

assets (in Update Action dialog), 506

assets directory, 20

assets directory (transport pack-

ages), 623

assets directory for transport pack-

ages, 602-604

assets_url system setting, 193,

527

assigning
(see also: adding and attaching)

chunks to categories in code, 401-
402

chunks to categories in transport
packages, 621-623

resources to resource groups, 117,
179

resources to resource groups in
code, 332, 408, 408

roles to users, 115

snippets to categories in transport
packages, 621-623

template variables to resource
groups, 219

templates to categories in code,
401-402

In
d

ex

718 MODX: The Offi cial Guide

users to user groups, 115, 447-448

users to user groups in code, 332,
406-408

assignment by reference, 312-313

assignment operators in PHP, 661

associative arrays (PHP), 669

attaching
(see also: adding and assigning)

elements to categories in transport
packages, 621-623

plugins to events in code, 408

properties to property sets, 257-258

property sets to elements, 251

property sets to elements in code,
409

property sets to plugins, 293-295

snippets to categories in code, 401-
402

system events to plugins, 292, 292

template variables to templates,
203, 219

template variables to templates in
code, 402-404

attachment content disposition, 178

audience for this book, ii

authenticating users, 302, 384-385,

469

authority numbers, 440, 446

auto-tag template variable input type,

208-209

automatic_alias system setting,

143, 409

avoiding the error page, 475

B
back end, 5

contexts, 441

system events, 699-713

versus front end, 5

back-ticks, 12

BadWords Manager plugin, 296-299

BadWords plugin, 290-295

BadWords tutorial, 290-295

BadWordsMgr tutorial, 296-299

base href tag, 429

base_url context setting, 428

base_url system setting, 428

BaseTemplate, 49

basic building blocks of MODX, 6-20

Batcher add-on component, 504-507

Batcher namespace path, 505

beginTransaction() method,

405, 630

block comments in PHP, 654

blogging with getResources, 571

boolean variables in PHP, 655

branches (Git), 70-72

BreadCrumbs
add-on component tutorial, 551-

555

CSS, 553-555

installing, 552

properties, 553

browser support in MODX, 36-37

bug fi xes in Git, 84

bug reporting link, 129

build scripts
for transport packages, 601, 605-610

MyComponent example, 625

running outside of MODX, 624-625

build.confi g.php fi le (Revolu-

tion development version), 87

build.confi g.php fi le (transport

packages), 624

build.transport.php fi le

(transport packages), 600-601,

621-623

building blocks of MODX, 6-20

building the development version of

Revolution, 87-88

built-in functions in PHP, 675-679

bulk actions in form customization,

523

C
cache
clear_cache permission, 503

clearing, 28, 65, 111

control, xiii

control in Evolution, 187

control with tags, 166

empty cache checkbox, 150, 150

exclamation point in tags, 166

in Evolution, 33

output (viewing), 180

overview, 28-29

system events, 715

tags and, 166

cacheable resource fi eld, 150

cached tags, 150, 166

calling processors in code, 409

cancel button, 455

Captcha plugin, 300-302

caption TV fi eld, 205

cat (output modifi er), 169

categories, 105
addMany() method, 402

AdminOnly, 461

assigning chunks to in code, 401-
402

assigning elements to in transport
packages, 621-623

assigning snippets to in code, 401-
402

assigning templates to in code,
401-402

creating, 105, 106

creating in code, 343, 401-402

defi ned, 14

in transport packages, 621-623

manager system events, 712

placing elements in, 105

protected, 453

removing, 106

uses for, 14

category TV fi eld, 205

cdata (output modifi er), 171

ChangeEmail custom hook for FormIt

tutorial, 591-594

changelog.txt (transport pack-

ages), 614-615

changelogs (transport packages), 602

ChangePassword snippet, 481

changePassword() method, 640,

650

changeWebUserPassword()

method, 640

changing
(see also: modifying and renaming)

component menu items, 504-505

current resource alias in code, 344

language strings used in the Man-
ager, 164

the site name, 49

Top Menu items, 504-505

character set, 63

CheatSheet component tutorial, 523-

533

checkbox template variable input type,

209-210

checking user's login status, 481

checkout (Git), 80, 88

CheckPermission snippet, 487-488

checkPreview() method, 640

checkSession() method, 640

Children related object, 318, 321, 324,

357, 364

Chmod directory dialog, 108

chunk tags, 11-12, 157, 194

chunk tags in Evolution, 264-265

MODX: The Offi cial Guide 719

chunks
assigning to categories in code,

401-402

assigning to categories in transport
packages, 621-623

creating, 230

creating in code tutorial, 400

defi ned, 11, 230

displaying, 17

displaying with a snippet, 237

editing in Evolution, 264-265

emailTpl, 585

getChunk() method, 368-370

in snippet properties, 236-237

ItemTpl, 242, 284

manager system events, 705-706

object reference, 692

OuterTpl, 242, 284

overview, 230

relatedUserTpl, 389

RowTpl, 242, 284

save_chunk permission, 449, 453

sending properties in tag, 249

Tpl, 241-244, 473

tutorial, 230-235

TV-based, 244-247

uses for, 232-244, 238-241

using tags with, 232

using to store data, 238-241

using with snippets, 236-237

working with, 229-247

class variables in PHP, 683

class_key (Class Key) resource

fi eld, 151

classes
creating in PHP, 682-686

in PHP, 679-686

modUser, 650-651

modX, 640-649

xPDO, 630-637

xPDOObject, 637-639

cleanDocumentIdentifi er()

method, 640

clear_cache permission, 503

clearing MODX, 65

cloning a fork at GitHub, 78-79

cloning Revolution development ver-

sion, 73-75

CMPs, 523-533

CodeMirror editor, 269

coding style (PHP), 672-673

command-line client for Git, 73

comments

HTML, 531

in PHP, 653-655

PHP block, 654

PHP single-line, 654

commit messages (editing in Git), 85

commit() method, 4-6, 630

commits (Git), 71

common MODX add-on components,

535-594

common snippets in Evolution, 595-

596

comparison operators in PHP, 661-

662

components
changing menu item for, 504-505

CheatSheet, 523-533

namespaces, 349

overview, 4

Top Menu item, 504-505

Components Top Menu item, 109, 113,

508

composite alias, 319

conditional output modifi ers
Reference, 167-169

replacing with snippets, 280-
283

conditionals in PHP, 664-668

confi g fi le still writable warning, 45

confi g.core.php fi les, 420

confi g.inc.php fi le
Evolution, 95

Revolution, 41, 420-423

confi guration check
Evolution, 96

Revolution, 45, 110

confi guring
.htaccess fi le for FURLS, 59

CodeMirror editor, 269

File Manager in Evolution, 131

Git editor for commit messages, 85

Git for MODX development, 76-81

modules in Evolution, 131

MODX Evolution, 131

SMTP for Gmail, 586, 696

SPForm, 548-551

XAMPP, 62-63

Confi rm Registration resource, 477

confl icting permissions, 440

connect() method, 631

connection information, 42

connectors directory, 420

constants
ECHO, 635

FILE, 635

HTML, 635

MODE_NEW, 299, 699

MODE_UPD, 299, 699

modSystemEvent::MODE_NEW, 299,
699

modSystemEvent::MODE_UPD, 299,
699

modX::LOG_LEVEL_INFO, 625

modX::SESSION_STATE_EXTERNAL,
644

modX::SESSION_STATE_INITIAL-
IZED, 644

modX::SESSION_STATE_UNAVAIL-
ABLE, 644

modX::SESSION_STATE_UNINI-
TIALIZED, 644

MODX_ASSETS_PATH, 603, 614

MODX_ASSETS_URL, 603

MODX_CONFIG_KEY, 601

MODX_CORE_PATH, 601, 603, 630, 634

MODX_PROCESSORS_PATH, 422

REDIRECT_HEADER, 648

REDIRECT_META, 648

REDIRECT_REFRESH, 648

xPDO::LOG_LEVEL_DEBUG, 635

xPDO::LOG_LEVEL_ERROR, 635

xPDO::LOG_LEVEL_FATAL, 635

xPDO::LOG_LEVEL_INFO, 617, 618,
635

xPDO::LOG_LEVEL_WARN, 635

XPDO_CLI_MODE, 625

xPDOTransport::ABORT_ON_VE-
HICLE_FAIL, 620

xPDOTransport::ACTION_IN-
STALL, 618

xPDOTransport::ACTION_UNIN-
STALL, 618

xPDOTransport::ACTION_UP-
GRADE, 618

xPDOTransport::PACKAGE_AC-
TION, 617

xPDOTransport::PRESERVE_KEYS,
606, 610, 621-622

xPDOTransport::RELATED_OB-
JECT_ATTRIBUTES, 621-623

xPDOTransport::RELATED_OB-
JECTS, 621-623

xPDOTransport::UNIQUE_KEY,
606, 610, 621-622

xPDOTransport::UPDATE_OBJECT,
606, 610, 621-622

constraint fi eld (form customization),

518, 521

constraints in form customization,

In
d

ex

720 MODX: The Offi cial Guide

515, 521-522

constructors in PHP, 684

contact form
creating with FormIt tutorial, 581-

587

creating with SPForm tutorial, 543-
551

Container (isfolder) resource

fi eld, 146

container_suffi x system setting,

57, 146

content (Resource Content) re-

source fi eld, 145-146

Content Disposition (content_
dispo) resource fi eld, 151

content disposition of attachments,

178

content elements defi ned, 9

content elements in Evolution, 31

content tag, 49, 145-146

content tag in template, 194

content types, 125

content_dispo (Content Disposi-

tion) resource fi eld, 151

content_type (Content Type)

resource fi eld, 150

context access ACL, 115-116

context access ACL entries, 449-451,

456-457, 462-463

context access policy, 444-445

context property for link tags, 163

context settings, 25-26
base_url, 428

default_template, 429, 429, 432

http_host, 429, 431

in Evolution, 32

site_start, 428

site_url, 429

contexts, 424-434
alt, 426-433, 432

back end, 441

base_url setting, 428

creating, 25-26, 125

creating a second, 426-433

default_template setting, 429

defi ned, 25-26

front end, 441

Gateway plugin, 432

http_host setting, 429

in Evolution, 32, 435

in separate directories, 426-431

initialize() method, 426-427

manager system events, 713

mgr, 25-26, 424-425, 441, 450-451,
456, 458, 459, 460, 483

protected, 439

security permissions, 433

settings, 428-429

sharing core between sites, 425-426,
433

site_start setting, 428

site_url setting, 429

two in the same directory, 431-432

uses for, 424

web, 25-26, 424-425, 432, 441, 446-
447, 457, 460, 468, 472, 484

contributing
a bug fi x with Git, 84

a new feature in Git, 86

to MODX development, 75-89

contributor workfl ow in Git, 83-89

controller, 506

controlling
access in the front end, 468-474

plugins with template variables, 295

program fl ow (PHP), 670-672

snippets with template variables,
204

text color with a TV tutorial, 377-
379

conventions (typographical in MODX:

Th e Offi cial Guide), iii-v

converting a site to MODX, 89-94

converting a template to MODX, 90

core
directory, 20, 349, 411, 421-422, 425-

426, 433, 524

directory (moving), 421-422

directory (renaming), 421-422

directory (transport packages), 602-
603, 623

independence in MODX, xii-xiii

lexicon, 504-505

MODX_CORE_PATH constant, 601,
603, 630, 634

modx_core_path system setting,
642

core/packages directory, 537

count() PHP function, 678

cPanel, 429

Create Access Policy dialog, 471

Create Directory dialog, 108

Create Directory Here, 108

Create Namespace dialog, 126

Create New Element Here, 106

Create New Profi le dialog (form cus-

tomization), 517-518

Create New Set dialog (form custom-

ization), 518

Create New Setting dialog, 466-467,

491

create permission, 453

Create Resource Group Dialog, 448,

455, 470, 482

Create Role dialog, 440, 471

Create User Group dialog, 447, 471

Create/Edit Resource panel, 135-154
access controls tab, 179

alias (Resource Alias) resource
fi eld, 142

altering with form customization,
513-523

Cacheable (cacheable) resource
fi eld, 150

Class Key (class_key) resource
fi eld, 151

Container (isfolder) resource
fi eld, 146

content (Resource Content) re-
source fi eld, 145-146

Content Disposition (content_
dispo) resource fi eld, 151

Content Type (content_type) re-
source fi eld, 150

Created By (createdby) resource
fi eld, 152

Created On (createdon) resource
fi eld, 152

creating a new tab with form cus-
tomization, 522

Deleted By (deletedby) resource
fi eld, 153

Deleted On (deletedon) resource
fi eld, 153

Description (description) re-
source fi eld, 142

Edited By (editedby) resource
fi eld, 153

Edited On (editedon) resource
fi eld, 153

Empty Cache checkbox, 150

Freeze URI (uri_override) re-
source fi eld, 154

Hide From Menus (hidemenu) re-
source fi eld, 145

hiding tabs with form customiza-
tion, 520

id (Resource ID) resource fi eld, 138

introtext (Summary) resource
fi eld, 143

isfolder (Container) resource
fi eld, 146

Link Attributes (link_attri-
butes) resource fi eld, 143

MODX: The Offi cial Guide 721

Long Title (longtitle) resource
fi eld, 142

Menu Index (menuindex) resource
fi eld, 145

Menu Title (menutitle) resource
fi eld, 144

modx-page-settings tab, 520

modx-panel-resource-tv tab, 520,
522

modx-resource settings tab, 520

modx-resource-access-permissions
tab, 520

pagetitle (Resource Title) re-
source fi eld, 141

Parent Resource (parent) resource
fi eld, 144

Publish Date (pub_date) resource
fi eld, 148

Published (published) resource
fi eld, 141

Published checkbox, 141

Published On (publishedon) re-
source fi eld, 147

Resource Alias (alias) resource
fi eld, 142

Resource Content (content) re-
source fi eld, 145-146

Resource ID (id) resource fi eld, 139

Resource Title (pagetitle) re-
source fi eld, 141

Rich Text (richtext) resource
fi eld, 147

Searchable (searchable) resource
fi eld, 149

setting fi eld default values form
customization, 523

setting labels form customization,
523, 523

Summary (introtext) resource
fi eld, 143

template (Uses Template) re-
source fi eld, 140

template variables tab, 179

Unpublish Date (unpub_date) re-
source fi eld, 149

URI (uri) resource fi eld, 154

uri_override (Freeze URI) re-
source fi eld, 154

Uses Template (template) re-
source fi eld, 140

Create/Edit User panel, 114
access permissions tab, 114

general information tab, 114

settings tab, 114

createdby (Created By) resource

fi eld, 152

CreatedBy related object, 320, 323,

388, 390

createdon (Created On) resource

fi eld, 152

CreatedResources related object, 324

createPackage() method

(transport packages), 606, 608

createVehicle() method

(transport packages), 606, 610, 622

creating
a second context, 426-433

Access Control List entries, 449-454

access permissions, 114-115

access policies, 115, 443-445

ACL entries, 449-454

actions, 524-525

branch with Git, 84

categories, 106

categories in code, 343, 401-402

chunks, 230

chunks in code, 339

chunks in code tutorial, 400

classes in PHP, 682-686

contact form with FormIt tutorial,
581-587

contact form with SPForm tutorial,
543-551

content types, 125

context access ACL entries, 456-457

contexts, 25-26, 125

custom hooks for FormIt, 588-594

custom output modifi ers, 174-176

custom permissions, 486-487

custom validators for FormIt, 578-
579

default properties, 253

directories, 108

documents, 136

elements, 106

elements in code tutorial, 400

error (404 page-not-found) page,
50

FAQ page with EZfaq snippet tuto-
rial, 539-542

fork of MODX at GitHub, 78-79

forms with FormIt tutorial, 571-594

lexicon fi les, 412, 412

lexicon strings (entries) for Cheat-
Sheet component, 526-527

Login page, 472-473

menu with Wayfi nder tutorial, 555-
565

messages for users, 127

MIME types, 125

MODX database, 40

MODX objects in code, 338-344,
397-409

namespaces, 126, 411

new Create/Edit Resource panel
tabs with form customization
tutorial, 522

objects by calling processors, 409

properties for template variables,
219

property sets, 119, 256, 261-262, 279,
538-539

resource group access ACL entries,
458-459

resource groups, 117, 448

resources, 6, 50, 103, 113, 135-154

resources by calling processor, 409

resources in code, 339

resources in code tutorial, 398

roles, 115, 440, 446

simple class in PHP tutorial, 682-
686

snippets in code, 340-341

snippets in code tutorial, 400

static resources, 103, 113, 178

symlinks, 103, 113

template variables, 201

template variables in code tutorial,
402-404

template variables in Evolution, 227

templates, 190

templates in code tutorial, 400

Top Menu actions, 524-525

Top Menu items, 508-510

transport package tutorial, 599-625

transport packages, 599-626

unauthorized page, 50

user extended fi elds, 115

user groups, 115, 115, 447, 447

user profi le in code, 341-342, 404-
405

user settings, 114

users in code, 404

virtual hosts, 429-431

weblinks, 103, 113

credits (MODX), 122

criteria, 311-313

criteria for queries, 363

CSS
fi le for SPForm, 547

for BreadCrumbs, 553-555

Wayfi nder, 559

cURL, 52, 536
enabling in XAMPP, 536

In
d

ex

722 MODX: The Offi cial Guide

php_curl.dll fi le, 536

current resource
changing alias in code, 344

children, 315, 315

creator, 388

editor, 388

getting children, 360-361

getting ID of in code, 315, 327-328

getting in code, 312, 318, 327-328

getting parent information, 359

getting TV values for, 331, 376, 378

getting TV values in code, 376

in Evolution, 307

publisher, 389

related objects, 387-389

toArray() method, 328, 356

users related to, 387-389

current user, 16, 318, 327, 381-383,

384, 469, 485, 492-493, 592-593

currently logged-in users, 111

custom database table schemas, 409-

411

custom database tables, 409-411

custom hooks
for FormIt, 588-594

variables available for FormIt, 590

custom manager page tutorial, 523-

533

custom manager pages in Evolution,

533

custom menus, 513

Custom output modifi ers, 174-176

custom permissions, 510-512
creating, 486-487

custom preHooks for FormIt, 591-593

custom Top Menu items, 508-509

custom validator properties for For-

mIt, 578-579

custom validators for FormIt, 578-579

customizing the Create/Edit Resource

panel with form customization,

513-523

customizing the MODX Manager, 501-

533

D
data storage in chunks, 238-241

database
adding custom tables to, 409-411

deleting objects in code, 344

dumping, 65-66

exporting, 65-66

getting chunks from, 311

getting related objects, 359-361

getting resources from, 311

getting system settings from, 380

getting template variables from,
377-379

getting user extended fi elds from,
397

getting user groups from, 406-408

getting user profi les from, 382-383

getting users from, 311, 392-393

host, 42

importing, 65-66

location of properties, 250

location of property sets, 250

modifying MODX objects in code,
338-344

modx_actions table, 506

name, 42

password, 40

queries, 631-632, 635-638

removing objects in code, 344

sharing between sites, 425

site_content table, 137

table prefi x, 425

username, 40

users table, 479

database tables
adding to database, 409-411

custom, 409-411

overhead, 121

site_snippets, 250

date (output modifi er), 172

date and time functions in PHP, 679

date template variables
formatting codes, 215

input type, 210

output type, 214-215

date() PHP function, 679

DayErrorPage resource, 303

DBAPI in Evolution, 416

debugging PHP code, 686-690

decr (output modifi er), 172

decrement (output modifi er), 172

default
collation, 63

database, 42

lexicon fi le, 348

permissions, 442

security settings, 442

template variable output type, 215

default (output modifi er), 172, 567

default properties, 249-255
creating, 253

editing, 251

elements, 249-255

in Evolution, 306

of snippets, 276-277

overriding, 256

removing, 255

uses for, 255

using with plugins, 293-295

versus property sets, 249-251

working with, 249-251

Default Value TV fi eld, 207

default.inc.php lexicon fi le,

348

default_template context set-

ting, 429, 432

defi ned constants (transport pack-

ages), 605-607

deletedby (Deleted By) resource

fi eld, 153

DeletedBy related object, 390

deletedon (Deleted On) resource

fi eld, 153

deleting
(see also: removing)

branches (Git), 82

categories, 106

default properties, 255

directories, 109

fi les, 109

MODX objects in code, 344

property sets, 260

resources, 102-103, 182

resources from resource groups,
448

resources from resource groups in
code, 332

users from user groups, 447-448

users from user groups in code, 332

delimiter template variable output

type, 216

description resource fi eld, 142

description TV fi eld, 205

design philosophy of MODX, xi

develop branch (Git), 71

development version of Evolution, 97

development version of Revolution,

70-89
build.confi g.php fi le, 87

building, 87-88

cloning, 73-75

transport.core.php fi le, 87

updating, 88-89

dialogs

MODX: The Offi cial Guide 723

Add Category, 117, 462

Add Permission to Template, 486-
487

Add Resource Group, 458, 483

Add User Group dialog (form cus-
tomization), 518

Add User to Group, 447-448, 472

Chmod directory, 108

Create Access Policy, 471

Create Directory, 108

Create Namespace, 126

Create New Profi le dialog (form
customization), 517-518

Create New Set dialog (form cus-
tomization), 518

Create New Setting, 466-467, 491

Create Resource Group, 448, 455,
470, 482

Create Role, 440, 471

Create User Group, 447, 471

New Category, 462

New Property Set, 119

PhpMyAdmin File Download,
65-66

Rename Directory, 109

Rename File, 109

Update Action, 505

Update Menu, 510

Update User Role, 448

Upload Files, 108

User Group Context Access, 449-
451, 456-457

directories
_build (transport packages), 602,

614

apache/bin, 430

assets, 20

chmod, 108

connectors, 420

core, 20, 349, 411, 421-422, 425-426,
433, 524

core/packages, 537

creating, 108

deleting, 108

htdocs, 63

manager, 420

moving manager, 423

moving the core, 421-422

public_html, 59, 422, 602

removing, 108

renaming, 109

renaming manager, 423

renaming the core, 421-422

root, 420

setting permissions, 108

setup, 420

XAMPP, 63

directory names in transport pack-

ages, 601

directory permissions, 41, 108

disabling
CodeMirror, 269

news feed, 110

permissions, 115, 444, 452, 463, 465-
466, 514

plugins, 296

RSS feeds, 110

security feed, 110

snippets, 92

displaying
a chunk with a snippet, 237

chunks, 17

language strings, 17

lexicon strings with code, 347-351,
413

links, 17

placeholders, 17

resource content, 49, 145-146, 193

resource fi elds, 17

settings, 17

snippet output, 17, 272

snippet tags (without executing),
330

template variables, 11, 17, 200, 203,
375-376

user information, 16, 380-396

Ditto, 565, 570

div (output modifi er), 172

divide (output modifi er), 172

documentation link, 122

documentObject, 307

DocumentRoot, 430, 431

documents
(see also: resources)

Create, 103

creating, 6, 136

defi ned, 7

edit_document permission, 465

fi elds, 7, 135-154, 138

in Evolution, 185, 397

Private Document, 470

Private Document2, 486

publish_document permission,
449

recently edited (Manager Home
screen), 110

recently edited (Report menu)), 121

save_document permission, 453,

465

using tags in, 154-167

double quotes in PHP, 657-659

Download Extras button, 122

downloading MODX, 38

downloading transport packages, 53,

122

dropdown list menu template variable

input type, 210

dumping database, 65-66

Duplicate Resource, 103, 181

duplicating access policies, 444, 456,

459

E
ECHO constant, 635

echo statement in PHP, 676

Edit Element, 106

edit permission, 453

Edit Resource, 103

edit_document permission, 465

edit_tv permission, 514

editedby (Edited By) resource

fi eld, 153

EditedBy related object, 323, 388

editedon (Edited On) resource

fi eld, 153

editing
access policies, 115, 444

chunks in Evolution, 264-265

commit messages (Git), 85

default properties, 251

elements in Evolution, 184

fi les, 108-109

fi les in Evolution, 130

object policies, 465-466

property sets, 251

property sets on the tools menu,
260

resources, 103, 135-154

system settings, 50

Editor role, 458, 459, 460, 463, 484

EditorAdmin policy, 456, 457

EditorElement policy, 462, 463

EditorResource policy, 459

editors
CodeMirror, 269

TinyMCE, 147

Editors user group, 455

eg (output modifi er), 168

el (output modifi er), 168

element categories, 105

Element Category Access ACL entries,

In
d

ex

724 MODX: The Offi cial Guide

116

element category policies, 444-445

Element policy, 443, 444-445

Element tree, 104-106
Create New Element Here, 106

Edit, 106

Quick Create, 106

right-click menu, 106

Element tree icons, 104

element_tree permission, 465

elements
attaching property sets to, 251

attaching property sets to in code,
409

creating, 106

creating in code tutorial, 400

default properties, 249-255

defi ned, 9

editing, 106

element_tree permission, 465

hiding, 461-463

in Evolution, 31

protected, 439

Quick Update, 106

removing, 106

save_element permission, 443

ellipsis (output modifi er), 171,

567

else (output modifi er), 168

else statement in PHP, 665-667

elseif statement in PHP, 665

email hook for FormIt, 581

email hook properties for FormIt, 587

email template variable input type,

210

emailsender system setting, 651

emailsubject system setting, 651

emailTpl chunk, 585

empty (output modifi er), 172

Empty Cache checkbox, 150

empty() PHP function, 335-336

enabling
cURL, 52

cURL in XAMPP, 536

mod_rewrite, 60

news feed, 110

RSS feeds, 110

security feed, 110

enhanced hello snippet, 273-275

eof marker (PHP), 671

eq (output modifi er), 168

equalorgreatherthan (output

modifi er), 168

equals (output modifi er), 168

equalto (output modifi er), 168

equaltoorlessthan (output

modifi er), 168

error log, 121, 690

error page, 50
avoiding, 475

error page unpublished warning, 110

error_page system setting, 302,

475

errorCode() method, 631

errorInfo() method, 631

errors
404 (page-not-found), 50

server 500, 46

xPDO log, 635

esc (output modifi er), 170

escape (output modifi er), 170

event model, 300-301

events (see: system events)
Evolution

cache, 33

cache control, 187

chunk tags, 264-265

common snippets, 595-596

confi g fi le, 95

confi guration check, 96

content elements, 31

context settings, 32

contexts, 32, 435

custom manager pages, 533

DBAPI, 416

default properties, 306

development version, 97

documentObject, 307

documents, 185

editing chunks, 264-265

editing elements, 130, 184

editing fi les, 130

elements, 31

fi le and directory permissions, 95

form customization, 533

FURLs, 97

getChildIds() method, 416

getChunk() method, 416

getLoginUserID() method, 307

getLoginUserName() method, 307

getParentIds() method, 416

getting system settings, 416

installing, 42, 96

installing add-on components, 96,
595

installing snippets, 306

lexicon, 32

lexicon strings, 416

missing Manager functions in, 133

module manager system events,
712

modules, 533

overview, viii

parseChunk() method, 416

PHX, 187

placeholders, 306

plugins, 307

properties, 32, 186, 265, 306

Resource tree, 184

roles, 446, 498

runSnippet() method, 416

security system, 497-498

snippet properties, 595

snippets, 306

system settings, 32

tags, 17, 306

templates, 185

Top Menu, 130-132

transport packages, 626

user information in, 307

user settings, 32

userLoggedIn() method, 307

using SMTP, 596

versus Revolution, vii-x

example template, 191

exec() method, 631

explode() PHP function, 678

exporting property sets, 261

extended user fi elds, 115

extended user fi elds in code, 393-397

ExtJS, 523, 532

extras (see: add-on components)
EZfaq

installing, 539-540

properties, 542

snippet tutorial, 539-542

styling FAQ page, 541-542

F
false in PHP, 656-657

fclose() PHP function, 678

feature branches (Git), 71

features of MODX, x-xiii

feof() PHP function, 671

fetch (Git), 80-81, 88

FeView policy, 471, 472

FeViewer role, 471, 472

FeViewTemplate access policy, 471,

486-487

MODX: The Offi cial Guide 725

fgets() PHP function, 671, 678

fi eld default values (setting with form

customization), 523

fi eld labels (setting with form custom-

ization), 523

fi eld rules in form customization, 515

fi elds
(see also: resource fi elds)

constraint fi eld in form customiza-
tion, 518, 521

extended user (in code), 393-397

getting user extended fi elds in
code, 397

hiding with form customization,
522

of template variables, 205-208

fi le
(see also: fi les)

functions in PHP, 678-679

paths for transport packages, 623-
624

pointers in PHP, 655

resolvers (transport packages), 612-
614, 623

validators (transport packages, 619

vehicles (transport packages), 614-
615

fi le and directory permissions, 41, 69

FILE constant, 635

fi le template variable input type, 211

File tree, 106-109
chmod directory, 108

icons, 107

right-click menu, 108-109

upload fi les, 108

fi le-not-found page, 50

fi le_exists() PHP function, 678

fi le_get_contents() PHP func-

tion, 606, 609, 615, 678

fi le_put_contents() PHP func-

tion, 678

fi le_tree permission, 443, 465

fi lemanager_path system setting,

467-468

fi lemanager_path tutorial, 467-

468

fi lemanager_path user setting,

467-468

fi les
(see also: fi le)

.DOC as static resources, 178

.htaccess, 46-47, 426

.PDF as static resources, 178

Apache httpd.conf, 60

build.confi g.php (Revolution
development version), 87

build.confi g.php (transport pack-
ages), 624

build.transport.php (transport
packages), 600-601, 621-623

confi g.core.php, 420

confi g.inc.php, 420-423

confi g.inc.php for Evolution, 95

creating lexicon fi les, 412

default.inc.php, 348

deleting, 109

editing, 108-109

editing in Evolution, 130

Evolution confi g, 95

fi le_tree permission, 443, 465

fi lemanager_path setting, 467-468

hosts, 430

ht.access, 46-47

httpd-vhosts.conf, 430-431

httpd.conf, 60

in MODX, 19

index.php (components), 505-506

index.php (for CheatSheet com-
ponent), 525

index.php (MODX), 38, 56, 61,
142, 165

index.php (separate contexts),
426-428

index.php for CheatSheet compo-
nent, 527

install.script.php (transport
packages), 616-620

lexicon, 348, 412

lexicon fi le locations (transport
packages), 611-612

loading lexicon fi les in snippets,
412

locations (transport packages),
601-604

locations for MODX, 20

locations for XAMPP, 63

modresponse.class.php, 290

MODX, 19

MODX confi g, 41, 41, 420-423

MODX schema, 318-319

modx.class.php, 601

modx.mysql.schema.php, 318-319

names in transport packages, 601

permissions, 41

permissions in Evolution, 95

php.ini, 536

php_curl.dll, 536

placement, 38-39

readme.txt (transport packages),

602, 614-615

removing, 109

renaming, 109

schema (MODX), 318-319

setting permissions, 69, 108

SPForm CSS, 547

SPForm lexicon, 548

transferring in transport packages,
612-615

transport package, 601-604

transport package lexicon, 603

transport.core.php (Revolution
development version), 87

uploading, 108

user.input.html (transport pack-
ages), 614-615

fi lters, 167

fi ring system events, 289-290

fl oat variables in PHP, 655

fl ush all sessions, 117, 442, 457-458,

462

fl ush permissions, 117, 442, 457-458,

462, 474

fonts used in MODX: Th e Offi cial

Guide, iii-v

fopen() PHP function, 678

for loop (PHP), 671-672

foreach loop (PHP), 670

ForgotPassword snippet, 480

Form Customization, 513-523
bulk actions, 523

constraints, 515, 521-522

creating new Create/Edit Resource
panel tabs with, 522

fi eld rules, 515

hiding fi elds with, 522

hiding tabs with, 520

hiding template variables with, 514

in Evolution, 533

Manager panel, 117

moving TVs to a new tab with, 520

overview, 514-516

profi les, 516

rule sets, 516

rules, 515

sets, 515

setting fi eld default values with, 523

setting fi eld labels with, 523

setting template variable labels
with, 523

tab rules, 515

TV rules, 515

form processing, 571-594

In
d

ex

726 MODX: The Offi cial Guide

formatting codes for date template

variables, 215

FormIt
built-in hooks, 580-582

built-in validators, 574-578

contact form tutorial, 581-587

custom hook tutorial, 588-594

custom preHooks, 591-593

custom validator properties, 578-
579

custom validators, 578-579

email and redirect hooks, 580

email hook properties, 587

FormItAutoResponder hook, 580,
587-588

hooks and preHooks, 579-582

properties, 573-574

snippet tutorial, 571-594

spam hook, 587

tpl chunks, 585, 587

uses for, 571, 581

using SMTP with, 586

validators, 574-578

variables available in custom
hooks, 590

FormItAutoResponder hook, 587-588

FormItAutoResponder properties,

587-588

FormItRetriever snippet, 592

formProcAllowedReferers (SPForm),

550

forums link, 127-128

fputs() PHP function, 679

fread() PHP function, 678

Freeze URI (uri_override) re-

source fi eld, 154

friendly alias path, 57

friendly aliases, 58

Friendly URLs (see:FURLs)
fromArray() method, 340-341,

638

fromJSON() method, 638

front end, 5
contexts, 441

controlling access in, 468-474

hiding template variables in (tuto-
rial), 484-485

versus back end, 5

front-end system events, 714-715

full URL in makeUrl() method, 646

functions
(see: PHP functions)

PHP, 673-679

FURLs
alias fi eld, 142

friendly alias path, 57

friendly aliases, 58

in Evolution, 97

in Revolution, 55-61

prefi xes, 57

RewriteBase, 60

suffi xes, 57

testing, 60

fwrite() PHP function, 678

G
Gateway plugin, 432

ge (output modifi er), 168

generating a GitHub SSH key, 77

generic methods, 310-314

get() and set() methods in PHP,

684-685

get() method, 327, 355, 391, 629,

638

get*() methods, 310-327

getActiveChildren() method,

640

getAggregates() method, 631

getAllChildren() method, 640

getAncestry() method, 631

getAttribute() method, 631

getAuthenticatedUser()

method, 640-641

getCacheManager() method,

631, 641

getCachePath() method, 631

getChildIds() method, 315,

357, 641

getChildIds() method in Evolu-

tion, 416

getChunk() method, 237, 317,

368-370, 389, 488, 528, 642

getChunk() method in Evolution,

416

getCollection() method, 313,

362-363, 373, 390, 392-393, 403,

407, 631-632

getCollectionGraph() meth-

od, 324-325, 364-365, 391, 397,

631-632

getComposites() method, 631-

632

getConfi g() method, 642

getContent() method, 328, 651

getContext() method, 642

getCount() method, 633

getDebug() method, 633

getDebugBacktrace() method,

633

getDocGroups() method, 642

getDocument() method, 642

getDocumentChildren()

method, 642

getDocumentChildrenT-
Vars() method, 642

getDocumentIdentifi er()

method, 642

getDocumentMethod() method,

642

getDocumentObject() method,

642

getDocuments() method, 642

getEventMap() method, 642

getFields() method, 633

getFullTableName() method,

642

getIterator() method, 313, 633

getKeywords() method, 642

getLoginUserID() method, 642

getLoginUserID() method

(Evolution), 307

getLoginUserName() method,

643

getLoginUserName() method

(Evolution), 307

getLoginUserType() method,

643

getManager() method, 633

getManagerPath() method, 643

getMany() method, 321, 359-361,

373, 638

getMany() versus getOne(), 321

getMETATags() method, 643

getMicroTime() method, 633

GetMyComponent add-on package,

625

getObject() $classKey argu-

ment, 311-312

getObject() method, 310-313,

354, 390, 629, 633

getObjectGraph() method,

321-324, 363-364, 384, 388, 396,

633-634

getOne() method, 320, 348, 358-

360, 388, 390, 392, 639

getOne() versus getMany(), 321

getOption() method, 314, 367-

368, 490, 527, 634

getPackage() method, 634

MODX: The Offi cial Guide 727

getPageInfo() method, 643

getParent() method, 643

getParentIds() method, 315-

316, 358, 643

getParentIds() method in Evo-

lution, 416

getParser() method, 643

getPK() method, 634

getPKType() method, 634

getPlaceholder() method, 316,

643

getProperties() method, 370

getRegisteredCli-
entScripts() method, 643

getRegisteredClientStart-
upScripts() method, 643

getRequest() method, 643

getResources
blogging with, 571

properties, 567-570

snippet, 565-571

tag, 196

tutorial, 566-567

uses for, 565, 571

getResponse() method, 643

getSelectColumns() method,

393

getService() method, 412

getSessionState() method,

644

getSettings() method, 644, 650

getTableName() method, 634

getTemplateVar() method, 644

getTemplateVarOutput()

method, 644

getTemplateVars() method,

644

getting
children of current resource, 360-

361

children of current resource in
code, 315

chunks from database, 311

current resource in code, 312-313,
318, 327-328

current resource related objects,
388

current user, 381-383

data from a chunk tutorial, 238-241

ID of current resource, 315, 327-328

MODX version information in
code, 645

properties in code, 365-368

related objects, 359-361

resources from database, 311

system settings in Evolution, 416

system settings with getOption(),
380

template variables from database,
377-379

TV values for current resource in
code, 331, 376

user extended fi elds from database,
397

user groups from database, 406-408

user information in code, 380-396

user profi le with getCollec-
tion(), 393

user profi le with getObject-
Graph(), 322-325, 388-389

user profi le with getOne(), 382, 392

user profi les from database, 382-383

users from database, 311, 392-393

getTree() method, 644

getTVValue() method, 378

getUser() method, 644

getUserDocGroups() method,

644

getUserGroupNames() method,

650

getUserGroups() method, 650

getUserInfo() method, 645

getValue() method, 330, 652

getVersionData() method, 645

getWebUserInfo() method, 645

Git
--ff-only merges, 81, 88

Bash, 73

branches, 70-72

bug fi xes in, 84

checkout, 80, 88

client, 72

cloning MODX development ver-
sion, 73-75

commits, 71

contributing a new feature, 86

contributor workfl ow, 83-89

creating a remotes, 80

deleting branches, 82

deleting remotes branches, 82

develop branch, 71

development version of Revolution,
75-89

editing commit messages, 85

feature branches, 71

fetch, 80-81, 88

GUI, 73

guidelines for using with MODX,

83-84

HEAD, 71

hotfi x branch, 71

installing, 73

master branch, 71

merge, 81, 88

origin remote, 80

push, 82

release branches, 72

remotes, 80

Revolution repository, 72

SHA1, 71

switching branches, 72

tracking branches, 80

upstream remote, 80

workfl ow, 83-86

Git for transport packages, 604-605

GitHub, 70-75
cloning a fork of MODX, 78-79

creating an account, 76-78

creating an SSH key, 77

forking MODX, 78-79

Gmail (using SMTP with), 585-586,

696

graph methods, 321-325

greaterthanorequalto (out-

put modifi er), 168

gt (output modifi er), 168

gte (output modifi er), 168

guidelines for Git with MODX, 83-84

H
handler, 526

handler for menu items, 503-504

handleRequest() method, 645

handling clicks in the Top Menu, 507

hasChildren() method, 329,

356-357

hasPermission() method, 485,

488, 645

hasSessionContext() method,

384-385, 469, 481, 490, 650

hasTemplate() method, 331

hasTemplateVar() method, 331

HEAD (Git), 71

hello snippet, 269-270

hello snippet (enhanced), 273-275

Hello World tutorial (PHP), 653

Hello2 snippet, 605

help, 122
API documentation link, 129

MODX, 122

MODX API documentation link,

In
d

ex

728 MODX: The Offi cial Guide

630

MODX documentation, 122

MODX Wiki, 128

MySQL, 122

PHP, 122, 652

searching MODX forums, 127-128

xPDO, 122

hidden template variable input type,

211

HiddenTVs resource group, 482, 484

hide (output modifi er), 168

Hide From Menus checkbox, 145

Hide From Menus checkbox (and Way-

fi nder), 560

hidemenu (Hide From Menus) re-

source fi eld, 145

HidePages snippet tutorial, 469

hiding
Create/Edit Resource panel fi elds

with form customization tu-
torial, 522

Create/Edit Resource panel tabs
with form customization tu-
torial, 520

elements tutorial, 461-463

pages with a snippet tutorial, 468-
470

resources from menus, 145

resources in the Manager, 438-439

resources with ACL entries tutorial,
470-474

resources with custom permissions
tutorial, 485-488

tabs with form customization, 520

template variables in the front end
tutorial, 484-485

template variables in the Manager
with ACLs tutorial, 481-484

template variables with form cus-
tomization, 514

template variables with form cus-
tomization tutorial, 520

Top Menu items, 510-512

history of MODX, vi-viii

home page, 48
previewing, 111

Home screen of the Manager, 109

Home Top Menu choice, 109

hooks
built-in for FormIt, 579-582

custom for FormIt, 588-594

email for FormIt, 581

FormIt custom preHooks, 591-593

FormIt setValue() method, 592

math for FormIt, 579-580

properties for FormIt email hook,
587

properties for FormIt spam hook,
587

redirect for FormIt, 581

setValue() method (FormIt), 592

variables available in FormIt cus-
tom hooks, 590

hooks and preHooks for FormIt, 579-

582

host (database), 42

hosts fi le, 430

hotfi x branch (Git), 71

how MODX delivers a web page, 21

how MODX works, 1

ht.access fi le, 46-47

htdocs directory, 63

HTML comments, 531

HTML constant, 635

HTML tag template variable output

type, 216

htmlarea template variable input type,

211

htmlent (output modifi er), 170

htmlentities (output modifi er),

170

http URL in makeUrl() method,

646

http://api.modx.com, 630

http://modx.com/extras,

537

http_host context setting, 429,

431

http_host system setting, 429

http_referer variable, 550

httpd-vhosts.conf fi le, 430-

431

httpd.conf fi le, 60

https URL in makeUrl() method,

646

I
icons

Element tree, 104

File tree, 107

Resource tree, 101

id (resource ID) fi eld, 340

id (Resource ID) resource fi eld, 139

id user fi eld, 381

if (output modifi er), 168

if statement in PHP, 664-666

ifempty (output modifi er), 172

ifnotempty (output modifi er), 172

image template variable input type,

211-212

image template variable output type,

217

implode() PHP function, 634, 678

importing
HTML resources, 118

property sets, 261

resources, 118

inc (output modifi er), 172

increment (output modifi er), 172

index.php fi le
components, 505-506

for CheatSheet component, 525, 527

MODX, 38, 56, 61, 142, 165

separate contexts, 426-428

info chunk tutorial, 233-235

Info panel, 111

initialize() method (contexts),

426-427

initialize() method (MODX),

600-601, 645

innerJoin() method, 393

InnoDB storage engine, 405

input (output modifi er), 168

input fi lters, 176

input option values TV fi eld, 206

input type TV fi eld, 206

input types for TVs, 208-213

insideManager() method, 645

install.script.php fi le

(transport packages), 616-620

installer still present warning, 47

installing
add-on components, 52-54, 536-538

add-on components in Evolution,
595

add-on components with no trans-
port package, 538

BreadCrumbs, 552

Evolution add-on components, 96

EZfaq, 539-540

Git, 73

packages, 52-54

snippets in Evolution, 306

snippets with Package Manager,
268

transport packages, 54

transport packages manually, 537-
538

XAMPP, 62-63

installing MODX Evolution, 42, 96
add-on components, 96

confi guration check, 96

MODX: The Offi cial Guide 729

development version, 97

fi le and directory permissions, 95

FURLs, 96, 97

installing MODX Revolution, 35
confi g fi le, 41

confi guration check (Revolution),
45

connection information, 42

database host, 42

database name, 42

fi le placement, 38-39

installer still present warning, 47

localhost, 64

register_globals, 45-47

running setup, 41

summary screen, 43

under XAMPP, 64

instanceof in PHP, 337-338

integer variables in PHP, 655

interacting with the user in transport

packages, 616-620

internationalization for transport

packages, 611-612

intersect objects
modElementPropertySet, 409

modPluginEvent, 408

modResourceGroupResource, 408

modTemplateVarTemplate, 403

modUserGroupMember, 406

introduction, i-xiii

introtext (Summary) resource

fi eld, 143

invokeEvent() method, 301,

645, 698

invoking system events, 289-290

is (output modifi er), 168

is MODX for you?, vi-vii

is user logged in?, 384-385

is_array() PHP function, 335

is_object() PHP function, 337

isAuthenticated() method,

650

isBackend() method, 645

isempty (output modifi er), 172

isequal (output modifi er), 168

isequalto (output modifi er), 168

isfolder (Container) resource

fi eld, 146, 356

isFrontend() method, 645

isgt (output modifi er), 168

isgte (output modifi er), 168

islessthan (output modifi er), 168

isloggedin (output modifi er), 173

islowerthan (output modifi er),

168

islte (output modifi er), 168

ismember (output modifi er), 169

isMember() method, 386-387, 650

isMemberOfWebGroup() meth-

od, 646

isNew() method, 639

isnot (output modifi er), 168

isnotempty (output modifi er), 172

isnotloggedin (output modi-

fi er), 173

isnt (output modifi er), 168

isset() PHP function, 334-335

ItemTpl chunk, 242, 284

J
JavaScript, 526, 643, 647

with Wayfi nder, 559

joinGroup() method, 408

joinGroup() method (resource

object), 332

joinGroup() method (user ob-

ject), 332, 650

JSON, 395, 631-632

K
K&R style (PHP), 672-673

key, 247

Kongondo, 555

L
language (see: lexicon)
language fi les (see: lexicon fi les)
language strings (see: lexicon strings)
language tags, 163-164

languages, 349

lastInsertId() method, 634

lcase (output modifi er), 169

le (output modifi er), 168

leaveGroup() method (resource

object), 332

leaveGroup() method (user ob-

ject), 332, 650

len (output modifi er), 170

length (output modifi er), 170

lessthan (output modifi er), 168

lessthanorequalto (output

modifi er), 168

lexicon
core, 504-505

default.inc.php fi le, 348

for CheatSheet component, 526-527

for Top Menu items, 504-505, 508

in Evolution, 32

overview, 23-24

SPForm, 548

using in snippets tutorial, 411-413

working with in code, 347-351, 411-
413

lexicon fi les
creating, 412

default.inc.php, 348

for transport packages, 603, 611-612

loading in code, 412

location of, 348, 412

SPForm, 548

lexicon keys
for CheatSheet component, 527

for Top Menu items, 504-505, 508

Lexicon Management, 124-125

lexicon strings
displaying, 17

displaying with code, 413

in code, 347-351, 413

in Evolution, 416

overview, 23-24

prefi xes, 350

uses for, 347

lexicon topics, 23-24, 349-351, 506

lexicon topics for custom manager

pages, 524

lexicon() method, 646

lexicon->load() method, 350,

412

lexicon_entries table, 348

limit (output modifi er), 171

limiting access to elements tutorial,

461-463

limiting permissions in the Manager

tutorial, 464-467

link tag properties, 163

link tags, 16, 161-163, 197
context property, 163

scheme property, 163

link_attributes (Link Attri-

butes) resource fi eld, 143

links, 16
bug report, 129

displaying, 17

MODX API documentation, 129,
630

MODX forums, 127-128

MODX wiki, 128

list permission, 459

listbox (multi-select) template variable

In
d

ex

730 MODX: The Offi cial Guide

input type, 212

listbox (single-select) template vari-

able input type, 212

ListData chunk, 242, 284

load headers, 506, 514

Load List and View policy, 444, 459

Load Only policy, 443, 475

load permission, 449, 459, 475

Load policy, 471

loadClass() method, 606, 608,

609, 634-635

loading lexicon topics, 350

localhost default database, 42

location
of confi g.core.php fi les, 420

of confi g.inc.php fi le, 41

of Evolution confi g fi le, 95

of lexicon fi les, 348, 412

of properties in database, 250

of property sets in database, 250

of Revolution confi g fi le, 41

lock variable for editing TV fi eld, 206

locks, 112

log() method, 635

log() method (transport packages),

617

log() method options, 635

logEvent() method, 646

logged-in users list, 111

logging out, 113

logical operators in PHP, 663-664

Login page
creating, 472-473

loginResourceId property, 474

tutorial, 472-473

Login snippet, 472-473

login status, 384-385, 469

login tests, 302

loginResourceId property

(Login), 474

logManagerAction() method,

646

longtitle (Long Title) resource

fi eld, 142

lowercase (output modifi er), 169

lowerthan (output modifi er), 168

lte (output modifi er), 168

ltrim() PHP function, 676

M
mail() PHP function, 550, 696

makeUrl() method, 481, 488, 490,

646

Manage Users menu, 114

Manager, 99-132
confi guration check (Revolution),

110

customizing, 501-533

Element tree, 104-106

File tree, 106-109

Home screen, 109

Resource tree, 100-104

trees, 99-109

manager access system events, 700-

713

manager action policy, 444-445

manager action rules, 449

manager actions, 126, 502-508

Manager Actions Report, 121

manager directory, 420

Manager menu (see Top Menu)
manager users, 440-441, 446-447

manager users in Evolution, 497-498

manager_language system set-

ting, 612

manager_language user setting,

447

manager_url system setting, 531

manually installing transport pack-

ages, 537-538

many-to-many relationships (see: in-

tersect objects)
master branch (Git), 71

math (output modifi er), 172

math hook for FormIt, 579-580

md5, 342

md5 (output modifi er), 173

member pages with tree_root_id

tutorial, 489-496

member role, 475

Member template, 490-491

member variables in PHP, 683

memberof (output modifi er), 169

MemberPages plugin, 492-493

MemberPages snippet, 490-491

Members resource, 489

menu (see Top Menu)
menu item action, 503-508

menu item handler, 503-504

menu tree, 503-513

Menu Update dialog, 503

menuindex (and Resource tree sort-

ing), 101

menuindex (Menu Index) resource

fi eld, 145

menus (custom), 513

menutitle (Menu Title) resource

fi eld, 144

merge (Git), 81, 88

mergeChunkContent() method,

646

mergeDocumentContent()

method, 646

mergePlaceholderContent()

method, 646

mergeSettingsContent()

method, 646

messageQuit() method, 647

methods
addEventListener(), 640

addMany(), 342, 402, 621, 637

addOne(), 341-342, 403, 404, 406,
407, 408, 409, 637

addPackage(), 630

beginTransaction(), 405, 630

changePassword(), 640, 650

changeWebUserPassword(), 640

checkPreview(), 640

checkSession(), 640

cleanDocumentIdentifi er(), 640

commit(), 406, 630

connect(), 631

createPackage() (transport pack-
ages), 606, 608

createVehicle() (transport pack-
ages), 606, 610

errorCode(), 631

errorInfo(), 631

exec(), 631

fromArray(), 340-341, 638

fromJSON(), 638

generic, 310-314

get(), 327, 355, 391, 629, 638

getActiveChildren(), 640

getAggregates(), 631

getAllChildren(), 640

getAncestry(), 631

getAttribute(), 631

getAuthenticatedUser(), 640-
641

getCacheManager(), 631, 641

getCachePath(), 631

getChildIds(), 315, 357, 641

getChunk(), 237, 317, 368-370, 389,
488, 528, 642

getCollection(), 313, 362-363,
373, 390, 392-393, 403, 407, 631-
632

getCollectionGraph(), 324-325,
364-365, 391, 397, 632

MODX: The Offi cial Guide 731

getComposites(), 631-632

getConfi g(), 642

getContent(), 328, 651

getContext(), 642

getCount(), 633

getDebug(), 633

getDebugBacktrace(), 633

getDocGroups(), 642

getDocument(), 642

getDocumentChildren(), 642

getDocumentChildrenTVars(),
642

getDocumentIdentifi er(), 642

getDocumentMethod(), 642

getDocumentObject(), 642

getDocuments(), 642

getEventMap(), 642

getFields(), 633

getFullTableName(), 642

getIterator(), 313, 633

getKeywords(), 642

getLoginUserID(), 642

getLoginUserName(), 643

getLoginUserType(), 643

getManager(), 633

getManagerPath(), 643

getMany(), 321, 359-361, 373, 638

getMETATags(), 643

getMicroTime(), 633

getObject(), 310-313, 354, 390,
629, 633

getObjectGraph(), 321-324, 363-
364, 384, 388, 396, 633-634

getOne(), 320, 358-360, 384, 388,
390, 392, 639

getOption(), 314, 367-368, 380, 490,
527, 634

getPackage(), 634

getPageInfo(), 643

getParent(), 643

getParentIds(), 315-316, 358, 643

getParser(), 643

getPK(), 634

getPKType(), 634

getPlaceholder(), 316, 643

getProperties(), 370

getRegisteredClientScripts(),
643

getRegisteredClientStart-
upScripts(), 643

getRequest(), 643

getResponse(), 643

getSelectColumns(), 393

getService(), 412

getSessionState(), 644

getSettings(), 644, 650

getTableName(), 634

getTemplateVar(), 644

getTemplateVarOutput(), 644

getTemplateVars(), 644

getTree(), 644

getTVValue(), 378

getUser(), 644

getUserDocGroups(), 644

getUserGroupNames(), 650

getUserGroups(), 650

getUserInfo(), 645

getValue(), 330, 652

getVersionData(), 645

getWebUserInfo(), 645

graph, 321-325

handleRequest(), 645

hasChildren(), 329, 356-357

hasPermission(), 485, 488, 645

hasSessionContext(), 384-385,
469, 481, 490, 650

hasTemplate(), 331

hasTemplateVar(), 331

initialize() (contexts), 426-427

initialize() (MODX), 600-601,
645

innerJoin(), 393

insideManager(), 645

invokeEvent(), 301, 645, 698

isAuthenticated(), 650

isBackend(), 645

isFrontend(), 645

isMember(), 386-387, 650

isMemberOfWebGroup(), 646

isNew(), 639

joinGroup(), 408

joinGroup() (user object), 332, 650

lastInsertId(), 634

leaveGroup() (resource object),
332

leaveGroup() (user object), 332,
650

lexicon(), 646

lexicon->load(), 350, 412

loadClass(), 606, 608, 609, 634-635

log(), 635

log() (transport packages), 617

logEvent(), 646

logManagerAction(), 646

makeUrl(), 481, 488, 490, 646

mergeChunkContent(), 646

mergeDocumentContent(), 646

mergePlaceholderContent(), 646

mergeSettingsContent(), 646

messageQuit(), 647

modUser class, 650-651

modX class, 640-649

newObject(), 339, 397, 398, 399,
400, 403, 404, 406, 407, 408, 409,
635

newObject() (transport packages),
606

newQuery(), 313, 393, 631-632, 636

object, 326-332

parseChunk(), 647

parseSchema(), 410

prepare(), 636

process(), 328-329

processElementTags(), 646

putChunk(), 647

putVehicle() (transport pack-
ages), 606

putVehicle() (transport pack-
ages), 610

query(), 636

reg*(), 647

regClientCSS(), 378, 527, 647

regClientHTMLBlock(), 647

regClientScript(), 647

regClientStartupHTMLBlock(),
647

regClientStartupScript(), 647

registerNamespace() (transport
packages), 606, 608

related object, 317-319

reloadConfi g(), 647

remove(), 344, 639

remove() (user object), 651

removeAllEventListener(), 648

removeCollection(), 636

removeEventListener(), 648

removeObject(), 636

removeObject() (transport pack-
ages), 618

renderOutput(), 330-331, 652

resolve() (transport packages),
612-614

rollback(), 405, 636

runSnippet(), 373-375, 648

save(), 339, 343-344, 397, 398, 400,
404, 639

save() (user object), 651

sendEmail(), 651

sendError(), 648

sendErrorPage(), 469, 648

sendForward(), 302, 648

In
d

ex

732 MODX: The Offi cial Guide

sendRedirect(), 488, 648

sendUnauthorizedPage(), 469,
490, 648

set(), 340, 397, 399, 404, 639

set() (transport packages), 606

setAttribute(), 636

setContent(), 340, 399, 400, 651

setContent() (transport pack-
ages), 606

setDebug(), 636, 648

setLogLevel(), 636

setLogLevel() (transport pack-
ages), 625

setLogTarget(), 636

setLogTarget() (transport pack-
ages), 625

setOption(), 637

setPackageAttributes() (trans-
port packages), 615

setPlaceholder(), 344-347, 591,
593, 648-649

setPlaceholders(), 346-347, 649

setService(), 643

setValue() (FormIt hooks), 592

setValue() (TV), 404, 414

sortby() for xPDO queries, 631-
632

stripTags(), 649

switchContext(), 649

toArray(), 328, 355, 370-373, 384,
639

toJSON(), 639

toPlaceholder(), 346, 649

toPlaceholders(), 346-347, 384,
388-389, 649

unsetPlaceholder(), 347, 649

unsetPlaceholders(), 347, 649

userLoggedIn(), 649

where() for xPDO queries, 631-632

writeSchema(), 410

xPDO class, 630-637

mgr context, 25-26, 424-425, 450-

451, 456, 458, 459, 460, 483

mgr context permissions, 441

MIME types, 125

minimum role
for context access ACL entries,

450-451

for element category access ACL
entries, 453

for resource group access ACL en-
tries, 452, 458-459

mo (output modifi er), 169

mod (output modifi er), 172

mod_rewrite, 60

modChunk object reference, 691

MODE_NEW constant, 299, 699

MODE_UPD constant, 299

MODE_UPS constant, 699

modElementPropertySet intersect

object, 409

MODExt, 532-533

modifying
(see also: changing and renaming)

MODX objects in code, 338-344

the Top Menu tutorial, 507-512

modPlugin object reference, 692-693

modPluginEvent intersect object, 408

modPrincipal object, 319

modResource object reference, 691

modResourceGroupResource intersect

object, 408

modresponse.class.php fi le,

290

modSnippet object reference, 692

modSystemEvent::MODE_NEW

constant, 299, 699

modSystemEvent::MODE_UPD

constant, 299, 699

modTemplate object reference, 693

modTemplateVar object reference,

693-694

modTemplateVarTemplate intersect

object, 403

modules
in Evolution, 533

manager system events (Evolu-
tion), 712

modulus (output modifi er), 172

modUser class, 650-651

modUser object, 381

modUser object reference, 694

modUserGroup object, 318-319

modUserGroupMember intersect ob-

ject, 319, 406

modUserProfi le object reference, 695

MODX
.htaccess fi le, 426

about, vi-xiii

About Report, 122

add-on components (overview), 4

Advanced distribution, 420-421

API documentation link, 129, 630

API reference, 629-652

architecture, x-xiii

assets directory, 20

back end, 5

BaseTemplate, 49

basic building blocks, 6-20

browser support, 36-37

build.confi g.php fi le (Revolution
development version), 87

building the development version
of Revolution, 87-88

cache (overview), 28-29

cache control, xiii

categories defi ned, 14

chunk object reference, 692

chunks, 229-247

chunks defi ned, 11

class methods, 640-649

common add-on components, 535-
594

components (overview), 4

confi g fi le, 41, 420-423

confi guration check (Evolution), 96

confi guration check (Revolution),
45

contexts, 424-434

contexts defi ned, 25-26

contributing to development, 75-89

core directory, 20, 349, 411, 425-426,
433, 524

core directory (moving), 421-422

core independence in MODX, xii-
xiii

core/packages directory, 537

creating contexts, 25-26

creating resources, 6

credits, 122

customizing the Manager, 501-533

database, 1, 40

database creation, 40

database host, 42

database name, 42

database password, 40

database username, 40

deleting resources, 102-103

delivering a web page, 21

design philosophy, xi

documentation link, 122

documents defi ned, 7

downloading, 38

Element tree, 104-106

error log, 121, 690

error page, 50

event model, 300-301

Evolution, viii

Evolution tags, 17

fi le and directory permissions, 41

fi les, 19

forums (searching), 127-128

MODX: The Offi cial Guide 733

forums link, 127-128

front end, 5

get*() methods, 310-327

getting version information in
code, 645

help, 122

history, vi-viii

home page, 48

index.php fi le, 38, 56, 61, 142, 165

index.php fi le (separate contexts),
426-428

initialize() method, 600-601

installing, 35

is it for you?, vi-vii

key features, x-xiii

lexicon (overview), 23-24

lexicon strings, 23-24

links, 16

Manager, 99-132

Manager trees, 99-109

menu (see Top Menu),

mgr context, 25-26, 424-425

moving site, 64-70

multiple sites sharing core, 433

namespaces defi ned, 23

News panel, 110

object-oriented design, xii

objects reference, 690-695

parser, 21

placeholders defi ned, 15

plugin object reference, 692-693

plugins defi ned, 13

porting an existing site to, 89-94

processors, 409

property sets defi ned, 27-28

related objects, 359-361

resource object reference, 691

resources, 7, 135-183

Revolution, viii-ix

Revolution development version,
70-89

Revolution objects, 680-682

Revolution tags, 17-19

robustness, xiii

root directory, 420

RSS feeds, 110

running setup, 41

schema, 318-319

Security panel, 110

security system, 437-496

security system elements, 442-453

server requirements, 36-37

setup, 41

sharing core between sites, 425-426,
433

sharing database between sites, 425

site name, 49

site organization, 419-423

snippet object reference, 692

snippet properties defi ned, 12, 12

snippets defi ned, 12-13

speed and effi ciency, xii

supported browsers, 36-37

system events, 289-290

system events Quick Reference,
696-715

system settings defi ned, 25

table prefi x, 425

tag syntax specifi cation, 19

tags, 17-19, 49, 145-146, 154-176

tags in documents, 154-167

template object reference, 693

template variable object reference,
693-694

template variables defi ned, 10

templates (overview), 10

Top Menu, 109-128

Tpl chunks defi ned, 12

Traditional distribution, 420-423

transport packages defi ned, 22

unauthorized page, 50

user interface, xi

user object reference, 694

user profi le object reference, 695

user settings, 26

versions, vii-x

web context, 25-26, 424-425

Wiki link, 128

workspaces, 25-26

MODX Evolution, viii
cache, 33

cache control, 187

chunk tags, 264-265

common snippets, 595-596

confi g fi le, 95

content elements, 31

contexts, 32, 435

custom manager pages, 533

DBAPI, 416

default properties, 306

development version, 97

documentObject, 307

documents, 185

editing chunks, 264-265

editing elements, 130, 184

editing fi les, 130

elements, 31

fi le and directory permissions, 95

form customization, 533

getChildIds() method, 416

getChunk() method, 416

getLoginUserID() method, 307

getLoginUserName() method, 307

getParentIds() method, 416

getting system settings, 416

installing, 42, 96

installing add-on components, 96,
595

installing snippets, 306

lexicon, 32

lexicon strings, 416

manager users, 497-498

missing Manager functions in, 133

modules, 533

output modifi ers, 187

parseChunk() method, 416

PHX, 187

placeholders, 306

plugins, 307

properties, 32, 186, 265, 306

Resource tree, 184

roles, 446, 498

runSnippet() method, 416

security system, 497-498

snippet properties, 595

snippets, 306

system settings, 32

tags, 306

templates, 185

Top Menu, 130-132

transport packages, 626

user information in, 307

user settings, 32

userLoggedIn() method, 307

using SMTP, 596

web users, 497-498

MODX Manager, 99-132
confi guration check, 110

customizing, 501-533

Element tree, 104-106

File tree, 106-109

Home screen, 109

trees, 99-109

MODX Motors resources, 557-558

modX object, 310, 699

MODX objects (creating in code), 338-

344, 397-409

MODX Objects reference, 690-695

modx.class.php fi le, 601

In
d

ex

734 MODX: The Offi cial Guide

modx.mysql.schema.php fi le,

318-319

modx.user.id placeholder, 381

modx.user.username place-

holder, 381

MODX: Th e Offi cial Guide
audience for, ii

introduction to, i-xiii

organization of, iii

typographical conventions, iii-v

modX::LOG_LEVEL_INFO con-

stant, 625

modX::SESSION_STATE_EX-
TERNAL constant, 644

modX::SESSION_STATE_INI-
TIALIZED constant, 644

modX::SESSION_STATE_UN-
AVAILABLE constant, 644

modX::SESSION_STATE_UN-
INITIALIZED constant, 644

modx_actions database table, 506

MODX_ASSETS_PATH constant,

603, 614

MODX_ASSETS_URL constant, 603

modx_base_path system setting,

642

modx_base_url system setting,

642

modx_charset system setting, 192

MODX_CONFIG_KEY constant, 601

MODX_CORE_PATH constant, 601,

603, 630, 634

modx_core_path system setting,

642

MODX_PROCESSORS_PATH con-

stant, 422

moving
a site to MODX, 89-94

local site to remote server, 64-70

MODX manager directory, 423

the MODX core directory, 421-422

TV to a new tab with form custom-
ization tutorial, 520

mpy (output modifi er), 172

multi-language sites, 434

multiple security permissions, 440

multiply (output modifi er), 172

my-new-tab, 522

my_allow_private permission,

486-487

my_view_user permission, 510

MyComponent example transport

package build script, 625

MyISAM storage engine, 405

MyMenu custom menu item, 509

MySQL help, 122

mysysgit, 73

N
name of MODX database, 42

namespace path, 349

namespace path (Batcher), 505

namespaces, 23, 411, 506
cheatsheet, 524

creating, 126

defi ned, 23

for components, 349

ne (output modifi er), 168

neq (output modifi er), 168

nested tags, 18, 164-165, 197

New Category dialog, 42

new feature in Git, 86

new MODX objects in code, 339

New Property Set dialog, 119

New Role button, 115

new_document_in_root per-

mission, 439

new_user permission, 449

newObject() method, 339, 397,

398, 399, 400, 403, 404, 406, 407,

408, 409, 635

newObject() method (transport

packages), 606, 621

newQuery() method, 313, 393,

631-632, 636

News resource group, 459

news RSS feed, 110

news summary with getResources tu-

torial, 566-567

NightErrorPage resource, 303

nl2br (output modifi er), 171

notags (output modifi er), 170

notempty (output modifi er), 172

notequals (output modifi er), 168

notequalto (output modifi er), 168

null variable in PHP, 655

number template variable input type,

212

O
object methods, 326-332

object policies, 444-445

object policies (editing), 465-466

Object policy, 459

object variables in PHP, 655

object-oriented design of MODX, xiii

object-oriented programming in PHP,

679-686

ObjectDemo tutorial, 353

objects in PHP, 679-686

OnBeforeCacheUpdate system

event, 715

OnBeforeChunkFormDelete

system event, 706

OnBeforeChunkFormSave sys-

tem event, 297, 705

OnBeforeDocFormDelete sys-

tem event, 704, 704

OnBeforeDocFormSave system

event, 296, 703

OnBeforeEmptyTrash system

event, 705

OnBeforeManagerLogin system

event, 301, 700

OnBeforeManagerLogout sys-

tem event, 701

OnBeforeManagerPageInit

system event, 701

OnBeforeModFormDelete sys-

tem event, 712

OnBeforeModFormSave system

event, 712

OnBeforePluginFormDelete

system event, 708

OnBeforePluginFormSave sys-

tem event, 707

OnBeforeResourceGroupRe-
move system event, 705

OnBeforeSaveWebPageCache

system event, 715

OnBeforeSnipFormDelete sys-

tem event, 707

OnBeforeSnipFormSave system

event, 706

OnBeforeTempFormDelete sys-

tem event, 709

OnBeforeTempFormSave system

event, 708

OnBeforeTVFormDelete system

event, 710

OnBeforeTVFormSave system

event, 709

OnBeforeUserActivate system

event, 711

OnBeforeUserFormDelete sys-

tem event, 702, 711

OnBeforeUserFormSave system

event, 702, 710

OnBeforeWebLogin system event,

MODX: The Offi cial Guide 735

714

OnBeforeWebLogout system

event, 715

OnBeforeWUserFormDelete

system event, 711

OnBeforeWUserFormSave sys-

tem event, 711

OnCacheUpdate system event, 715

OnCategoryBeforeRemove sys-

tem event, 712

OnCategoryBeforeSave system

event, 712

OnCategoryRemove system event,

712

OnCategorySave system event,

712

OnChunkBeforeSave system

event, 706

OnChunkFormDelete system

event, 706

OnChunkFormPrerender system

event, 705

OnChunkFormRender system

event, 705

OnChunkFormSave system event,

706

OnChunkRemove system event, 706

OnChunkSave system event, 706

OnContextBeforeRemove sys-

tem event, 713

OnContextBeforeSave system

event, 713

OnContextFormPrerender sys-

tem event, 713

OnContextFormRender system

event, 713

OnContextRemove system event,

713

OnContextSave system event, 713

OnContextUpdate system event,

713

OnCreateDocGroup system event,

704

OnDocFormDelete system event,

704

OnDocFormPrerender system

event, 703

OnDocFormRender system event,

703

OnDocFormSave system event, 703

OnDocPublished system event,

703

OnDocUnPublished system event,

703

OnEmptyTrash system event, 705

OnFileManagerUpload, 702

OnFriendlyURLSettingsRen-
der system event, 713

OnHandleRequest system event,

432, 714

OnInterfaceSettingsRender

system event, 713

Online panel, 111

OnLoadWebDocument system

event, 714

OnLoadWebPageCache system

event, 715

OnLogPageHit system event, 715

OnManagerAuthentication

system event, 700

OnManagerChangePassword

system event, 701

OnManagerCreateGroup system

event, 701

OnManagerDeleteUser system

event, 702, 711

OnManagerLogin system event,

700

OnManagerLoginFormPreren-
der system event, 700

OnManagerLoginFormRender

system event, 301, 700

OnManagerLogout system event,

701

OnManagerPageInit system

event, 701

OnManagerSaveUser system

event, 702, 710

OnMiscSettingsRender, 713

OnModFormDelete system event,

712

OnModFormPrerender system

event, 712

OnModFormRender system event,

712

OnModFormSave system event, 712

OnPageNotFound system event,

302, 304, 715

OnPageUnauthorized system

event, 714-715

OnParseDocument system event,

714

OnPluginBeforeRemove system

event, 708

OnPluginBeforeSave system

event, 707

OnPluginEventBeforeRemove

system event, 708

OnPluginEventRemove system

event, 708

OnPluginFormDelete system

event, 708

OnPluginFormPrerender sys-

tem event, 707

OnPluginFormRender system

event, 707

OnPluginFormSave system event,

708

OnPluginRemove system event,

708

OnPluginSave system event, 707

OnResourceBeforeSort system

event, 704

OnResourceDuplicate system

event, 704

OnResourceGroupBeforeSave

system event, 705

OnResourceGroupRemove sys-

tem event, 705

OnResourceGroupSave system

event, 705

OnResourceSort system event,

704

OnResourceToolbarLoad sys-

tem event, 704

OnResourceTVFormPrerender

system event, 704

OnResourceTVFormRender sys-

tem event, 704

OnResourceUndelete system

event, 704

OnRichTextBrowserInit sys-

tem event, 712

OnRichTextEditorInit system

event, 712

OnRichTextEditorRegister

system event, 712

OnSiteRefresh system event, 715

OnSiteSettingsRender, 713

OnSnipFormDelete system event,

707

OnSnipFormPrerender system

event, 706

OnSnipFormRender system event,

706

OnSnipFormSave system event,

707

OnSnippetBeforeRemove sys-

tem event, 707

In
d

ex

736 MODX: The Offi cial Guide

OnSnippetBeforeSave system

event, 706

OnSnippetRemove system event,

707

OnSnippetSave system event, 707

OnTempFormDelete system event,

709

OnTempFormPrerender system

event, 708

OnTempFormRender system event,

708

OnTempFormSave system event,

709

OnTemplateBeforeRemove sys-

tem event, 709

OnTemplateBeforeSave system

event, 708

OnTemplateRemove system event,

709

OnTemplateSave system event,

709

OnTemplateVarBeforeRemove

system event, 710

OnTemplateVarBeforeSave

system event, 709

OnTemplateVarRemove system

event, 710

OnTemplateVarSave system

event, 710

OnTVFormDelete system event,

710

OnTVFormPrerender system

event, 709

OnTVFormRender system event,

709

OnTVFormSave system event, 710

OnUserActivate system event,

711

OnUserBeforeRemove system

event, 702, 711

OnUserBeforeSave system event,

702, 711

OnUserChangePassword system

event, 701

OnUserFormDelete system event,

702, 711

OnUserFormPrerender system

event, 710

OnUserFormRender system event,

493, 710

OnUserFormSave system event,

493, 702, 711

OnUserGroupBeforeRemove

system event, 701

OnUserGroupBeforeSave sys-

tem event, 701

OnUserGroupRemove system

event, 701

OnUserGroupSave system event,

701

OnUserNotFound system event,

700

OnUserRemove system event, 702,

711

OnUserSave system event, 702, 711

OnUserSettingsRender system

event, 713

OnWebAuthentication system

event, 700

OnWebAuthentifi cation system

event, 714

OnWebChangePassword system

event, 714

OnWebCreateGroup system event,

714

OnWebDeleteUser system event,

714

OnWebLogin system event, 714

OnWebLogout system event, 715

OnWebPageCompete system event,

714

OnWebPageInit system event, 714

OnWebPagePrerender system

event, 290, 292, 714

OnWebSaveUser system event, 714

OnWUserFormDelete system

event, 711

OnWUserFormPrerender system

event, 711

OnWUsrFormRender system event,

711

OnWUsrFormSave system event,

711

OOP in PHP, 679-686

operators
= (PHP), 661

=& (PHP), 312, 354, 388

=== (PHP), 336

arithmetic (PHP), 660

assignment (PHP), 661

comparison (PHP), 661-662

logical (PHP), 663-664

PHP, 272-273, 659-664

ternary (PHP), 281-282, 667-668

optimize database tables, 121

organization of the book, iii

origin remote (Git), 80

OuterTpl chunk, 242, 284

output modifi ers
!empty, 172

add, 172

and, 168

cat, 169

cdata, 171

Conditional, 167-169

Custom, 174-176

date, 172

decr, 172

decrement, 172

default, 172, 567

div, 172

divide, 172

eg, 168

el, 168

ellipsis, 171, 567

else, 168

empty, 172

eq, 168

equalorgreatherthan, 168

equals, 168

equalto, 168

equaltoorlessthan, 168

esc, 170

escape, 170

Evolution (PHX), 187

ge, 168

greaterthanorequalto, 168

gt, 168

gte, 168

hide, 168

htmlent, 170

htmlentities, 170

if, 168

ifempty, 172

ifnotempty, 172

inc, 172

increment, 172

input, 168

is, 168

isempty, 172

isequal, 168

isequalto, 168

isgt, 168

isgte, 168

islessthan, 168

isloggedin, 173

islowerthan, 168

islte, 168

ismember, 169

MODX: The Offi cial Guide 737

isnot, 168

isnotempty, 172

isnotloggedin, 173

isnt, 168

lcase, 169

le, 168

len, 170

length, 170

lessthan, 168

lessthanorequalto, 168

limit, 171

lowercase, 169

lowerthan, 168

lte, 168

math, 172

md5, 173

memberof, 169

mo, 169

mod, 172

modulus, 172

mpy, 172

multiply, 172

ne, 168

neq, 168

nl2br, 171

notags, 170

notempty, 172

notequals, 168

notequalto, 168

reverse, 171

select, 168

show, 168

String, 169-171

strip, 170

strip_tags, 170

striptags, 170

strlen, 170

strrev, 171

strtolower, 169

strtotime, 173, 567

strtoupper, 170

subtract, 172

tag, 171

then, 168

ucase, 170

ucfi rst, 170

ucwords, 170

uppercase, 170

use with properties, 174

userinfo, 173, 566

wordwrap, 171

wordwrapcut, 171

output modifi ers Reference, 167-175

output type TV fi eld, 208

output types for template variables,

214-218

overhead of database tables, 121

overriding default properties, 256

overriding properties, 276

P
pack() method (transport pack-

ages), 607

package attributes for transport pack-

ages, 615

Package Manager, 22, 52-54, 122-123
add package, 537

cURL and, 536

installing snippets, 268

Search Locally for Packages, 53, 123,
537, 610

troubleshooting, 536

packages (see: transport packages)
PackMan add-on component, 600

page count snippet tutorial, 413-414

page settings, 136

page-not-found page, 50

page-not-found plugin, 302-305

page-not-found snippet, 302-304

PageNotFound tutorial, 302-305

pagetitle (Resource Title) re-

source fi eld, 141

parameters (see also: properties)
parameters (with $_GET), 646

parent (Resource Parent) resource

fi eld, 144, 358

Parent related object, 318, 321, 363

parseChunk() method, 647

parseChunk() method in Evolu-

tion, 416

parser, 21

parseSchema() method, 410

password user fi eld, 342, 381, 640, 650

passwords in code, 342

pasting code into in PHP, 659

path to namespace, 349

PBKDF2, 342

Peoples add-on component, 392

permissions, 443
access_permissions, 465

add_children, 459

allow_private, 486

clear_cache, 503

confl icting, 440

create, 453

custom, 510-512

default settings, 442

disabling, 115, 444, 452, 463, 465-466,
514

edit, 453

edit_document, 465

edit_tv, 514

element_tree, 465

fi le_tree, 443, 465

for contexts, 433

list, 459

load, 449, 459, 475

mgr context, 441

my_allow_private, 486-487

my_view_user, 510

new_document_in_root, 439

new_user, 449

publish, 466

publish_document, 449

remove, 466

removing, 445

resource_tree, 465

save, 449, 453

save_chunk, 449, 453

save_document, 453, 465

save_element, 443

save_tv, 514

undelete, 466

unpublish, 466

view, 453, 459

view_tv, 514

view_user, 510

web context, 441

permissions system, 437-496

permissions system overview, 438-441

PHP
and smart quotes, 659

arithmetic operators, 660

arrays, 668-669

assignment operators, 660

associative arrays, 669

boolean variables, 655

built-in functions, 675-679

class variables, 683

classes, 679-686

coding style, 672-673

comments, 653-655

comparison operators, 661-662

conditionals, 664-668

constructors, 684

date and time functions, 679

debugging, 686-690

double quotes, 657-659

echo statement, 676

In
d

ex

738 MODX: The Offi cial Guide

else statement, 665-667

elseif statement, 665

eof marker, 671

false, 656-657

fi le functions, 678-679

fi le pointers, 655

fl oat variables, 655

for loop, 671-672

foreach loop, 670

get() and set() methods, 684-685

getting help, 652

help, 122

if statement, 664-666

instanceof, 337-338

integer variables, 655

K&R style, 672-673

logical operators, 663-664

member variables, 683

null variable, 655

object variables, 655

object-oriented programming,
679-686

objects, 679-686

online documentation, 652

OOP, 679-686

operators, 272-273

pasting code into, 659

print statement, 676

program fl ow, 670-672

quoted strings, 657-659

reserved words, 657

server requirements, 36-37

simple arrays, 668-669

single quotes, 657-659

string functions, 676-677

string variables, 655

switch statement, 666-667

ternary operator, 281-282, 667-668

true, 656-657

tutorial, 652-690

user-defi ned functions, 673-675

validators in transport packages,
619-620

variables, 272, 655-657

while loop, 671

PHP functions
array(), 678

array_merge(), 375, 384, 388

built-in, 675-679

count(), 678

date(), 679

empty(), 335-336

explode(), 678

fclose(), 678

feof(), 671

fgets(), 671, 678

fi le_exists(), 678

fi le_get_contents(), 606, 609,
615, 678

fi le_put_contents(), 678

fopen(), 678

fputs(), 679

fread(), 678

fwrite(), 678

implode(), 634, 678

is_array(), 335

is_object(), 337

isset(), 334-335

ltrim(), 676

mail(), 550, 696

online documentation, 652

rtrim(), 676

str_ireplace(), 677

str_replace(), 330, 609, 677

strftime(), 173, 215, 679

string, 676-677

stripos(), 677

stristr(), 677

strlen(), 676

strpos(), 677

strstr(), 676

strtolower(), 676

strtotime(), 173, 679

strtoupper(), 676

substr(), 677

time(), 679

trim(), 240, 609, 676

unlink(), 679

user-defi ned, 673-675

PHP operators, 272-273, 659-664
=, 661

=&, 312, 354, 388

===, 336

arithmetic, 660

assignment, 660

comparison, 661-662

logical, 663-664

ternary, 281-282, 667-668

PHP primer, 652-690

php.ini fi le, 536

php_curl.dll fi le, 536

phpinfo, 121

PHPMyAdmin
accessing, 63

creating database, 40

exporting database, 65-66

File Download dialog, 65-66

importing database, 65-66

PHX in Evolution, 187

PHX in Revolution, 167-175

placeholder tags, 15, 161

placeholders
defi ned, 15

in Evolution, 306

modx.user.id, 381

modx.user.username, 381

setting in code, 344-347, 383-384

setting in snippets, 272-273, 274-275

Wayfi nder, 562

PluginDemo chunk, 291

PluginDemo resource, 291

plugins, 289-304
attaching property sets to, 293-295

attaching system events to, 292

attaching to events in code, 408

Captcha, 300-302

controlling with template variables,
295

debugging, 686-690

default properties, 293-295

defi ned, 13, 267, 289

disabling, 296

executing on create versus update
resource, 299

Gateway, 432

in Evolution, 307

lexicon strings in, 347-351

listening to multiple system events,
298

manager system events, 707-708

MemberPages, 492-493

object reference, 692-693

page-not-found, 302-305

property sets with, 293-295

sanity checking in, 332-338

uses for, 13-14, 289, 302, 432

using property sets with, 293-295

working with, 289-305

working with in code, 408

policies
Administrator, 443, 444-445

context access, 444-445

duplicating, 444, 456

editing, 444

EditorAdmin, 456, 457, 458

EditorElement, 462, 463

EditorResource, 459

Element, 443, 444-445

element category, 444-445

MODX: The Offi cial Guide 739

FeView, 471, 472

FeViewTemplate, 486-487

for context access ACL entries,
450-451

for element category access ACL
entries, 453

for resource group access ACL en-
tries, 452, 458-459

Load, 471

Load List and View, 444, 459

Load Only, 443, 475

manager action, 444-445

object, 444-445, 459

Resource, 443, 444-445, 458, 483, 484

resource group access, 444-445

ResourceViewOnly, 460

types of, 444-445

View, 471

policy templates, 115, 443
FeViewTemplate, 471

porting
a template to MODX, 90

an existing site to MODX, 89-94

content to MODX, 91

prefi xes for FURLs, 57

PreFormIt custom preHook for For-

mIt, 591-593

prepare() method, 636

PRESERVE_KEYS in transport pack-

ages, 606, 610, 621-622

Preview Site, 111

previewing resources, 103, 183

print statement in PHP, 676

priority of properties, 276

Private Document, 470

Private Document 2 resource, 486

Private resource group, 470, 472

PrivateViewers user group, 471

process() method, 328-329

processed content of template vari-

ables, 377

processElementTags() meth-

od, 646

processors, 409

Profi le related object, 318, 382-384,

391-397
creating in code, 341-342, 404

getting with getCollection(), 393

getting with getObjectGraph(),
322-325, 388-389

getting with getOne(), 382, 392

object reference, 695

setting placeholders for, 383

Profi le snippet, 396, 480

profi les in form customization, 516

program fl ow (PHP), 670-672

properties, 229, 247-263
adding to property sets, 257-258

BreadCrumbs, 553

context for link tags, 163

default, 249-255

EZfaq, 542

FormIt, 573-574

FormIt email hook, 587

FormIt spam hook, 587

FormItAutoResponder, 587-588

getResources, 567-570

getting in code, 365-368

in Evolution, 32, 186, 265, 306

in property sets, 250-251

in snippet tags, 270-271

key, 247

loginResourceId (Login), 474

overriding, 276

overview, 247-248

priority of, 276

scheme for link tags, 163

sending in chunk tags, 249

snippet, 195, 276-277

SPForm, 548-551

startId (Wayfi nder), 558-559

takeMeBack (SPForm), 550-551

use with output modifi ers, 174

using with plugins, 293-295

validate (FormIt), 578

value, 247

Wayfi nder, 558-559, 561, 564-565

where stored, 250

working with, 365-368

properties of snippets tutorial, 270-

280

property sets, 229
adding properties to, 257-258

and default property sets tutorial,
252-263

attaching to elements in code, 409

attaching to plugins, 293-295

attaching to snippets, 279

creating, 119, 256, 261-262, 279, 538-
539

defi ned, 27-28

editing, 251

editing on the tools menu, 259

exporting, 261

getting in code, 370

importing, 261

properties in, 250-251

removing, 260

specifying in element tags, 259

specifying in snippet tags, 279

SPForm, 548-551

Tools menu, 119

use with snippets, 278-280

using with plugins, 293-295

versus default properties, 249-251

Wayfi nder, 562-563

where stored, 250

with snippets tutorial, 270-280

protected
categories, 453

contexts, 439

elements, 439

resources, 451-453

protection of MODX objects, 438-439

pub_date (Publish Date) resource

fi eld, 148

public_html directory, 59, 422,

602

Publication Report, 120

Publish Date (pub_date) resource

fi eld, 148

publish permission, 466

publish_default system setting,

50

publish_document permission,

449

Published checkbox, 141

Published resource fi eld, 141

PublishedBy related object, 389, 390-

391

publishedon (Published On) re-

source fi eld, 147

PublishedResources related object,

324

publishing resources, 103, 182

purging resources, 102

push (Git), 82

putChunk() method, 647

putVehicle() method (transport

packages), 606, 610, 622

Q
queries
innerJoin() method, 393

sortby() method, 631-632

where() method, 362-363, 393, 631-
632, 638

query criteria, 311-313, 363

query() method, 636

In
d

ex

740 MODX: The Offi cial Guide

Quick Create
elements, 106

resources, 103, 182

static resources, 103

symlinks, 103

weblinks, 103

Quick Reference to system events,

696-715

Quick Update
elements, 106

resources, 103, 181

QuickEmail extra, 479

quoted strings in PHP, 657-659

R
radio options template variable input

type, 212

raw content of template variables, 376

readme.txt fi le (transport pack-

ages), 602, 614-615

recaptcha hook for FormIt, 581-582

recently edited documents (Manager

Home screen), 110

recently edited documents (Report

menu), 121

recipientArray for SPForm, 549-550

redirect hook for FormIt, 581

REDIRECT_HEADER constant, 648

REDIRECT_META constant, 648

REDIRECT_REFRESH constant, 648

redirecting users
based on custom permissions, 485-

488

based on login status, 481, 490

based on tree_root_id setting,
489-496

in FormIt, 579-581, 586

in SPForm, 544-545, 550-551

on login, 385, 473-474

on page-not-found, 302-305, 475

on registration, 477-480

with sendForward(), 302-303, 648

with sendRedirect(), 481, 488,
490, 494-495, 648

reference variables, 312-313

refresh resource, 182

reg*() methods, 647

regClientCSS() method, 378,

527, 647

regClientHTMLBlock() meth-

od, 647

regClientScript() method,

647

regClientStartupHTML-
Block() method, 647

regClientStartupScript()

method, 647

Register resource, 477

Register snippet, 394, 396, 476-480

register_globals, 45-47, 110

register_globals is on warn-

ing, 45-47, 110

Registered user, 471

Registering users tutorial, 476-480

registerNamespace() method

(transport packages), 606, 608

related objects, 317-319, 359
available with getMany(), 359

available with getOne(), 359

Children, 318, 321, 324, 357, 364

CreatedBy, 320, 323, 388, 390

CreatedResources, 324

defi ned, 317-319

DeletedBy, 390

EditedBy, 323, 388

in transport packages, 621-623

Parent, 318, 321, 359-361, 363

Profi le, 318, 322-325, 341, 382-384,
388-389, 391-397, 404

PublishedBy, 389, 390-391

PublishedResources, 324

TemplateVars, 324

relatedUserTpl chunk, 389

release branches (Git), 72

reloadConfi g() method, 647

Remove Category, 106

remove permission, 466

remove() method, 344, 639

remove() method (user object), 651

removeAllEventListener()

method, 648

removeCollection() method,

636

removeEventListener()

method, 648

removeObject() method, 636

removeObject() method (trans-

port packages), 618

removing
(see also: deleting)

branches (Git), 82

categories, 106

default properties, 255

directories, 108

elements, 106

fi les, 109

leading and trailing spaces, 240

locks, 112

MODX objects in code, 344

permissions, 445

property sets, 260

resources, 102-103, 182

resources from resource groups,
448

resources from resource groups in
code, 332

roles, 446

system settings, 124

Top Menu items, 126, 503-504, 508-
510

transport packages, 54-55

users from user groups, 115, 116,
447-448

users from user groups in code, 332

Rename Directory dialog, 109

Rename File dialog, 109

renaming
(see also: changing and modifying)

.htaccess fi le, 59

directories, 108

fi les, 109

MODX manager directory, 423

the core directory, 421-422

Top Menu items, 504-505

renderOutput() method, 330-

331, 652

replacing conditional output modifi -

ers with a snippet tutorial, 280-283

reporting bugs, 129

reports, 120-122
Manager Actions, 121

Publication Schedule, 120

requirements
browsers, 36-37

database, 36-37

operating system, 36-37

PHP, 36-37

web servers, 36-37

reserved words in PHP, 657

reset user password in Manager, 127

ResetPassword snippet, 480

resolve() method (transport

packages), 612-614, 619

resolvers (transport packages), 609

Resource Alias (Alias) resource fi eld,

142

Resource Content (content) re-

source fi eld, 145-146

resource fi elds, 7, 135-154

MODX: The Offi cial Guide 741

alias (Alias), 142

cacheable (Cacheable), 150

class_key (Class Key), 151

content (Resource Content), 145-
146

content_dispo (Content Disposi-
tion), 151

content_type (Content Type), 150

createdby (Created By), 152

createdon (Created On), 152

deletedby (Deleted By), 153

deletedon (Deleted On), 153

description (Description), 142

displaying, 17

editedby (Edited By), 153

editedon (Edited On), 153

hidemenu (Hide From Menus), 145

hiding in Create/Edit Resource
panel with form customiza-
tion, 522

id (Resource ID), 139, 340

introtext (Summary), 143

isfolder (Container), 146, 356

link_attributes (Link Attri-
butes), 143

longtitle (Long Title), 142

menuindex (Menu Index), 145

menutitle (Menu Title), 144

pagetitle (Resource Title), 141

parent (Parent Resource), 144

parent (Resource Parent), 358

pub_date (Publish Date), 148

published (Published), 141

publishedon (Published On), 147

quick reference, 138-154

Resource ID (id), 139

Resource Title (pagetitle), 141

richtext (Rich Text), 147

searchable (Searchable), 149

template (Uses Template), 140

unpub_date (Unpublish Date), 149

uri (URI), 154

uri_override (Freeze URI), 154

Resource Group Access ACL entries,

116, 451-453, 458-459

resource group access policies, 444-

445

resource groups, 117, 438, 448
AllDocs, 455, 458

assigning resources to, 179

assigning template variables to, 220

creating, 448

HiddenTVs, 482, 484

News, 459

Private, 470, 472

ViewOnly, 459, 460

Resource ID (id) resource fi eld, 139

resource list template variable input

type, 212

resource manager system events, 703-

705

Resource policy, 443, 444-445, 458,

483, 484

resource tags, 11, 154-156

Resource Title (pagetitle) re-

source fi eld, 141

Resource tree, 100-104
deleting resources, 103

Duplicate Resource, 103

Edit Resource, 103

Evolution, 130

icons, 101

menuindex (sorting by), 101-102

purging resources, 102

Quick Update Resource, 103

right-click menu, 103

sorting, 101-102

type style, 102

View Resource, 103

resource/create action, 514

resource/update action, 514

resource_tree permission, 465

resources, 135-183
(see also: documents)

assigning to resource groups, 117

assigning to resource groups in
code, 408

changing alias in code, 344

Confi rm Registration, 477

Create, 103

creating, 6, 135-154

creating in code tutorial, 398

creating with processor, 409

deleting, 102-103, 182

duplicating, 103, 181

edit_document permission, 465

editing, 135-154

Evolution Resource tree, 130

fi elds, 138

for Wayfi nder tutorial, 557-558

getTVValue() method, 378

hiding in the Manager, 438-439,
454-460

hiding with ACL entries tutorial,
470-474

hiding with custom permissions
tutorial, 485-488

importing, 118

in Evolution, 185, 397

joinGroup() method, 332

leaveGroup() method, 332

Member, 489

object reference, 691

ObjectDemo, 352

page settings tab, 136

preview, 103

previewing, 183

Private Document, 470

Private Document2, 486

protected, 438-439, 451-453

publish permission, 466

publish_document permission,
449

publishing, 103, 182

Quick Create, 103, 182

Quick Update, 181

recently edited (Manager Home
screen), 110

recently edited (Report menu), 121

Register, 477

remove permission, 466

removing from resource groups,
448

removing from resource groups in
code, 332

save_document permission, 453,
465

site_content table, 137

static, 178

symlinks, 177

Th ank You (SPForm), 544-545

Th anks for Registering, 477

toArray() method, 370-373

Unauthorized, 487

undelete permission, 466

undeleting, 103

unpublish permission, 446

users related to, 389-391

users related to current resource,
387-389

using tags in, 154-167

viewing cache output, 180

weblinks, 176-177

working with in code tutorial, 352-
365

ResourceViewOnly policy, 460

retrieving (see: getting)
reverse (output modifi er), 171

Revolution
architecture, x-xiii

building the development version,

In
d

ex

742 MODX: The Offi cial Guide

87-88

cloning the development version,
73-75

development version, 70-89

objects, 680-682

overview, viii-ix

roles in, 446

tags, 17-19

updating the development version,
88-89

versus Evolution, vii-x

Revolution development version
building, 87-88

cloning, 73-75

creating a fork, 78-79

updating, 88-89

RewriteBase, 60

rich text
manager system events, 712

template variable input type, 213

template variable output type, 217

richtext (Rich Text) resource fi eld,

147

richtext editor, 147

right-click menu
Element tree, 106

File tree, 108-109

Resource tree, 103

robustness of MODX, xiii

roles
assigning to users, 115

authority numbers, 440, 446

creating, 440, 446

Editor, 458, 459, 460, 463, 484

FeViewer, 471, 472

form customization, 515

in Evolution, 446, 498

in Revolution, 446

in security permissions, 449

member, 475

minimum, 450-453

minimum role for context access
ACL entries, 450-451

minimum role for element category
access ACL entries, 453

minimum role for resource group
access ACL entries, 452, 458-
459

overview, 446

removing, 446

Revolution versus Evolution, 440

working with in code, 408

rollback() method, 405, 636

root directory, 420

RowTpl chunk, 242, 284

RSS feeds, 110, 110, disabling

rtrim() PHP function, 676

rule sets in form customization, 516

running setup, 41

running transport package build

script outside of MODX tutorial,

624-625

runSnippet() method, 373-375,

648

runSnippet() method in Evolu-

tion, 416

S
sanity checking, 332-338, 393

save permission, 449, 453

save() method, 339, 343-344, 397,

398, 400, 404, 639
element objects, 400

overview, 343-344

reference, 639

resource objects, 339

user objects, 404, 651

save_chunk permission, 449, 453

save_document permission, 453,

465

save_element permission, 443

save_tv permission, 514

schema fi le (MODX), 318-319

schema for custom database fi les, 410-

411

scheme argument for makeUrl(),

646

scheme property for link tags, 163

scriptProperties (see: $script-
Properties)

Search Locally for Packages, 53, 123,

537, 610

searchable resource fi eld, 149

searching MODX forums, 127-128

searching the site, 112

security
Access Control Lists, 441, 449-454

access policies, 440, 443-445

adding users to user groups, 447-
448

Administrator policy, 444-445

authority numbers, 440

context access ACL entries, 449-451

context access policy, 444-445

creating ACL entries, 449-454

creating context access ACL en-
tries, 456-457

creating resource group access ACL
entries, 458-459

creating roles, 446

creating user groups, 447, 448

default settings, 442

editing object policies, 465-466

element category access policy,
444-445

Element policy, 444-445

elements, 442-453

hasPermission() method, 485

hiding elements tutorial, 461-463

hiding pages with a snippet tuto-
rial, 468-470

hiding resources in the Manager
tutorial, 454-460

hiding resources with ACL entries
tutorial, 470-474

hiding resources with custom per-
missions tutorial, 485-488

hiding template variables in the
front end tutorial, 484-485

hiding template variables in the
Manager with ACLs tutorials,
481-484

in Evolution, 497-498

limiting permissions in the Man-
ager tutorial, 464-467

manager action policies, 444-445

member pages with tree_root_id
tutorial, 489-496

MemberPages plugin, 492-493

MemberPages snippet, 490-491

minimum role, 450-453, 456-459

minimum role for context access
ACL entries, 449

minimum role for element category
access ACL entries, 453

minimum role for resource group
access ACL entries, 452, 458-
459

object policies, 444-445

overview, 438-441

permissions, 440, 443

permissions for contexts, 433

policies for context access ACL en-
tries, 450-451

policies for element category access
ACL entries, 453

policies for resource group access
ACL entries, 452, 458-459

protected categories, 453

protected resources, 451-453

protection, 438-439

removing roles, 446

reorganizing site for, 420-423

MODX: The Offi cial Guide 743

resource group access policies,
444-445

Resource policy, 444-445

Revolution versus Evolution, 440

roles in, 449

RSS feed, 110

system, 437-496

Top Menu, 113-117

user roles, 448

working with, 454-496

Security menu
Access Controls, 115

Flush All Sessions, 117

Flush Permissions, 117

Manage Users, 114

select (output modifi er), 168

sendEmail() method, 651

sendError() method, 648

sendErrorPage() method, 469,

648

sendForward() method, 302, 648

sendRedirect() method, 488,

648

sendUnauthorizedPage()

method, 469, 490, 648

SEO-friendly URLs, 55-61

seOnChunkBeforeRemove, 706

server 500 error, 46

server requirements
browsers, 36-37

database, 36-37

for MODX, 36-37

operating system, 36-37

PHP, 36-37

web servers, 36-37

set() method, 340, 397, 399, 404,

639

set() method (transport packages),

606

setAttribute() method, 636

setContent() method, 340, 399,

400, 651

setContent() method (transport

packages), 606

setDebug() method, 636, 648

setLogLevel() method, 636

setLogLevel() method (trans-

port packages), 625

setLogTarget() method, 636

setLogTarget() method (trans-

port packages), 625

setLogTarget() method options,

636

setOption() method, 637

setPackageAttributes array (transport

packages), 610

setPackageAttributes()

method (transport packages), 615

setPlaceholder() method,

344-347, 591, 593, 648-649

setPlaceholders() method,

346-347, 649

sets in form customization, 516

setService() method, 643

setting
directory permissions, 108, 108

fi eld default values with form cus-
tomization tutorial, 523

fi eld labels with form customiza-
tion tutorial, 523

fi le and directory permissions, 69

fi le permissions, 108

package attributes for transport
packages, 615

placeholders in code, 344-347, 383-
384

placeholders with a snippet tuto-
rial, 274-275

template variable labels with form
customization tutorial, 523

TV default values with form cus-
tomization tutorial, 517-519

user password, 127

setting tags, 25, 159-161

settings
(see also: context settings)

(see also: system settings)

(see also: user settings)

defi ned, 16

displaying, 17

in Evolution, 32

working with in code, 380

setup, 41

setup directory, 420

setup/includes directory, 420

setValue() method (FormIt

hooks), 592

setValue() method (TV), 404,

414

SHA1 (Git), 71

sharing
core between sites, 425-426

core with multiple contexts, 433

database between sites, 425

show (output modifi er), 168

showing (see: displaying)
ShowList category, 242, 284

ShowList tutorial, 283-288

simple arrays (PHP), 668-669

simple fi lter plugin tutorial, 290-295

simple snippet tutorial, 268-270

simple transport package tutorial,

605-610

single quotes in PHP, 657-659

single-line comments in PHP, 654

site
Clear Cache, 65, 111

Logout, 113

New Document, 113

New Static Resource, 113

New Symlink, 113

New Weblink, 113

Remove Locks, 112

searching, 112

View, 111

site cache (clearing), 65, 111

site name (changing), 49

site organization, 419-423

Site panel, 111

Site Preview, 111

Site Schedule, 120

site_content table, 137

site_name system setting, 49, 109,

193, 651

site_snippets database table,

250

site_start system setting, 197,

428, 455, 553

site_url context setting, 429

site_url system setting, 193, 429

sites (multi-language), 434

smart quotes in PHP, 659

Smarty, 523, 532

SMTP
settings for Gmail, 586, 696

system settings for, 696

using in Evolution, 596

using with FormIt, 586

using with SPForm, 550

snippet default properties, 249-255,

276-277

snippet properties, 249-263, 269-271
as PHP variables, 270-271

defi ned, 12, 267

in Evolution, 186, 595

in snippet tags, 195, 270-271

using chunks in, 236-237

using template variables in, 204

snippet tags, 12-13, 157-158, 195
display rather than execute, 330

In
d

ex

744 MODX: The Offi cial Guide

SnippetDemo tutorial, 270-280

snippets
$output variable, 272

addOne() method, 403

advanced operations, 309-414

assigning resources to resource
groups in, 408

assigning to categories in code,
401-402

assigning to categories in transport
packages, 621-623

attaching plugins to events in, 408

attaching property sets, 279

attaching property sets to elements
in, 409

ChangePassword, 481

CheckPermission, 487-488

creating categories in, 401-402

creating chunks in, 400

creating elements in, 400

creating in code tutorial, 400

creating objects in, 338-344

creating template variables in, 402-
404

creating templates in, 400

debugging, 686-690

default properties, 249-255, 276-277

defi ned, 12-13, 267

disabling, 92

displaying lexicon strings, 413

displaying output, 17

displaying output of, 272

Ditto, 565, 570

extended user fi elds in, 393-397

EZfaq tutorial, 539-542

ForgotPassword, 480

FormIt, 571-594

FormItRetriever, 592

getResources, 565-571

getting template variables in, 377-
379

getting user information in, 380-396

hello snippet tutorial, 269-270

Hello2, 605

HidePages, 469

hiding pages with, 468-470

in Evolution, 306

installing with Package Manager,
268

lexicon strings in, 347-351

loading lexicon fi les, 412

Login, 472-473

manager system events, 706-707

MemberPages, 490-491

object reference, 692

ObjectDemo, 353

page-not-found, 302-304

Profi le, 396, 480

properties, 12, 249-263, 267, 269-271,
276-277

properties tutorial, 270-280

property sets, 250-151, 256-263

Register, 394, 396, 476-480

ResetPassword, 480

return value, 272

sanity checking in, 332-338

setting placeholders in, 274-275

SPForm, 543-551

SPFResponse, 548-549

StudentTeacher, 387

UpdateProfi le, 396, 405, 480

uses for, 12, 267, 302, 338, 370, 380-
381, 387, 468

using the lexicon in, 411-413

using Tpl chunks in, 370-373

working with, 268-288

working with roles, 408

working with user groups in, 406-
408

sockets, 536

sort order TV fi eld, 206

sortby() method for xPDO que-

ries, 631-632

sorting
and MySQL 5.0.51, 145

in getCollection(), 362-361, 631-
632

in GetMany(), 639

in getResources, 569

in Wayfi nder, 145, 564

in xPDO queries, 631-632

Recently Edited Documents report,
121

Resource tree, 101-102

snippet output, 284-287

system events grid, 697

template variables, 206

source directory (transport packages),

601, 614, 624

spam hook for FormIt, 581-582, 587

spam hook properties for FormIt, 587

specifying property sets in element

tags, 259

specifying property sets in snippet

tags, 279

spf_block_prompt, 547

spf_inline_prompt, 547

SPForm
contact form tutorial, 543-551

Contact page, 545

CSS fi le, 547

formProcAllowedReferers, 550

installing, 543

lexicon fi les, 548

multiple recipients for, 549-550

overview, 544

properties, 548-551

property sets for, 548-551

recipientArray, 549-550

setting options, 548-551

snippet, 543-551

spf_block prompt, 547

spf_inline prompt, 547

takeMeBack property, 550-551

thank you page, 544-545

Tpl chunks for, 545

translating to other languages, 548

using SMTP with, 550

SPFResponse snippet, 548-549

SQLSTATE string, 631

static resources, 178
creating, 103, 178

for downloadable fi les, 178

overview, 9

Quick Create, 103

storing/retrieving data in a chunk tu-

torial, 238-241

str_ireplace() PHP function,

677

str_replace() PHP function,

330, 609, 677

strftime() PHP function, 173,

215, 679

String
functions in PHP, 676-677

output modifi ers, 169-171

template variable output type, 218

variables in PHP, 655

strip (output modifi er), 170

strip_tags (output modifi er), 170

stripos() PHP function, 677

striptags (output modifi er), 170

stripTags() method, 649

stristr() PHP function, 677

strlen (output modifi er), 170

strlen() PHP function, 676

strpos() PHP function, 677

strrev (output modifi er), 171

strstr() PHP function, 676

strtolower (output modifi er), 169

MODX: The Offi cial Guide 745

strtolower() PHP function, 676

strtotime (output modifi er), 173,

567

strtotime() PHP function, 173,

679

strtoupper (output modifi er), 170

strtoupper() PHP function, 676

StudentTeacher tutorial, 387

styling Wayfi nder menus, 558-559

substr() PHP function, 677

subtract (output modifi er), 172

suffi xes for FURLs, 57

Summary (introtext) resource

fi eld, 143

suPHP, 47

suPHP_Confi gPath, 47

Support menu, 127-128
Bugs link, 129

Forums link, 127-128

Wiki link, 128

supported browsers, 36-37

SVN for transport packages, 604-605

switch statement in PHP, 666-667

switchContext() method, 649

switching branches (Git), 72

symlinks, 9, 177
creating, 103

Quick Create, 103

system events, 289-290, 696-715
back end, 699-713

cache, 715

category manager events, 712

chunk manager events, 705-706

context manager events, 713

fi ring, 289-290

front-end events, 714-715

invoking, 289-290

manager action, 700-713

module events (Evolution), 712

multiple events in a plugin, 298

OnBeforeCacheUpdate, 715

OnBeforeChunkFormDelete, 706

OnBeforeChunkFormSave, 705

OnBeforeChunkSave, 297

OnBeforeDocFormDelete, 704, 704

OnBeforeDocFormSave, 296, 703

OnBeforeEmptyTrash, 705

OnBeforeManagerLogin, 301, 700

OnBeforeManagerLogout, 701

OnBeforeManagerPageInit, 701

OnBeforeModFormDelete, 712

OnBeforeModFormSave, 712

OnBeforePluginFormDelete, 708

OnBeforePluginFormSave, 707

OnBeforeResourceGroupRemove,
705

OnBeforeSaveWebPageCache, 715

OnBeforeSnipFormDelete, 707

OnBeforeSnipFormSave, 706

OnBeforeTempFormDelete, 709

OnBeforeTempFormSave, 708

OnBeforeTVFormDelete, 710

OnBeforeTVFormSave, 709

OnBeforeUserActivate, 711

OnBeforeUserFormDelete, 702,
711

OnBeforeUserFormSave, 702, 710

OnBeforeWebLogin, 714

OnBeforeWebLogout, 715

OnBeforeWUserFormDelete, 711

OnBeforeWUserFormSave, 711

OnCacheUpdate, 715

OnCategoryBeforeRemove, 712

OnCategoryBeforeSave, 712

OnCategoryRemove, 712

OnCategorySave, 712

OnChunkBeforeSave, 706

OnChunkFormDelete, 706

OnChunkFormPrerender, 705

OnChunkFormRender, 705

OnChunkFormSave, 706

OnChunkRemove, 706

OnChunkSave, 706

OnContextBeforeRemove, 713

OnContextBeforeSave, 713

OnContextFormPrerender, 713

OnContextFormRender, 713

OnContextRemove, 713

OnContextSave, 713

OnContextUpdate, 713

OnCreateDocGroup, 704

OnDocFormDelete, 704

OnDocFormPrerender, 703

OnDocFormRender, 703

OnDocFormSave, 703

OnDocPublished, 703

OnDocUnPublished, 703

OnEmptyTrash, 705

OnFileManagerUpload, 702

OnFriendlyURLSettingsRender,
713

OnHandleRequest, 432, 714

OnInterfaceSettingsRender, 713

OnLoadWebDocument, 714

OnLoadWebPageCache, 715

OnLogPageHit, 715

OnManagerAuthentication, 700

OnManagerChangePassword, 701

OnManagerCreateGroup, 701

OnManagerDeleteUser, 702, 711

OnManagerLogin, 700

OnManagerLoginFormPrerender,
700

OnManagerLoginFormRender, 301,
700

OnManagerLogout, 701

OnManagerPageInit, 701

OnManagerSaveUser, 702, 710

OnModFormDelete, 712

OnModFormPrerender, 712

OnModFormRender, 712

OnModFormSave, 712

OnPageNotFound, 302, 304, 715

OnPageUnauthorized, 714-715

OnParseDocument, 714

OnPluginBeforeRemove, 708

OnPluginBeforeSave, 707

OnPluginEventBeforeRemove, 708

OnPluginEventRemove, 708

OnPluginFormDelete, 708

OnPluginFormPrerender, 707

OnPluginFormRender, 707

OnPluginFormSave, 708

OnPluginRemove, 708

OnPluginSave, 707

OnResourceBeforeSort, 704

OnResourceDuplicate, 704

OnResourceGroupBeforeSave, 705

OnResourceGroupRemove, 705

OnResourceGroupSave, 705

OnResourceSort, 704

OnResourceToolbarLoad, 704

OnResourceTVFormPrerender, 704

OnResourceTVFormRender, 704

OnResourceUndelete, 704

OnRichTextBrowserInit, 712

OnRichTextEditorInit, 712

OnRichTextEditorRegister, 712

OnSiteRefresh, 715

OnSiteSettingsRender, 713

OnSnipFormDelete, 707

OnSnipFormPrerender, 706

OnSnipFormRender, 706

OnSnipFormSave, 707

OnSnippetBeforeRemove, 707

OnSnippetBeforeSave, 706

OnSnippetRemove, 707

OnSnippetSave, 707

OnTempFormDelete, 709

In
d

ex

746 MODX: The Offi cial Guide

OnTempFormPrerender, 708

OnTempFormRender, 708

OnTempFormSave, 709

OnTemplateBeforeRemove, 709

OnTemplateBeforeSave, 708

OnTemplateRemove, 709

OnTemplateSave, 709

OnTemplateVarBeforeRemove, 710

OnTemplateVarBeforeSave, 709

OnTemplateVarRemove, 710

OnTemplateVarSave, 710

OnTVFormDelete, 710

OnTVFormPrerender, 709

OnTVFormRender, 709

OnTVFormSave, 710

OnUserActivate, 711

OnUserBeforeRemove, 702, 711

OnUserBeforeSave, 702, 711

OnUserChangePassword, 701

OnUserFormDelete, 702, 711

OnUserFormPrerender, 710

OnUserFormRender, 493, 710

OnUserFormSave, 493, 702, 711

OnUserGroupBeforeRemove, 701

OnUserGroupBeforeSave, 701

OnUserGroupRemove, 701

OnUserGroupSave, 701

OnUserNotFound, 700

OnUserRemove, 702, 711

OnUserSave, 702, 711

OnUserSettingsRender, 713

OnWebAuthentication, 700

OnWebAuthentifi cation, 714

OnWebChangePassword, 714

OnWebCreateGroup, 714

OnWebDeleteUser, 714

OnWebLogin, 714

OnWebLogout, 715

OnWebPageCompete, 714

OnWebPageInit, 714

OnWebPagePrerender, 290, 292, 714

OnWebSaveUser, 714

OnWUserFormDelete, 711

OnWUserFormPrerender, 711

OnWUsrFormRender, 711

OnWUsrFormSave, 711

plugin manager events, 707-708

Quick Reference, 696-715

resource manager events, 703-705

rich text manager events, 712

snippet manager events, 706-707

system setting events, 713

template manager events, 708-709

template variable manager events,
709-710

user manager events, 710-711

System Info, 121

System menu, 122-126
Actions, 126

Content Types, 125

Contexts, 125

Lexicon Management, 124-125

Namespaces, 126

Package Manager, 122-123

System Settings, 123-124

system settings
assets_url, 527

automatic_alias, 143, 409

base_url, 428

container_suffi x, 57, 146

defi ned, 25

editing, 50, 123-124

emailsender, 651

emailsubject, 651

error_page, 302, 475

fi lemanager_path, 467-468

FURLs, 55-61

getting with getOption(), 380

http_host, 429

in Evolution, 32

manager system events, 713

manager_language, 612

manager_url, 531

modx_base_path, 642

modx_base_url, 642

modx_charset, 192

modx_core_path, 642

not in system setting grid, 159

publish_default, 50

removing, 124

RSS feeds, 110

site_name, 49, 109, 193, 651

site_start, 197, 428, 455, 553

site_url, 193, 429

tree_root_id, 468, 468, 490

udperms_allowroot, 439

unauthorized_page, 475

T
tab rules in form customization, 515

table prefi x, 425

tag (output modifi er), 171

tag syntax specifi cation, 19

tags, 11, 12-13, 18, 49, 90, 145-146,

150, 154-176
base href, 429

cached, 150, 166

chunk, 11-12, 157, 194

content, 49, 145-146

content (in template), 194

getResources, 196

in Evolution, 306

in templates, 199

language, 163-164

link, 16, 161-163, 197

MODX Evolution, 17

MODX Revolution, 17-19

nested, 18, 164-165, 197

placeholder, 15, 161

quick reference, 154

resource, 11, 154-156

setting, 25, 159-161

snippet, 12-13, 157-158, 195

syntax defi nition, 18

uncached, 150, 166

uses for, 154-167

using in documents, 154-167

using with chunks, 232

Wayfi nder, 195

takeMeBack property for SPForm,

550-551

target directory (transport packages),

601, 614, 624

template (Uses Template) resource

fi eld, 140

template variable fi elds, 205-208
caption, 205

category, 205

default value, 207

description, 205

input option values, 206

input type, 206

lock variable for editing, 206

output type, 208

sort order, 206

variable name, 205

template variables, 199-226, 200, uses

for
@ BINDINGS, 220-226

@CHUNK binding, 222-223

@DIRECTORY binding, 225

@EVAL binding, 225-226

@FILE binding, 224

@INHERIT binding, 207, 221-222

@RESOURCE binding, 224

@SELECT binding, 225

access permissions tab, 220

assigning to resource groups, 219

attaching to templates, 203, 219

MODX: The Offi cial Guide 747

attaching to templates in code,
402-404

auto-tag input type, 208-209

checkbox input type, 209-210

controlling plugins with, 295

controlling snippets with, 204

creating, 201

creating in code tutorial, 402-404

creating in Evolution, 227

creating properties for, 219

date input type, 210

date output type, 214-215

default output type, 215

default value, 203

defi ned, 10

delimiter output type, 216

displaying, 11, 17, 200, 203, 375-376

dropdown list menu input type, 210

edit_tv permission, 514

email input type, 210

fi elds of, 205-208

fi le input type, 211

getting in code, 377-379

getting processed output of, 377

getting raw content of, 376

getValue() method, 330

hasTemplate() method, 331

hidden input type, 211

hiding in the Manager, 481-484

hiding with form customization,
514, 520

HTML tag output type, 216

htmlarea input type, 211

image input type, 211-212

image output type, 217

in snippet properties, 204

input types, 208-213

listbox (multi-select) input type,
212

listbox (single-select) input type,
212

manager system events, 709-710

moving to new tab with form cus-
tomization, 520

number input type, 212

object reference, 693-694

output types, 214-218

overview, 10

properties tab, 219

radio options input type, 212

renderOutput() method, 330

resource list input type, 212

rich text input type, 213

rich text output type, 217

save_tv permission, 514

setting captions (labels) with form
customization, 523

setting default values with form
customization, 517-519

setValue() method, 414

string output type, 218

template access tab, 219

text input type, 213

textarea (mini) input type, 213

textarea input type, 213

URL output type, 218

uses for, 10, 200, 204, 296, 377

using tags to display, 203

using to control snippets, 204

view_tv permission, 514

working with in code, 377-378

template variables tab (Create/Edit

Resource panel), 179

templates, 189-199
assigning to categories in code,

401-402

attaching template variables to, 203,
219

attaching template variables to in
code, 402-404

content tag, 193

creating, 190

creating in code tutorial, 400

example, 191

hasTemplateVar() method, 331

in Evolution, 185

manager system events, 708-709

Member, 490-491

object reference, 693

overview, 10, 10

porting to MODX, 90

using tags in, 199

what to include, 198

TemplateVars related object, 324

ternary operator (PHP), 281-282,

667-668

text template variable input type, 213

textarea (mini) template variable in-

put type, 213

textarea template variable input type,

213

Th ank You page (SPForm), 544-545

Th anks for Registering resource, 477

then (output modifi er), 168

third-party components (see: add-on

components)
time() PHP function, 679

TinyMCE, 147

Title (pagetitle) resource fi eld,

141

toArray() method, 328, 355, 384,

639

toJSON() method, 639

Tools menu, 117-120
Error Log, 121

Import HTML, 118

Import Resources, 118

Manager Actions Report, 121

Property Sets, 119

Reports, 120-122

System Info, 121

Top Menu, 109-128
actions, 502-508

Actions tree, 505-506

adding menu items, 126

altering, 502-513

Components, 109, 113, 508

creating actions, 524-525

creating items, 508-510

custom items, 508-509

editing items, 126

Evolution, 130-132

handler, 503-504

handling menu clicks, 507

hiding items, 510-512

Home, 109

lexicon keys, 508

menu tree, 503-513

modifying, 126

order of items, 507-508

removing items, 126, 503-504, 508-
510

renaming items, 504-505

reordering, 507-508

Security, 113-117

Site, 111

Support, 127-128

System, 122-126

Tools, 117-120

Update Menu Dialog, 503

User, 126-127

topics (lexicon), 23-24, 349-351, 506,

524

toPlaceholder() method, 346,

649

toPlaceholders() method,

346-347, 384, 388-389, 649

Tpl chunks, 241-244, 283-288, 473
defi ned, 12

for FormIt, 585, 587

In
d

ex

748 MODX: The Offi cial Guide

for SPForm, 545

tutorial, 283-288

Wayfi nder, 558-559, 560-562

working with in code, 370-373

tracking branches (Git), 80

Traditional distribution of MODX,

420-423

transactions, 405-406

transfer local site to remote server,

64-70

transferring fi les in transport pack-

ages, 612-615

transport packages, 22
(see also: add-on components)

_build directory, 601, 614, 623

aborting, 620

array of fi le paths, 623-624

assets directory, 602-604, 623

build scripts, 601, 605-610

build.confi g.php fi le, 624

build.transport.php fi le, 621-623

categories, 621-623

changelog.txt, 614-615

changelogs, 602

core directory, 602-603, 623

createVehicle() method, 606,
610, 622

creating, 599-626

defi ned, 22

defi ned constants, 605-607

directory names in, 601

downloading, 53, 122

fi le locations, 601-604

fi le names in, 601

fi le paths, 623-624

fi le resolvers, 612-614, 623

fi le validators, 619

fi le vehicles, 614-615

Git and, 604-605

in Evolution, 626

install.script.php fi le, 616-620

installing, 54

installing manually, 53-55, 537-538

interacting with the user in, 616-620

internationalization, 611-612

lexicon fi les, 603, 611-612

log() method, 617

MyComponent example script, 625

newObject() method, 621

not downloadable through package
management, 53-55, 537

pack() method, 607

package attributes, 615

PHP validators, 619-620

PRESERVE_KEYS, 606, 610, 621-622

putVehicle() method, 606, 610,
622

QuickEmail, 479

readme.txt fi le, 602, 614-615

related objects in, 621-623

removing, 54-55

resolve() method, 612-614, 619

resolvers, 609

running build script outside of
MODX, 624-625

setLogLevel() method, 625

setLogTarget() method, 625

setPackageAttributes, 615

setPackageAttributes array, 610

source directory, 601, 614, 624

SVN, 604-605

target directory, 601, 614, 624

transferring fi les, 612-614

uninstalling, 54-55

UNIQUE_KEY, 606, 610, 621-622

UPDATE_OBJECT, 606, 610, 621-622

updating, 54

user.input.html fi le, 614-615

uses for, 599

validate() method, 620

validators, 609, 619-620, 619-620

version control, 604-605

xPDOTransport::RELATED_OB-
JECT_ATTRIBUTES, 621-623

xPDOTransport::RELATED_OB-
JECTS, 621-623

transport.core.php fi le (Revo-

lution development version), 87

tree_root_id
redirecting users based on, 489-496

system setting, 468, 490

tutorial, 466-468

user setting, 447, 466-468, 489

trim() PHP function, 240, 609, 676

troubleshooting
admin Super User permissions, 444

Apache startup, 430

debugging code, 686-690

disappearing menu items, 512

disappearing resources, 100, 439

disappearing TVs, 519, 521

email, 479, 550

FURLs and mod_rewrite,

image TVs, 217

mail not sent, 479

MODX API methods, 629-652

MODX forum searches, 127-128

Package Manager and cURL, 52,
536

pasting PHP code, 659

register_globals, 110

Server 500 error, 46

sorting, 145

system events, 696-715

true in PHP, 656-657

tutorials
advanced transport package, 611-

625

BadWords, 290-295

BadWordsMgr, 296-299

BreadCrumbs add-on component,
551-555

ChangeEmail custom hook for For-
mIt, 591-594

CheatSheet component, 523-533

contact form with FormIt, 581-587

contact form with SPForm, 543-551

controlling text color with a TV,
377-379

creating a menu with Wayfi nder,
555-565

creating a simple object class in
PHP, 682-686

creating a transport package, 599-
625

creating elements in code, 400

creating FAQ page with EZfaq
snippet, 539-542

creating forms with FormIt, 571-594

creating new Create/Edit Resource
panel tabs with form custom-
ization, 522

creating resources in code, 398

creating template variables in code,
402-404

custom manager page, 523-533

enhanced hello snippet, 273-275

fi lemanager_path, 467-468

FormIt custom hook, 588-594

FormIt snippet, 571-594

getResources, 566-567

Hello World (PHP), 653

HidePages snippet, 469

hiding a TV with form customiza-
tion, 520

hiding Create/Edit Resource panel
fi elds with form customiza-
tion, 522

hiding Create/Edit Resource panel
tabs with form customization,
520

hiding elements, 461-463

MODX: The Offi cial Guide 749

hiding pages with a snippet, 468-
470

hiding resources in the Manager,
454-460

hiding resources with ACL entries,
470-474

hiding resources with custom per-
missions, 485-488

hiding template variables in the
front end, 484-485

hiding template variables in the
Manager with ACLs, 481-484

info chunk, 233-235

limiting access to elements, 461-463

limiting element permissions, 461-
463

limiting permissions in the Man-
ager, 464-467

Login page, 472-473

member pages with tree_root_id,
489-496

modifying the Top Menu, 507-512

moving TV to a new tab with form
customization, 520

news summary with getResources,
566-567

ObjectDemo, 353

page count snippet, 413-414

PageNotFound, 302-305

PHP, 652-690

properties of snippets, 270-280

property sets and default proper-
ties, 252-263

Registering users, 476-480

replacing conditional modifi ers
with a snippet, 280-283

running transport package build
script outside of MODX, 624-
625

setting fi eld default values with
form customization, 523

setting fi eld labels with form cus-
tomization, 523

setting placeholders with a snippet,
274-275

setting template variable labels with
form customization, 523

setting TV default values with form
customization, 517-519

ShowList, 283-288

simple chunk, 230-235

simple fi lter plugin, 290-295

simple snippet, 268-270

simple transport package, 605-610

SnippetDemo, 270-280

storing/retrieving data in a chunk,

238-241

StudentTeacher, 387

Tpl chunk, 283-288

tree_root_id, 466-468

TV-based chunks, 244-247

user extended fi elds in code, 393-
397

using isMember() to select con-
tent, 387

using the lexicon in snippets, 411-
413

working with resources in code,
352-365

YesNoDemo, 280-283

TV rules in form customization, 515

TV-based chunks tutorial, 244-247

TVs (see: template variables)
two contexts in same directory, 431-

432

type style of Resource tree, 102

typographical conventions in MODX:

Th e Offi cial Guide, iii-v

U
ucase (output modifi er), 170

ucfi rst (output modifi er), 170

ucwords (output modifi er), 170

udperms_allowroot system set-

ting, 439

uft8_unicode_ci, 63

unauthorized page, 50

unauthorized page unpublished warn-

ing, 110

Unauthorized resource, 487

unauthorized_page system set-

ting, 475

uncached tags, 150, 166

undelete permission, 466

undeleting resources, 103

UNIQUE_KEY in transport packages,

606, 610, 621-622

unix timestamp, 173

unlink() PHP function, 679

unpub_date (Unpublish Date) re-

source fi eld, 149

Unpublication Report, 120

Unpublish Date (unpub_date) re-

source fi eld, 149

unpublish permission, 466

unpublished error page warning, 110

unpublished unauthorized page warn-

ing, 110

Unregistered user, 471

unsetPlaceholder() method,

347, 649

unsetPlaceholders() method,

347, 649

Update Action dialog, 505

Update Menu dialog, 503, 510

Update User Group panel, 115

Update User Role dialog, 448

UPDATE_OBJECT in transport pack-

ages, 606, 610, 621-622

UpdateProfi le snippet, 396, 405, 480

updating
development version of Revolution,

88-89

MODX objects in code, 338-344

transport packages, 54

user groups, 115, 115-116

upgrading (see: updating)
upload fi les, 108

Upload Files dialog, 108

uppercase (output modifi er), 170

upstream remote (Git), 80

uri (URI) resource fi eld, 154

uri_override (Freeze URI) re-

source fi eld, 154

URL scheme in makeUrl() method,

646

URL template variable output type,

218

user
(see also: user profi le)

(see also: users)

anonymous, 104, 381-383, 387, 460,
469, 474-475, 481

class methods, 650-651

current, 16, 318, 327, 381-383, 469,
485, 492-493, 592-593

extended fi elds, 115

Messages, 127

passwords in code, 342

recent resources edited by, 127

reset password in Manager, 127

settings, 114

Top Menu, 126-127

user extended fi elds in code tutorial,

393-397

user fi elds
active, 479

id, 381

password, 342, 381, 640, 650

username, 381

User Group Context Access dialog,

449-451, 456-457

In
d

ex

750 MODX: The Offi cial Guide

user groups
adding users to, 115, 447-448

Administrator, 450-451

checking membership in code,
386-387

creating, 115, 447

custom menus for, 513

Editors, 455

PrivateViewers, 471

removing users from, 115

updating, 115, 115-116

working with in code, 406-408

user id fi eld, 381

user information
displaying, 16, 380-396

getting in code, 380-396

in Evolution, 307

user interface, xi

User menu
Messages, 127

profi le, 127

Recent Resources, 127

Reset Password, 127

user profi le, 127, 318-319, 322-325,

382-384
creating in code, 341-342, 404-405

getting with getCollection(), 393

getting with getObjectGraph(),
322-325, 388-389

getting with getOne(), 382

object reference, 695

setting placeholders for, 382-383

user roles, 448

user settings, 26
creating, 114

fi lemanager_path, 467-468

in Evolution, 32

manager_language, 447

tree_root_id, 447, 466-468, 489

user-defi ned functions in PHP, 673-

675

user.input.html fi le (transport

packages), 614-615

userinfo (output modifi er), 173,

566

userinfo fi elds, 173

userLoggedIn() method, 649

userLoggedIn() method (Evolu-

tion), 307

username user fi eld, 381

users
active, 479

adding to user groups, 447

anonymous, 104, 381-383, 387, 460,
469, 474-475, 481

assigning roles to, 115

assigning to user groups, 447-448

authenticating, 302, 469

checking login status in code, 384-
385, 469, 481

checking user group membership
in code, 386-387

creating access permissions, 114-
115

creating in code, 404

current user, 16, 318, 327, 381-383,
469, 485

database table, 479

interacting with in transport pack-
ages, 616-620

isMember() method, 386-387

joinGroup() method, 332, 408

leaveGroup() method, 332

list of currently logged in, 111

logged in or not, 469, 481

manager, 440-441, 446-447

manager (in Evolution), 497-498

manager system events, 710-711

object reference, 694

passwords in code, 342

redirecting based on custom per-
missions, 485-488

redirecting based on login status,
481, 490

redirecting based on tree_root_
id setting, 489-496

redirecting in FormIt, 579-581, 586

redirecting in SPForm, 544-545,
550-551

redirecting on login, 385, 473-474

redirecting on page-not-found,
302-305, 475

redirecting on registration, 477-480

redirecting with sendForward(),
302-303, 648

redirecting with sendRedirect(),
481, 488, 490, 494-495, 648

Registered, 471

registering, 476-480

related to another resource, 389-391

related to current resource, 387-389

removing from user groups, 116,
447-448

removing from user groups in
code, 332

resetting password, 127

setting password, 127

Unregistered, 471

web, 440-441, 446-447

web (in Evolution), 497-498

working with in code, 380-396

uses for
categories, 14

chunks, 232-244, 238-241

contexts, 424

default properties, 255

FormIt, 571, 581

getResources, 565, 571

lexicon strings, 347

plugin properties, 293-295

plugins, 13-14, 289, 302, 338, 432

snippet properties, 236-237

snippets, 12, 267, 302, 338, 370, 380-
381, 387, 468

tags, 154-167

template variables, 10, 200, 204, 296,
377

Tpl chunks, 370

transport packages, 599

Wayfi nder, 555

Uses Template resource fi eld, 140

using
a content management system, 2

chunks in snippet properties, 236-
237

chunks to store data, 238-241

chunks with snippets, 236-237

Git for transport packaged, 604-605

isMember() to select content tuto-
rial, 387

lexicon in snippets tutorial, 411-413

lexicon strings in code, 347-351

properties with plugins, 293-295

property sets with plugins, 293-295

SMTP in Evolution, 596

SMTP with FormIt, 586

SMTP with SPForm, 550

tags in documents, 154-167

tags in templates, 199

tags to display template variables,
203

tags with chunks, 232

template variables in snippet prop-
erties, 204

template variables to control snip-
pets, 204

Tpl chunks in snippets, 370-373

utf-8, 63

V
validate property for FormIt, 578

validate() method (transport

MODX: The Offi cial Guide 751

packages), 620

validating FormIt forms, 574-578

validators (FormIt), 574-578

validators (transport packages), 609,

619-620

value, 247

variable name TV fi eld, 205

variables
$_COOKIE, 699

$_GET, 528, 646

$_output, 300-301

$_POST, 699

$_SERVER['HTTP_REFERER'], 550

$_SESSION, 301, 699

$cacheFlag, 631-632, 633, 699

$key, 344-345

$modx, 310, 629, 699

$modx->resource, 152, 290, 312-
313, 318, 327-328, 332, 353-355,
387-388

$modx->user, 318, 323, 327, 345,
381-389, 384, 385, 388-389, 469,
481, 490, 592, 592-593

$output, 272, 656

$resource, 311-313, 318, 354

$resource (assignment by refer-
ence), 312-313

$resource in plugins, 297-298

$scriptProperties, 366-367, 374

$value, 344-345

$xpdo, 310, 325, 405, 629

assignment by reference, 312-313

available in FormIt custom hooks,
590

in PHP, 655-657

PHP string, 655

variables in PHP, 272

version control, 72-73

version control for transport pack-

ages, 604-605

version information in code, 645

versions of MODX, vii-x

view permission, 453, 459

View policy, 471

View Resource, 103, 180

View Resource panel
cache output tab, 180

changes tab, 180

general tab, 180

view_tv permission, 514

view_user permission, 510

viewing cache output, 180

ViewOnly resource group, 459, 460

virtual domain, 431

virtual hosts, 429-431

W
warnings

confi g fi le still writable, 45

installer still present, 47

register_globals is on, 45-47,
110

unpublished error page, 110

unpublished unauthorized page,
110

Wayfi nder
book, 555

CSS, 559

hide from menus checkbox, 560

Javascript with, 559

placeholders, 562

properties, 558-559, 561, 564-565

property set for, 562-563

startId property, 558

styling menus, 558-559

tag, 195

Tpl chunks, 558-559, 560-562

tutorial, 555-565

uses for, 555

web context, 25-26, 424-425, 432,

446-447, 457, 460, 468, 472, 484

web context permissions, 441

web page parsing, 21

web resources, 6

web users, 440-441, 446-447

web users in Evolution, 497-498

weblinks, 8-9, 176-177
creating, 103

Quick Create, 103

where() method for xPDO queries,

362-363, 393, 631-632, 638

which version of MODX to choose,

vii-x

while loop (PHP), 671

Wiki, 128

wordwrap (output modifi er), 171

wordwrapcut (output modifi er),

171

workfl ow with Git, 83-86

working with
BreadCrumbs,

categories in code, 401-402

chunks, 229-247

default properties, 252-255

extended user fi elds in code, 393-
397

EZfaq, 539-542

form customization rules, 517-522

FormIt, 571-594

getChunk(), 368-370

getResources, 565-571

MODX security, 454-496

plugins, 289-305

properties in code, 365-368

resources in code tutorial, 352-365

runSnippet(), 373-375

set(), 399

setContent(), 399

settings in code, 380

snippets, 268-288

SPForm, 543-555

template variables in code, 377-378

the current user in code, 381-383

the lexicon in code, 411-413

the Resource tree, 100-104

Tpl chunks in code, 370-373

user groups in code, 406-408

users in code, 380-396

Wayfi nder, 555-565

workspaces, 25-26

writeSchema() method, 410

X
XAMPP

confi guring, 62-63

downloading, 62

enabling cURL, 536

fi le locations, 63

installing, 62-63

mod_rewrite, 60

xPDO
class methods, 629-652

for custom database tables, 409-411

help, 122

logging errors, 635

overview, x-xi

transactions, 405-406

xPDO object, 310

xPDO queries
criteria, 311-313

innerJoin() method, 393

newQuery() method, 313, 393, 631-
632, 635

sortby() method, 631-632

where() method, 362-363, 393, 631-
632, 638

xPDO::LOG_LEVEL_DEBUG con-

stant, 635

xPDO::LOG_LEVEL_ERROR con-

stant, 635

In
d

ex

752 MODX: The Offi cial Guide

xPDO::LOG_LEVEL_FATAL con-

stant, 635

xPDO::LOG_LEVEL_INFO con-

stant, 617, 618, 635

xPDO::LOG_LEVEL_WARN con-

stant, 635

XPDO_CLI_MODE constant, 625

xPDOFileVehicle, 614-615

xPDOObject class, 637-639

xPDOTransport::ABORT_ON_
VEHICLE_FAIL constant, 620

xPDOTransport::ACTION_IN-
STALL constant, 618

xPDOTransport::ACTION_UN-
INSTALL constant, 618

xPDOTransport::ACTION_UP-
GRADE constant, 618

xPDOTransport::PACKAGE_
ACTION constant, 617

xPDOTransport::PRESERVE_
KEYS constant, 606, 610, 621-622

xPDOTransport::RELATED_
OBJECT_ATTRIBUTES con-

stant, 621-623

xPDOTransport::RELATED_
OBJECT_ATTRIBUTES in trans-

port packages, 621-623

xPDOTransport::RELATED_
OBJECTS constant, 621-623

xPDOTransport::RELATED_
OBJECTS in transport packages,

621-623

xPDOTransport::UNIQUE_KEY

constant, 606, 610, 621-622

xPDOTransport::UPDATE_OB-
JECT constant, 606, 610, 621-622

Y
YesNoDemo tutorial, 280-283

MODX: The Offi cial Guide 753

