

GNU/Linux Basic
operating system
Jordi Serra i Ruiz (coordinator)
David Megías Jiménez (coordinator)
Jordi Mas (coordinator)
Joaquín López Sánchez-Montañés
Sofia Belles Ramos
Roger Baig Viñas
Francesc Aulí Llinàs

PID_00148369

GNUFDL • PID_00148369 GNU/Linux Basic operating system

Jordi Serra i Ruiz David Megías Jiménez Jordi Mas

Joaquín López
Sánchez-Montañés

Sofia Belles Ramos Roger Baig Viñas

Francesc Aulí Llinàs

Second edition: February 2008
© Joaquín López Sánchez-Montañés, Sofia Belles Ramos, Roger Baig i Viñas i Francesc Aulí Llinàs
© Fundació per a la Universitat Oberta de Catalunya
Av. Tibidabo, 39-43, 08035 Barcelona
Material prepared by Eureca Media, SL
Legal deposit: B-1.567-2008

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

Software has become a strategic societal resource in the last few decades.
e emergence of Free Software, which has entered in major sectors of
the ICT market, is drastically changing the economics of software
development and usage. Free Software – sometimes also referred to as
“Open Source” or “Libre Software” – can be used, studied, copied,
modified and distributed freely. It offers the freedom to learn and to
teach without engaging in dependencies on any single technology
provider. ese freedoms are considered a fundamental precondition for
sustainable development and an inclusive information society.

Although there is a growing interest in free technologies (Free Software
and Open Standards), still a limited number of people have sufficient
knowledge and expertise in these fields. e FTA attempts to respond to
this demand.

Introduction to the FTA
e Free Technology Academy (FTA) is a joint initiative from several
educational institutes in various countries. It aims to contribute to a
society that permits all users to study, participate and build upon existing
knowledge without restrictions.

What does the FTA offer?
e Academy offers an online master level programme with course
modules about Free Technologies. Learners can choose to enrol in an
individual course or register for the whole programme. Tuition takes
place online in the FTA virtual campus and is performed by teaching
staff from the partner universities. Credits obtained in the FTA
programme are recognised by these universities.

Who is behind the FTA?
e FTA was initiated in 2008 supported by the Life Long Learning
Programme (LLP) of the European Commission, under the coordination
of the Free Knowledge Institute and in partnership with three european
universities: Open Universiteit Nederland (e Netherlands), Universitat
Oberta de Catalunya (Spain) and University of Agder (Norway).

For who is the FTA?
e Free Technology Academy is specially oriented to IT professionals,
educators, students and decision makers.

What about the licensing?
All learning materials used in and developed by the FTA are Open
Educational Resources, published under copyleft free licenses that allow
them to be freely used, modified and redistributed. Similarly, the
software used in the FTA virtual campus is Free Software and is built
upon an Open Standards framework.

Preface

GNUFDL • PID_00148369 GNU/Linux Basic operating system

T\⤀᐀ aut\⤀ሀᔀက would like to t\⤀ༀ଀䠀 t\⤀᐀ Foundation of t\⤀᐀

Universitat Oberta de Catalunya for funding t\⤀᐀ first

edition of t\⤀਀က work, as part of t\⤀᐀ International Master

course in Free Software offered at t\⤀᐀ UOC.

GNUFDL • PID_00148369 5 GNU/Linux Basic operating system

Introduction

Although free software has existed for more than twenty years, it is only re-

cently that it has started to be considered as a valid alternative for many users,

companies, and increasingly, governments and institutions. Currently, GNU/

Linux is one of the most reliable and efficient systems that can be found. Al-

though initially the fact that it was free software made users and companies

reluctant to adopt it, GNU/Linux has proven to be up to the task as well as

any other operating system in existence.

The objective of this course is to introduce us to the world of GNU/Linux.

It will also provide us with the keys to understanding the philosophy of free

software, teaching us how to use it and to handle it to our taste, giving us

the tools required to move easily in this new world. This document does not

intend to be an essential reference guide for administrators and/or users; there

are already hundreds of manuals, HOWTOS and many other references de-

signed for this purpose, which would occupy millions of pages. Our aim here

is to teach you how to take your first steps in this as yet unexplored field for

many users and administrators and how to approach and solve by yourselves

the problems that you may encounter.

The course is not intentionally based on any particular distribution, but in

most examples and activities we need to be specific, so we will use Debian

GNU/Linux (version 4.0 -Etch-). Although this distribution is not as intuitive

and easy to use as some others, it will help us to explain all of the features of

an operating system based on GNU/Linux step by step. Also, its extraordinary

quality, stability and security make it one of the most valid choices right now.

However, we should not forget about the support provided by other distribu-

tions (Debian is developed by volunteers and gives no type of support, which

in the case of companies is indispensable). For this reason, we have includ-

ed an appendix showing the installation process and main characteristics of

RedHat Fedora Core (version 7).

We hope that you enjoy the course and that it helps you open the doors to

the world of free software. The more users of free software there are, the more

and better quality software we will have.

Welcome to GNU/Linux!

GNUFDL • PID_00148369 6 GNU/Linux Basic operating system

Contents

Module 1
Basic GNU/Linux

1. Introduction

2. Basic concepts and commands

3. Knoppix workshop

4. GNU/Linux installation

5. Debian Etch installation workshop

6. Basic configurations

7. Daemons and runlevels

8. Installation of applications

9. Workshop on basic configurations

10. X-Window architecture

11. X-Window workshop

Module 2
Appendixes

1. Appendix A. Command tables

2. Appendix B. Editor vi

3. Appendix C. The Fedora 7 installation process

4. Appendix D. Administration tools

5. GNU Free Documentation License

Basic GNU/Linux

PID_00148393

GNUFDL • PID_00148393 Basic GNU/Linux

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148393 Basic GNU/Linux

Index

1. Introduction.. 7

1.1. What is GNU? ... 7

1.2. What is GNU/Linux? .. 9

1.3. Distributions .. 11

1.4. Programs and documentation .. 13

2. Basic concepts and commands .. 17

2.1. Introduction .. 17

2.2. Users and groups ... 17

2.3. The file system .. 22

2.3.1. The file system hierarchy .. 22

2.3.2. System directories .. 24

2.3.3. Moving about .. 25

2.3.4. Links ... 26

2.3.5. Permissions .. 27

2.3.6. Handling, patterns and searches 29

2.3.7. File type and content .. 30

2.4. The processes ... 31

2.5. Other useful commands ... 34

2.5.1. System help .. 34

2.5.2. Packaging and compression .. 35

2.5.3. Disk operations .. 36

2.6. Operations with commands ... 39

2.6.1. Reroutings .. 39

2.6.2. Specific bash commands ... 40

2.6.3. Shell scripts with bash ... 42

3. Knoppix workshop.. 44

3.1. Introduction .. 44

3.2. System boot ... 45

3.3. Stop system ... 48

3.4. Keyboard configuration .. 48

3.5. System inspection ... 52

3.6. Handling files and directories ... 57

3.7. User administration .. 62

3.8. Manage processes .. 65

3.9. Enabling and using the mouse ... 67

3.10. Other operations ... 68

3.11. Conclusion .. 69

4. GNU/Linux installation.. 70

4.1. Introduction .. 70

GNUFDL • PID_00148393 Basic GNU/Linux

4.2. Booting .. 70

4.3. Partitioning the disk ... 71

4.4. Installation of modules ... 73

4.5. Basic network configuration ... 74

4.6. Boot system ... 75

4.7. Package selection ... 75

4.8. Other aspects ... 76

5. Debian Etch installation workshop.. 77

5.1. Introduction .. 77

5.1.1. Installation systems ... 79

5.1.2. Types of packages .. 81

5.1.3. Package development status .. 81

5.2. Installation of Debian Etch .. 82

5.2.1. Debian Etch flavours ... 82

5.2.2. Installing Debian GNU/Linux 4.0 For Intel x86 83

5.3. Installation of Debian Etch from DVD-ROM 83

5.3.1. Before starting the installation 83

5.3.2. Booting the installation system 84

5.3.3. Installation language configuration 88

5.3.4. Keyboard configuration ... 89

5.3.5. Detecting and mounting the CD-ROM 90

5.3.6. Network configuration .. 91

5.3.7. Hard disk partition .. 93

5.3.8. Time configuration .. 98

5.3.9. Configuring users and passwords 99

5.3.10. Base system installation .. 103

5.3.11. Configuring the package manager 104

5.3.12. Selecting and installing programs 105

5.3.13. GRUB installation .. 105

5.3.14. Reinitiating the system .. 105

5.3.15. Base system boot ... 105

5.3.16. apt configuration ... 106

5.3.17. Tasksel .. 108

5.4. Network installation of Debian Etch .. 111

5.4.1. Particularities of a network installation 111

5.4.2. Aspects common to the different methods of

installation ... 111

5.4.3. Network module installation .. 112

5.4.4. Network configuration .. 113

5.4.5. apt configuration ... 113

5.5. Conclusion .. 114

6. Basic configurations... 115

6.1. The login system ... 115

6.2. Exploring the bash .. 116

6.3. The boot system .. 118

GNUFDL • PID_00148393 Basic GNU/Linux

6.3.1. Grub ... 119

6.4. Access to other partitions and devices 121

6.5. Device configuration ... 124

6.5.1. The keyboard ... 124

6.5.2. Network card (Ethernet type) .. 126

6.5.3. WiFi card .. 128

6.5.4. Modems .. 129

6.5.5. ADSL and PPPoE .. 130

6.5.6. Soundcard .. 131

6.5.7. Printer .. 131

7. Daemons and runlevels.. 133

7.1. The daemons ... 133

7.2. The runlevels ... 136

7.3. Booting up the system .. 138

7.4. Basic daemons ... 138

7.4.1. System logs (sysklogd) ... 139

7.4.2. Regular executions (cron) .. 141

7.4.3. Delayed executions (at and batch) 142

8. Installation of applications.. 144

8.1. Introduction .. 144

8.2. Debian packaging system ... 145

8.3. Compilation of new programs ... 149

9. Workshop on basic configurations... 151

9.1. Introduction .. 151

9.2. Bootloader ... 151

9.2.1. Installing Grub ... 152

9.3. The package system .. 154

9.3.1. /etc/apt/sources.list .. 154

9.3.2. apts available. .. 156

9.3.3. dpkg ... 160

9.3.4. dselect .. 160

9.3.5. aptitude .. 160

9.4. locales: regional configuration ... 160

9.5. The main booting file, /etc/inittab ... 161

9.6. Assembly of devices, /etc/fstab ... 162

9.7. Device configuration ... 163

9.7.1. Configuring the mouse ... 164

9.7.2. Configuring modems ... 166

9.7.3. Configuring DSL modems ... 167

9.7.4. Configuration of network cards 168

9.7.5. Configuring printers .. 170

9.7.6. Configuring soundcards .. 172

9.8. Conclusion .. 172

GNUFDL • PID_00148393 Basic GNU/Linux

10. X-Window architecture.. 174

10.1. What is X-Window? .. 174

10.2. Configuration .. 179

10.3. X display manager .. 182

11. X-Window workshop.. 185

11.1. Introduction .. 185

11.2. Installation and configuration of X server. 185

11.2.1. Different strategies for installing the packages 185

11.2.2. Installation of basic packages .. 186

11.3. Configuring X ... 188

11.3.1. “Device” section .. 189

11.3.2. "Monitor" section ... 189

11.3.3. "Screen section" .. 190

11.3.4. ''InputDevice'' section .. 190

11.3.5. "ServerLayout" section ... 191

11.3.6. "DRI" Section .. 192

11.3.7. ''Files'' section ... 192

11.3.8. Starting up the server .. 192

11.3.9. The log file .. 193

11.4. Window managers .. 193

11.5. X Session manager .. 195

11.6. X Display manager .. 195

11.7. Desktop managers ... 196

11.7.1. GNOME .. 197

11.7.2. KDE .. 198

11.8. Personalising some of the aspects .. 198

11.8.1. Personalisation of local aspects 199

11.8.2. Personalisation of aspects of the network 200

11.9. Configuring printers ... 201

11.10.OpenOffice .. 204

11.11.Conclusion .. 205

GNUFDL • PID_00148393 7 Basic GNU/Linux

1. Introduction

1.1. What is GNU?

In order to understand the whole free software movement, we should go back

to the late sixties, early seventies. At that time, large computer firms did not

give software the same value it has today. They were mostly computer manu-

facturers whose main revenue was generated by selling their large machines,

which came with some type of operating system and applications. Universities

had permission to take and study the operating system’s source code for aca-

demic purposes. Users themselves could request the source code from drivers

and programs, for adaptation to their needs. Software was not considered to

have an intrinsic value and simply came with the hardware that supported it.

In this context, Bell laboratories (AT&T) designed an operating system called

UNIX, characterised by its efficient management of the system’s resources, its

stability and compatibility with the hardware made by different manufactur-

ers (to homogenise all their systems). This last factor was very important (be-

fore then, every manufacturer had their own operating systems that were in-

compatible with the rest), since it made UNIX extremely popular.

Stallman, without drivers

Stallman himself recalls how annoyed he was when he discovered that a company that
had supplied a new printer for the laboratory where he was working did not want to give
him the driver source code. All he wanted was to modify it so that the printer would
automatically alert him when the paper was jammed. The company refused to provide
him with the source code.

Gradually, the big firms started realising the value of software: the first to

do so was IBM, which in 1965 stopped offering its operating system’s source

code, while at the end of the seventies Digital Research started selling its own.

This made all companies become aware of the fact that software could be very

profitable and provide enormous benefits. Then most companies started being

reluctant to give out the source code for their programs and operating systems

and started selling their programs as an added value to their hardware. In this

increasingly closed environment, Richard Stallman (who was working at MIT,

the Massachusetts Institute of Technology) was indignant to find that it was

becoming increasingly harder to obtain the programs’ source code, which he

used to adapt the programs to his needs, as he had done up until then.

At that moment, Stallman decided to stand up for his ideals and to launch a

grand project to try to reopen programs’ source code. Aware of the fact that he

would not convince companies to give in on this point, he proposed to create

his own operating system and applications, initiating a project called GNU.

GNUFDL • PID_00148393 8 Basic GNU/Linux

Stallman’s first manifesto is particularly interesting for understanding the rea-

sons why he created GNU; in this document he explains to the entire com-

munity what the new project consisted of, how it would be oriented, and why

he had to do it. In the manifesto he started to describe the concept of free

software and why he believed programmers and developers from all around

the world should contribute with him. Although on many occasions the con-

cept of free software is confused with the concept of free-of-charge or unpaid-

for software (in English, free can mean both), in later documents it has been

made very clear that there is no reason why free software should be free of

charge. We need to understand free software to mean programs whose source

code we can obtain to study, modify and redistribute, without being obliged

to pay for it. What we do need to understand is that we can ask for the money

we want for the programs and their source code, the support we may offer

users, the books we sell or the material that we provide, just like the many

companies that distribute GNU/Linux do. However, at no time, can we oblige

the users not to distribute the software that we have sold them. This must be

able to be distributed freely. It is a different way of understanding software to

what we are used to. Many of the FSF (Free Software Foundation) texts deal

more with ethics than with engineering. We need to understand the entire

movement as a way of thinking or doing things rather than as just another

software company.

The FSF’s principles with regards to software are defined according to the fol-

lowing four freedoms:

• Freedom 0 refers to the freedom to be able to use the program for any

purpose.

• Freedom 1 allows us to study how the program works and adapt it to our

own needs. Access to the source code is a pre-requisite for guaranteeing

this freedom.

• The second freedom allows us to freely distribute copies of the software,

helping our neighbours.

• The final freedom allows us to improve the program and to make our own

improvements public, for the benefit of the entire community. Access to

the source code is also a pre-requisite for guaranteeing this freedom.

The GPL (General Public License) was drafted to guarantee these freedoms for

the software developed by the project and for the end users of the software,

and has since been used to protect all of this type of programs. This licence

puts the above-mentioned ideas down on paper.

The project started to produce software in 1984, by developing all the tools

required to implement a complete operating system. Although realising a

project of these characteristics is a long and complex process, from the out-

GNUFDL • PID_00148393 9 Basic GNU/Linux

set many software programmers and developers were captivated by Stallman’s

idea and started collaborating with him for free. The community did not stop

growing, and gradually the necessary tools appeared (editors, compilers etc.)

to implement the operating system’s kernel, for which the tools under devel-

opment were required. From the start the idea was to build an operating sys-

tem similar to UNIX following the POSIX norms (Portable Operating System

Interface). Although UNIX also had its own problems and faults, it was, and

continues to be, good enough to adapt to most requirements. The task of de-

signing and writing the operating system’s kernel was left until last. It is still

pending definitive completion and the GNU kernel, called Hurd, remains in

the development phase.

Kernel

As its name indicates, the operating system’s kernel is the core that makes it function.
The software kernel is what manages the computer’s resources: it communicates with
installed devices and applications, administrates the memory correctly, distributes pro-
cessing time for all programs, communicates with storage devices for saving files etc.

Activity

1.1 Read the first message written by Stallman in 1983 announcing his project: http://
www.fsf.org/gnu/initial-announcement.es.html.

Activity

1.2 Read The GNU manifestoStallman’s original.

Activity

1.3 Read General Public License.

1.2. What is GNU/Linux?

Against this backdrop, while the FSF still did not have a stable kernel for its

operating system, a professor of the University of Holland, Andrew�Tanen-

baum, decided to write an operating system so that his students could study it.

Like Stallman, up until then he had been able to use the source code of AT&T’s

UNIX to help teach his pupils to design operating systems. His idea was to

write an operating system that could be studied and modified by anyone who

wished to do so. In 1987, he got down to work and called his project mini

UNIX, resulting in MINIX. Because he did not use a single line of AT&T’s Unix

code, there is no restriction to take the code and to use it and modify it freely.

Micro-kernel technology

Micro-kernel technology is based on splitting the different functionalities of an operating
system’s kernel into totally separate inter-communicating programs. This makes it very
modular, which makes testing, detecting and correcting bugs, maintenance etc., a lot
easier. Currently, some operating systems such as Amoeba, Chorus, Mach or Windows-
NTTM have incorporated this type of technology.

Tanenbaum wanted to create a system for academic purposes, so he designed

it using a micro-kernel architecture, ideal for ease of comprehension, using

innovative technology for the period, which provided versatility, was multi-

GNUFDL • PID_00148393 10 Basic GNU/Linux

platform etc. This has been one of MINIX’s strengths and weaknesses at the

same time; although the system is a little jewel for study and design purposes,

it is unlikely to be used in real environments. It was made easy to understand,

modular and good for teaching purposes, but not fast. In any case, that was

not Tanenbaum’s intention; over the years MINIX has evolved and nowadays

it continues to be studied by many pupils in universities worldwide.

This is where Linux comes into play. While the FSF continued with its grand

project providing tools for the construction of an operating system, Tanen-

baum was designing MINIX for academic purposes and many companies con-

tinued to evolve their own versions of UNIX. Linus�Torvalds, a student at the

University of Helsinki, decided to create his own kernel for a new operating

system, Linux, in August 1991. His idea was to create a UNIX for PC so that

anyone who wished to could use it on their computer. His first appearance on

the scene was in a debate about MINIX and operating systems, where he put

forward the following ideas:

If we enter the forum where this first message appeared, we will see how quick-

ly people from all over the world became interested in this new system, which

also had the characteristics of free software because it used the GNU compil-

er and commands interpreter. Although in Torvalds’s own words, if he had

known the amount of effort involved for his idea to work, he would never

have done it: the efforts of many IT experts all around the world made this

project possible.

Linux’s monolithic kernel

Linux, the kernel of GNU/Linux, is of the monolithic type. This tells us that its different
functionalities are not split into separate modules, but rather that it all forms part of the
same program. The main inconvenience with this type of design is that locating bugs

GNUFDL • PID_00148393 11 Basic GNU/Linux

and maintenance is very costly. On the other hand, its performance is much better than
with other types of design.

In fact, during the first few years of its existence, GNU/Linux was identified as

the operating system used by hackers. The fact that it was difficult to install,

handle and its lack of drivers made it a tool suitable only for people who were

very knowledgeable about operating systems. It was these first users who de-

signed the drivers for the disks, printers, cards etc., and who started generat-

ing awareness of this system around the world. Bit by bit, the number of users

started to grow and now there are many companies and groups of users who

create their own GNU/Linux distributions.

1.3. Distributions

At present, there are many different distributions based on GNU/Linux. They

exist for all types of computers and electronic devices: laptop or desktop com-

puters, pocket PCs or PDAs, wireless access network points etc. The nature of

free software allows this: anyone can take the code developed up until now

and adapt it to their own requirements. It is a fact that an increasing number

of companies and users choose systems based on GNU/Linux due to its good

performance and the amount of available software.

Linux and the GNU project

Although many GNU/Linux distributions are called just Linux, it is important to point
out that Linux is just the kernel of the operating system and that the GNU project is
what has really contributed much of the structure for it to function.

At all events, although there are dozens of distributions, some are more popu-

lar and have become widely used. The free software philosophy has led many

companies, creators of their own GNU/Linux distributions, not to restrict ac-

cess to their code. Even so, the support that they offer and the material that

they sell provide profits, allowing them to subsist. At the same time, we should

bear in mind that many of these distributions include proprietary software

that some users prefer, although in many cases there may be similar programs

with a Free Software license.

Next we will briefly describe a few GNU/Linux distributions:

• Slackware: one of the first distributions to appear. It was created by Patrick

Volkerding and was enormously successful during its first years of exis-

tence.

GNUFDL • PID_00148393 12 Basic GNU/Linux

• Debian GNU/Linux: one of the first distributions of GNU/Linux to appear

and which continues to exist and evolve. The packages system allows us

to clearly distinguish between free and non-free software, helping us to

set up the system with exclusively Free Software licence programs. Devel-

oped by a group of collaborators distributed all over the world without the

backing of any company. Although it is one of the most stable and secure

in existence, its installation and configuration system requires previous

knowledge.

• RedHat Linux: together with SuSE, it is one of the most popular distribu-

tions. It is created by a company in the US and provides great quality soft-

ware. It has a very intuitive environment that makes it very easy to install

and configure.

• SuSE Linux: although it is a fairly recently created distribution, it has

found wide acceptance. It is developed by a German company and con-

tributes a lot of quality proprietary software. It is very complete and easy

to install and maintain, although in some aspects it does not follow some

of the community’s standards.

GNUFDL • PID_00148393 13 Basic GNU/Linux

• Knoppix: distribution on a live-CD based on Debian. It automatically de-

tects all sorts of hardware and provides the latest KDE desktop and the

office applications suite OpenOffice.org. Very useful for demonstrations

and new system users.

• Ubuntu: it is a Linux distribution that offers an operating system primarily

aimed at desktop computers although it also provides support for servers.

Based on Debian GNU/Linux, Ubuntu’s main focus is ease of use, freedom

in the restriction of use, regular releases (every 6 months) and ease of in-

stallation. It exists in both live-CD format and installable format. It auto-

matically detects all sorts of hardware (even the latest).

We should not forget that there are other operating systems compatible with

UNIX and with currently observed standards. Many of the concepts and tools

that we will encounter throughout this course will also serve for these other

ones. In particular, we would mention GNU/Hurd (kernel developed by the

GNU project) and FreeBSD.

Activity

1.4 Read the description of some of the current distributions based on GNU/Linux: http:/
/www.linuxhq.com/dist.html.

1.4. Programs and documentation

Internet has always been the main means of communication between free

software developers and users. For this reason, since the beginning of GNU/

Linux’s enormous expansion it has been possible to find a lot of information

GNUFDL • PID_00148393 14 Basic GNU/Linux

about the operating system on the Internet. We can download most programs

from the Internet, packaged using any of the usual systems or directly from

source code so that we can compile it on our own system. Also, most distribu-

tions can be downloaded from the Internet without having to purchase any

special package from specialised magazines or from the companies that pro-

duce them. It is also true that if we wish to have the support offered by some

of the distributions, it is better to buy all the material that can be provided

(CD, manuals etc.) and to register.

As we become familiar with free software and GNU/Linux, we will realise the

importance of knowing how to find the documentation we want. When we

face a problem, before starting to go round in circles wondering how to solve

it, we should think that someone else has probably already come across some-

thing similar. Searching for and finding the documentation that best responds

to the problems we encounter from time to time will save us a lot of time and

effort. The free software community generates hundreds of documents that

we can download freely from the Internet, in addition to discussion forums,

news pages and gossip pages etc.

Some of the most popular references that can best help us are:

• Documentation

– The Linux Documentation Project. We can find most existing manu-

als, HOWTOS, FAQS etc. on this site, which additionally is in several

languages. http://www.tdlp.org

– LinUx in Spanish . Large documentation project for GNU/Linux

HOWTOS, guides etc. in Spanish. http://lucas.linux.org.mx

– The HOWTO of HOWTOS. http://lucas.linux.org.mx

– Linux.com. Page with different sections of news, documentation etc.

http://www.linux.com

– Documentation for Debian GNU/Linux. http://www.debian.org/doc/

• News

– Slashdot. News and gossip from GNU/Linux community. In English.

http://slashdot.org

– Barrapunto. The Slashdot equivalent in Spanish. http://

barrapunto.com

– Puntbarra. The Slashdot equivalent in Catalan. http://puntbarra.com

GNUFDL • PID_00148393 15 Basic GNU/Linux

– Bulmalug. New Linux users from Mallorca and thereabouts. News and

sections dedicated to specific topics. http://bulmalug.net

– GNU news in Spanish. http://www.es.gnu.org

– Linuxtoday. Another very practical news page to be up to date with

the latest news. http://www.linuxtoday.com

– Libertonia. News page. Its News Sources section is particularly in-

teresting with numerous links to other similar style pages. http://

libertonia.escomposlinux.org

• Forums

– Foroslinux.org. Several GNU/Linux forums about all sorts of topics.

– Linux Security forums. Forums focused on security issues and similar.

• Search

– Linux on Google. The biggest search engine in the world also for GNU/

Linux. http://www.google.com/linux

– Buscadoc. Search engine for IT documents in Spanish.

• Distributions

– Official web page of the Free Software Foundation. http://www.fsf.org

– Official web page of Debian GNU/Linux. http://www.debian.org

– Official web page of RedHat Linux. http://www.redhat.com

– Official web page of SuSE. http://www.novell.com/es-es/linux/

– Official web page of Slackware Linux. http://www.slackware.com

– Official web page of Knoppix. http://www.knoppix.com

– Official web page of Ubuntu. http://ubuntu.org

• Downloads

– Sourceforge. The biggest page with free software projects. http://

sourceforge.net

– Linux on Softonic. GNU/Linux download section from one of the

many downloads pages. http://www.softonic.com

– Download. Downloads page. http://www.download.com

GNUFDL • PID_00148393 16 Basic GNU/Linux

• Others

– Linux Security. A page with pertinent information on all types of se-

curity issues with GNU/Linux. http://www.linuxsecurity.com

– LinuxHQ: General information on GNU/Linux distributions, security

etc. http://www.linuxhq.com

– Linux Journal. Page of news and articles regarding GNU/Linux. http:/

/www.linuxjournal.com

– Linux Gazette. GNU/Linux magazine. http://www.linuxgazette.com

– Linux-mag. GNU/Linux magazine. http://www.linux-mag.com

– Official web page of the XFree86 project. http://www.xfree86.org

GNUFDL • PID_00148393 17 Basic GNU/Linux

2. Basic concepts and commands

2.1. Introduction

In this section we will learn the basic ideas and instructions needed for moving

around the system. If we are not used to using the command line to deal with

the operating system, at first it may seem a bit complicated, but as we use it we

will see that command lines are very useful and that they allow us to perform

any task we need. Also, knowing how to use the command line correctly will

be very useful when we need to connect remotely to a machine where we will,

similarly, be able to design small programs (shell scripts) in order to automate

the most common administration tasks.

Most commands that we will find in this section form part of the standard

(IEEE POSIX norms) and are shared by all GNU/Linux and UNIX systems. Al-

though each distribution has its own administration and management appli-

cations, many of the actions they perform can also be carried out with the

commands that we will see. Using them, we will be able to manipulate almost

all of the system’s features and to move through the system efficiently. By

learning how to use these commands correctly, we will also learn to navigate

through any system based on GNU/Linux, regardless of what distribution we

use.

Command

A command is a program that
performs a specific action re-
lated to the operating system.

Each of the system’s commands tends to have a large amount of different pa-

rameters. By passing parameters, we can use the same command to carry out

many different actions, even if they are all of the same style. In this document

we will not specify the different parameters of each command that we look

at, since the text would become too long; neither does it make sense to know

exactly all of the possible parameters for each one. They all have an extensive

manual, specifying every option, so that any time we need to perform a spe-

cific action we can turn to it. In the workshops spread throughout this course,

we will see some of these options, although it is important to know that with

the manual we can always discover many others that can help us to carry out

everything we need.

2.2. Users and groups

Command parameter

A parameter is a particular op-
tion of a command, which we
add following the command,
preceded by a space, and of-
ten by a hyphen. For example,
if the command is list, we
could add a parameter such as
list all.

Currently, most operating systems in use are multi-user and multi-task. This

means that more than one user can work on the system at the same time, car-

rying out one or more tasks simultaneously. For this reason, it is very impor-

tant for the operating system to have mechanisms that allow us to control and

Names policy

A frequently used names poli-
cy is to put as a login the first
initial of the user’s name fol-
lowed by the user’s surname.

GNUFDL • PID_00148393 18 Basic GNU/Linux

manage users correctly: the access and identification system (login), the pro-

grams that each user can run, security mechanisms to protect the equipment’s

hardware, protection for user files etc.

Operating systems based on UNIX organise all this information into users and

groups. To enter the system, we need to identify ourselves using a login and a

password. The login tends to be a name that identifies the user unequivocally.

For systems with more than just a few users, it is important to have a good

names policy so that all users can be clearly identified. The password must

consist of a combination of letters, numbers, and special characters. It should

not consist of any dictionary word or similar because this would constitute a

serious security risk. The passwords system is of the unidirectional type. This

means that our password is not stored as text, instead it is ciphered and saved

as it is. When we enter the system and write our password, it is ciphered and

compared to the one stored. If they match, identification is positive, if they

don’t, there is no identification. What is important about this system is that

through the ciphering we cannot obtain the original password in any way.

All that programs designed to break user passwords can do is to cipher words

based on dictionaries (using automated systems to derive them and search

for variants) and test whether they coincide with the ciphering of any user

password. Therefore, we need to choose our passwords carefully; otherwise we

could compromise the security of the whole system.

Currently, on GNU/Linux systems we can choose two possible types of cipher-

ing for user passwords. The one used since the beginnings of UNIX is 3DES.

The only inconvenience with this type of ciphering is that it only allows us to

have 8-letter passwords (if we write more, they are ignored), unlike the other

type of ciphering, called MD5, which allows us to use passwords of any length

we like (in fact, MD5 is a hashing system, but can also be used to cipher pass-

words unidirectionally). The longer the password the safer it is, so we recom-

mend using the second type of ciphering. In any case, we should remember

that if we need to use a special program to manage users, such as NIS, it may

not be compatible with MD5.

NIS

NIS are a series of applications
that allow us to manage all
users of the same network in a
centralised manner on a single
server.

Although a user is an individual that can access the system, a group is a set

of users that share the same characteristics, meaning that it is useful to group

them together so that we can give them a series of special permissions on the

system. A user must belong to at least one group, but can belong to more

than one. The system also uses this entire mechanism of users and groups to

manage installed applications servers and other mechanisms. For this reason,

in addition to real users, a system will have many other users associated to

tasks that need to be carried out on the operating system. Generally, this type

of user will not be able to enter the system (using a normal login).

Any operating system must have a super-user (root). The root user has maxi-

mum privileges to carry out any operation on the operating system. It needs

to exist, since the root will be responsible for administrating and managing

Server

A server is a program responsi-
ble for providing some type of
service (such as to serve web
pages, allowing users to con-
nect remotely etc.), generally
linked to the Internet.

GNUFDL • PID_00148393 19 Basic GNU/Linux

servers, groups etc. This account should not be used for working normally on

the system. We should only enter as root when it is really necessary, and will

use other accounts for normal user work. This will prevent us damaging the

system through erroneous operations or in testing malicious programs etc.

All user and group information is stored in the following files:

• /etc/passwd: information (name, directory, home etc.) of the user.

• /etc/group: information about user groups.

• /etc/shadow: users’ ciphered passwords and configuration for validity,

changing them etc.

Using the shadow file is optional. Originally, ciphered user passwords were

saved in the same passwd file, but for security reasons (a lot of mechanisms

need to be able to read this file, meaning that it was very easy to get hold of

it and try to crack the passwords) it was decided to change this mechanism so

that the shadow file was only accessible for a few users with special privileges

on the system. This option can be configured during the system’s installation

and it is normally advisable to use it. All of these files are organised in lines,

where each one identifies a user or a group (depending on the file). On each

line there are several fields separated by the character ":". For administration

tasks, it is important to know what these fields are, which is why we are going

to look at them in a bit more detail:

Password configuration

It is also possible to configure the system to use a shadow file for groups (in the event that
they need to be given a password). This file would be named /etc/gshadow. Generally,
the password configuration is given when the system is installed, although it can all be
changed and adapted to our taste, using the Pluggable Authentication Modules for Linux
(PAM), which are the programs responsible for the entire user authentication system.

• passwd

1) Login: the user name. There cannot be any two identical names, al-

though there can be a name that coincides with a system group.

2) Ciphered password: if we do not use the shadow file, ciphered pass-

words will be stored in this field. If we use the shadow file, all existing

users in this file need to also be in the shadow file and we need to type

an "x" in this field.

3) User ID: user identification number. This is the number that the system

uses to identify the user. 0 is the only one that is reserved for the root.

4) Group ID: the number of the group to which the user belongs. Since a

user can belong to more than one group, this group is called primary.

Cracking a password

Cracking a password means
obtaining the password
through the use of special-
ly designed programs. These
programs are also used by sys-
tem administrators to discov-
er which users are using pass-
words that are too easy to dis-
cover (good passwords cannot
be cracked in any way without
using large supercomputers).

GNUFDL • PID_00148393 20 Basic GNU/Linux

5)�Comments: field reserved for entering the comments we wish about

the user. It is normally used to enter the full name or some type of per-

sonal identification.

6) Home directory: the user’s home directory is where the user can save

all his files. They are normally all saved into a system folder (generally

/home/) and organised by groups.

7) Commands interpreter: a commands interpreter (shell) is a program

that reads everything we write using the keyboard and runs the programs

or commands that we specify. There are dozens of them, although the one

most commonly used is undoubtedly, bash (GNU Bourne-Again SHell).

If in this field we write /bin/false we will not allow the user to execute

any command on the system, even if the user is registered by the system.

• group

1) Group name.

2) Ciphered password: a group’s password is used to allow the users of a

specific group to change to another group or to execute some programs

with the permissions of another group (on condition of having the pass-

word).

3) Group ID: group identification number. This is the number with which

the system identifies groups internally. 0 is the only one reserved for the

root group (administrators).

4)�User list: the names of the users belonging to the group, separated by

commas. Although all users should belong to a specific group (indicated

in the fourth field of the passwd file), this field can be used for users of

other groups to have the same permissions as the group in question.

• shadow

1) Login: it should be the same name as used in the passwd file.

2) Ciphered password.

3) Days, since 1st January 1970, until the password was last changed.

4) Days to pass before the password can be changed.

5) Days to pass before the password should be changed.

GNUFDL • PID_00148393 21 Basic GNU/Linux

6) Days before the password’s expiry when the user will be notified to

change it.

7) Days that can pass following the password’s expiry, before the user’s

account is blocked (unless the password is changed).

8) Days, since 1st January 1970, since the account was blocked.

9) Reserved field.

When a user enters the system, he is placed in his home directory and the con-

figured shell is executed. The user can now start working. Only the system’s

root (or the root group’s users) have permission to handle user and group in-

formation, to register and deregister them etc. There are lots of commands for

dealing with this. Additionally, each one has several different parameters for

managing all the fields we have seen before. Next, we are going to take a look

at some of these commands:

• adduser: this allows us to add a new user to the system. The way of adding

it (if we do not specify anything else) can be configured in the file /etc/

adduser.conf. A number of different options can be specified referring

to the home directory, the shell to be used etc.

• useradd: creates a new user or changes users’ default configuration. This

command and the preceding one can be used to achieve the same tasks.

• usermod: with this command we can modify most of the fields in the

passwd file and shadow, such as the home directory, the shell, password

expiry etc.

• chfn: changes the user’s personal information in the comments field of

the file passwd.

• chsh: changes the user’s shell.

• deluser: eliminates a user from the system, deleting or saving all the

users’ files depending on the parameters we set, with a backup copy of

them or not etc. The configuration used by default with this command is

specified in the file /etc/deluser.conf.

• userdel: command with the same possibilities as the preceding one.

• passwd: we can use it to change a user’s password, information on pass-

word expiry or to block or unblock a particular account.

• addgroup: allows us to add a group to the system.

Dates on UNIX systems

On UNIX systems, dates are
normally shown according
to the number of seconds
elapsed since 1st January
1970.

Disk quota

For systems with hundreds of
users it is common to imple-
ment some sort of mechanism
to restrict the disk space that
each one can use. On GNU/
Linux systems, this system is
called a quota.

GNUFDL • PID_00148393 22 Basic GNU/Linux

• groupadd: the same as the previous command, but with different param-

eters.

• groupmod: allows us to modify the information (name and GID) of a par-

ticular group.

• delgroup: eliminates a particular group. If a user still has it as primary,

it cannot be eliminated.

• groupdel: as in the previous case.

• gpasswd: we can use it to change the group’s password.

To know what user we are we can use the whoami command, which will show

us our login. groups allows us to know which groups we belong to and id will

show us user and groups. It is also interesting to be able to become another

user without having to exit the session (login or su command) or to change

groups with the newgrp command. We should only use this command when

we do not belong to the group in question and know the password (which

ought to be activated in the group file). If all we need are the permissions

of the group in question to run a particular command, we can also use sg.

GNU/Linux versatility

As we can see, with GNU/Linux we have more than one way of carrying out certain tasks.
This is the system’s overall approach: we can edit the files directly and modify them
ourselves, use some of the existing commands, create them ourselves etc. Of course, we
can also choose what we like best.

As we mentioned previously, GNU/Linux is a multi-user operating system,

meaning that at any given time there can be several users connected to the

system simultaneously. To know what users there are at any specific moment,

we can use the who command, which will show us the list of users on the sys-

tem. w, it also shows us what they are doing. We can communicate with them

using the write command, with which the message that we have written on

the specified user screen or wall will appear, writing the content of the file

that we have specified to all users on the system. In order to activate or deac-

tivate the receive messages option we have the mesg command. We can also

have a personal chat with a user by using the talk command.

2.3. The file system

2.3.1. The file system hierarchy

Any operating system needs to save numerous files: from system configuration

files, to log files or user files etc. In general, each operating system uses its own

file system characterising it in many aspects, such as performance, security,

reliability etc. GNU/Linux is capable of reading and writing files with any of

GNUFDL • PID_00148393 23 Basic GNU/Linux

the file systems currently in existence, although for its own root and main di-

rectories it requires a file system that allows certain operations. Generally, we

use the type ext2, ext3 or ReiserFS. The ext2 is the most common and widely

used. Its performance is fairly good, it incorporates all sorts of mechanisms,

security and tuning and is very reliable. ext3 is its evolution and incorporates

a technology known as journaling. One of the main advantages of this tech-

nology is that if the power supply is cut off and the computer switches off

without the correct shut down, the file recovery systems are more effective.

ReiserFS is a new type of system incorporating new design technologies to

make it faster. During the installation process the operating system will ask

us which of these three we wish to use. Normally, we will use ext2 or ext3

because they have been tested more than ReiserFS.

Filesystem

The file system is the program (or modules of the operating system’s kernel) responsible
for all operations related to file handling and storage. These are the functions that deal
with the computer’s physical storage devices, such as the hard disk.

A very important characteristic of all operating systems based on UNIX is that

all the system’s devices can be handled as if they were files. Likewise, when we

wish to access the content of a CD, diskette or any other storage device, we

will have to mount it on an already existing system directory and will navigate

through it as if it were merely one more file (use of the different units A:, B:,

C:, D: etc. is a scheme that only exists in WindowsTM type operating systems.

ext2 filesystem

The ext2 file system has been designed to handle small files, which is what an operating
system tends to have more of, quickly. It is not so good at handling and manipulating
large multimedia files, although we can always do a bit of tuning to adapt it to our needs.

The first thing we need to understand clearly is that any file system starts from

the same root, which we refer to with the character "/". This is the origin of

the entire file system and there is only one. To correctly organise the files, the

system provides what we call directories (or folders), where we can place files

and more directories. This allows us to obtain a hierarchical organisation as

shown in the following figure:

GNUFDL • PID_00148393 24 Basic GNU/Linux

Figure 2.1

2.3.2. System directories

Most operating systems on the market follow the FHS standard, which spec-

ifies the main characteristics that any operating system should have. These

include how we should distribute our files into directories in order to organise

them correctly and to be able to find them quickly and easily. Most distribu-

tions based on GNU/Linux follow these recommendations and we can find

the following main directories:

• /bin/: basic commands for all system users.

• /boot/: static files required for booting the system.

• /dev/: system devices.

• /etc/: system configuration files and the applications installed on the

system.

• /home/: directory for users’ home files.

• /lib/: essential libraries for the system’s kernel and its modules.

• /mnt/: temporary mounting point for devices.

• /proc/: system kernel processes and variables..

• /root/: home directory for the system’s root.

GNUFDL • PID_00148393 25 Basic GNU/Linux

• /sbin/: essential commands for the system’s root.

• /tmp/: temporary files. Depending on the distribution (or configuration)

that we use they are deleted when the system is booted or every certain

period of time.

• /usr/: second hierarchical structure, used for storing all of the software

installed on the system.

• /var/: directory for the printing spoolers, log files etc.

It is highly recommended to save and not eliminate any of these directories

(or those that the distribution we are using creates by default), since they are

fundamental for the correct functioning of the system. Generally, the new

application installation processes require this organisation and many program

configuration files need to be in specific directories. What we can do without

any type of restriction is to create new directories on the system’s root or in

any other folder.

2.3.3. Moving about

In order to move about the directories structure we need to use the commands

for listing contents and changing folders. When we enter the system, the login

will normally place us in our home directory, which is generally referred to

with the character "~". If we want to see what there is in the directory we are

in, we can list the contents using the ls command. We should remember that

by default the command will not show us files that start with a dot. By using

the -a parameter all files will be listed. In all directories there is a "." entry

and another ".." entry. The dot refers to the current directory, whereas the two

dots refer to the directory immediately above the current one (in the hierarchy

tree). Naturally, when we are in the file system root, the entry ".." will not exist

because we are at the top level.

To change directory we can use the cd command. If we do not add any param-

eter we will be taken to our home directory by default. Generally, we tend to

indicate where we want to go, in absolute or relative terms. In relative terms,

it means that we will start from the directory that we are in at the moment of

executing the command. For example, if we are in the /usr/bin/ directory

and we want to go to the /root/, we should enter the following command:

cd ../../root (the first two dots indicate /usr/ and the next ones, the

system’s / root, from where we can access /root/). In absolute terms, we al-

ways start from the root, meaning that the command we would use in the

previous example would be: cd /root. To know what directory we are in we

can use the pwd command.

GNUFDL • PID_00148393 26 Basic GNU/Linux

2.3.4. Links

Other mechanisms that most file systems provide are known as links. A link

is a bridge to a file or directory belonging to the system; a reference that we

can place anywhere we wish and that acts as a direct access to any other. This

mechanism allows us to access files or folders more quickly and conveniently,

without having to move through the directories hierarchy. Let’s look at it with

an example: let’s imagine that we are a user (user1) that frequently needs to

access directory /usr/share/man/man3/. Instead of writing the long com-

mand that takes us to the directory in question every time we need to go

there, we can create a link in our own directory that immediately redirects

us to it. The ln -s /usr/share/man/man3 mmm command would create

this bridge for us, called mmm. The user will just have to write (from the home

directory) cd mmm and the system will automatically redirect him or her to /

usr/share/man/man3/. It is important to bear in mind that when executing

a cd .. command to go to the directory above, we would return to the home

directory and not to usr/share/man/, since we accessed it from our link. We

can visualise this scheme graphically as follows:

Figure 2.2

When we created the link in the previous example we passed the -s param-

eter to the command. This indicates that we wish to create a symbolic link.

Symbolic links mean that we are just creating a pointer or bridge towards the

file or directory, so that if we deleted the destination file, the link would point

nowhere. If we do not add the -s parameter we would create what is known

as a �hard�link which, unlike the preceding one, makes a duplicate of the file.

In fact, internally it is not exactly a duplicate; it is like two entries that point

to the same data. This means that if we modify one or the other, the two are

left the same. The advantage of this type of link is that if we delete either of

the two copies of the file, the other one will still be kept. This type of link is

not commonly used because it complicates file management and handling (it

is always better to have a single copy of the files). Furthermore, if we make a

Creating hard links

A hard link can only be created
between files or directories on
the same unit due to the inter-
nal mechanism used to man-
age them.

GNUFDL • PID_00148393 27 Basic GNU/Linux

hard link to a directory, all files and subdirectories within it would also have

to be referenced. For this reason, only the system’s root can create hard links

to directories. Another difference is that with a symbolic link we can see what

file we are pointing to, but with a hard link we cannot (due to the mechanism

used for them internally).

2.3.5. Permissions

In any multi-user operating system we need the files saved on our disk to have

a series of features that allow us to see them, modify them or execute them for

the users that we define. Although there are several alternatives for achieving

this, GNU/Linux uses the classical users and groups system, allowing us any

possible configuration. What interests us is to define, for every file or directory,

what user and group it belongs to and what permissions it has for each one

of them, as well as for the rest of the system’s users By executing ls -l we

will see how in each file of the directory that we are in, a line similar to the

following appears:

-rwxr-xr-x 1 user1 group1 128931 Feb 19 2000 gpl.txt

The first ten characters (starting from the left) tell us the file’s permissions as

follows:

• Character 1: this entry tells us whether it is a file or a directory. If it is a file,

the "-" character will be displayed, whereas for directories a "d" will appear.

• Characters 2, 3, 4: tell us, respectively, read, write, and execution permis-

sions for the file owner. In the event of not having the corresponding per-

mission enabled, we will find the character "-" otherwise "r", "w" or "x", de-

pending on whether we can read, write or execute. For the third character,

we can also find an "s", which tells us whether the file is of a SetUserId

type, which means that when we execute it, it will obtain the file owner’s

permissions. If the permission is only "x", when the program is executed

it will do so with the permissions of whoever has launched it.

• Characters 5, 6, 7: these characters have exactly the same meaning as the

preceding ones, but refer to the permissions granted to the users of the

group to which the file belongs.

• Characters 8, 9, 10: as in the preceding case, but for other system users.

Following these 10 characters we have a figure that tells us the number of hard

links that the file has. For directories, this number shows how many folders

there are in it as well as the number of hard links it has (when there are none,

the number is 2, for reasons of the operating system’s internal management).

Next we see the file’s owner and group, followed by the size it occupies (in

GNUFDL • PID_00148393 28 Basic GNU/Linux

bytes) and the date it was last modified. For all files the date of creation, latest

access and modification is saved, which we can manipulate using the touch

command. At the end we have the file name, which is case sensitive and we

can have any type of characters without any problem.

The SetUserId mechanism

The SetUserId mechanism is very useful when a program requires the owner’s permissions
in order to access certain files or to carry out some kind of operation on the system. In
any case, we need to be very careful with this type of file because it can cause system
security failures if used inappropriately.

In order to change the permissions of a particular file we can use the chmod

command. We need to remember that only the file owner (or root) can change

these permissions, since otherwise, the mechanism would make no sense. We

can use this command in many different ways, but the two most frequent

ones are as follows:

• The first way of using it is in the form of chmod XXX filename.The Xs

have to be three numbers between 0 and 7. The first number indicates

the permissions we wish to establish for the user, the second one, for the

group, and the third one, for all others. To interpret the permissions that

we will apply using the numbers 0 to 7 correctly, we need to make use of

the binary representation of the number in question, meaning that the

first digit will indicate the permission to write, the second one to read and

the third one to execute. In each case, 0 means that the permission in

question is not given and 1 that it is. We can see this relationship in the

following table:

Table 2.1

Decimal�representation� Binary�representation� Meaning

0 000 ---

1 001 --x

2 010 -w-

3 011 -wx

4 100 r--

5 101 r-x

6 110 rw-

7 111 rwx

• The other way of using the command is to indicate explicitly the permis-

sion we wish to apply or eliminate from the file. The way of doing so is

by indicating first, whether we refer to the permissions of the user, or the

group, or all others, with the letters "u", "g" or "o" respectively. Next, we

will add a plus sign (+) or a minus sign (-) depending on whether we wish

to add or eliminate the attribute, which we will indicate with "r", "w", "x"

GNUFDL • PID_00148393 29 Basic GNU/Linux

or "s" (the latter in the case of SetUserId). Also, we can carry out all possible

combinations, referring to more than one permission and/or user. For ex-

ample, chmod go+r gpl.txt would give a read permission to the group

and to other users for the file gpl.txt.

In order to change the file owner we have the chown command, which can

only be used by the root for security reasons. In order to change the group of

a particular file, we can use the chgrp command. As we can imagine, when

a user creates a new file, the system will put the user who creates it as the

owner and assign it as belonging to the user’s primary group. The permissions

established by default when a new file is created can be configured through

the umask command, which we will have to give the same notation of three

decimal numbers between 0 and 7 that we looked at above but with acces-

sories. For example, if we want our files to be initialised with the permissions

rwr--r--, we should write umask 133.

2.3.6. Handling, patterns and searches

File security policy

If users are allowed to change
file owners, the system’s secu-
rity could be compromised,
since malicious actions could
be carried out and then the
file owner changed in order to
blame another user.

Now that we know how to move properly through the directories hierarchy,

we also need to know how to copy, eliminate and handle other file aspects

in the right way. The rm command is the one we use to eliminate the files

we specify. In order to eliminate a directory, we can use the rmdir command,

although it will only delete it once the directory is empty (if we wished to

fully delete a directory and all of its content, we could use rm r). In order to

copy files from one place to another, we have the cp command, which needs

to be told which is the file or directory of origin and the place or name of the

destination, even if it is within the current directory. Therefore, if we wish to

copy the file /home/user1/gpl.txt into the current directory (and with the

same name) we should type cp /home/user1/gpl.txt, i.e. using the dot

(.). If instead of copying the files we wish to move them, we can use the mv

command. A very useful mechanism provided by the system is patterns. Up

until now we have looked at how to carry out certain operations on a particular

file. When we are handling a system, we will often be interested in applying

one of the operations that we have looked at, but over a large group of files.

Patterns will allow us to apply the operations that we wish specifying with just

one instruction several files that fulfil a series of specific characteristics. We

should look at them as names templates, with the character "*" meaning any

chain of possible characters with the "?" serving as a joker for any character.

Thus, if we wish to list all files beginning with "s", followed then by any other

character, then followed by an "a", and then any other chain, we could use

ls s?a*. Between "[]" we can include other characters, indicating that the

pattern is successful if we find one of them in the name. For example, if we

wish to refer to all files beginning with "a" or "b" and that continue with any

other chain, we could write the pattern [ab]*. If after the "[" we type the

character "!" ([!ab]*) we would be indicating the pattern coinciding with any

Pattern syntax

Pattern syntax can be very
complex, allowing us to refer
to any set of files that we wish.

GNUFDL • PID_00148393 30 Basic GNU/Linux

file not starting with "a" or "b". Finally, to help with certain searches, within

the "[]" we can specify classes of characters as follows: [:class:], where the

class can be any of the ones shown in the following table:

Table 2.2

class meaning class meaning

alnum [A-Za-z0-9] alpha [A-Za-z]

blank [\] cntrl control cars

digit [0-9A-Fa-f] graph printable cars (without spaces)

lower [a-z] print printable cars (with spaces)

punct [.,¡!¿?:;] ... space []

upper [A-Z] xdigit [0-9A-Fa-f]

A-Z indicates characters from A to Z, \t is the tabulator and \n is a line feed.

Of course, we can use the patterns with any of the commands that we have

seen and most of the ones that we will look at next. Also, most of the com-

mands to list, eliminate, copy etc. files can also be passed recurrently. There-

fore, entry and execution of the corresponding instruction will be made on

all files and directories from where we are until we reach the last level in the

hierarchy.

Another type of very useful operation is the file search. We have several com-

mands to allow us to make different types of searches over all the system’s files.

Table 2.3

find This is the most versatile command for performing this operation. It allows
us to filter files to find ones with a particular name, modified or created on a
particular date, having certain permissions etc. Its only disadvantage is that it
does not use any type of mechanism to accelerate the search, meaning that it
can take quite a long time.

locate This is another command, which unlike the preceding one, uses an internal
database that is periodically updated allowing us to make quicker searches.
We need to remember that the results will not always be updated, however, in
addition to the fact that we cannot make searches as versatile as with find.

whereis Finally, whereis is oriented at searching for binary files (executables), rather
than source code files for a particular program.

2.3.7. File type and content

Updatedb order

If we wish to update the inter-
nal database that uses the lo-
cate command, we can use
the updatedb order.

We can have many different types of files on our system: executables, text

files, data files etc. Unlike other systems, which use the file extension in order

to determine the type of file, GNU/Linux uses a system called magic numbers,

File extension

Using the extension to deter-
mine what type of file we have
is not very efficient, since any-
one can change it generating
confusion and system errors.

GNUFDL • PID_00148393 31 Basic GNU/Linux

which through a magic number determines the type of file according to its

data (a series of tests are run to determine what type of file it is). The file

command shows this.

If we need to see a file’s content, one of the basic commands is cat. By passing

the name or names of the files that we want to see, it will display them on

screen. We should try not to show executable or data files on screen, since the

dumping of non-printable characters can leave the console full of incompre-

hensible characters (we can always reinitialise by keying in reset or tset).

For very large files, it is better to use the less or more commands, that allow

us to move progressively through the file. If the file is of the binary type and

we wish to see what it contains, we can use the hexdump or od commands to

see the content in hexadecimal format or other representations. strings will

search for chains of characters within a binary file for us and display them

on screen.

Another type of commands that are useful are those that look for a certain

pattern in the file content. With the grep command we can add the file name

as the second parameter and as the first the pattern that we wish to look for

(using the syntax that we looked at previously, extended to other options).

Also, the command allows us to perform many other tasks, such as counting

the number of lines on which the pattern appears (-c parameter) etc. With

cut we can separate the content of each file line into fields specifying the

separating character, which is very useful for automating system administra-

tion tasks. We can also take a particular number of lines from the beginning

or end of a file using the head and tail commands, respectively. With wc

we can count the number of lines or words, the maximum length of a file

line etc. Finally, to conclude this subsection on file handling, we will look at

how to compare different files. As with all other operations, we have several

commands for doing this. diff, cmp and comm make different types of com-

parisons using different methods over the files that we specify. sdiff, also

allows them to be merged, as we choose.

2.4. The processes

The fact that the operating system is multi-task implies that we can launch

more than one program at once. A process is no more than a program or appli-

cation that is loaded in the memory and being executed. Although our com-

puter may have just one CPU, the operating system takes charge of sharing its

processing time so that several processes can carry out their operations, giving

the impression that they are all being executed at the same time.

In order to identify each process unequivocally, the system’s kernel assigns

them a PID number (Process IDentification). Although we could think of re-

ferring to them by name only, this number is essential because this way we

can execute the same program as many times as we like, and also run different

instances of it. To know what processes are being executed, we can use the

Manage processes

Process management is a vi-
tal aspect of the operating sys-
tem, since it determines our
applications’ response times,
efficient memory and CPU use
etc.

GNUFDL • PID_00148393 32 Basic GNU/Linux

ps command. To explore this processes mechanism in more depth, we will

discuss some of the parameters that we can apply to this command in more

detail:

• T: this option comes by default and tells us that we will be shown only the

processes being executed on the terminal that we are on or from which

the processes have been launched.

• -a: shows us the processes of all system terminals.

• -: shows us all the system processes. If we execute the command, we will

see that in addition to the programs being run by the users, there are oth-

ers. Many of these execute the functions required for the operating system

to function correctly, others are configured application servers etc.

• -l: it displays extensive information for each process, such as the CPU

time used, the terminal on which it is executed etc. In the second column

we can also see the process status. Although the system may have many

processes being executed at the same time, this does not mean that they all

require constant CPU time. For example, when a web pages server has no

requests, it does not need to perform any operation at all. Although it is in

the memory ready to execute the moment it receives a request, it is better

for it not to pass through the CPU at any time, since the CPU can then be

used for other processes that do need it. Internally, the operating system

has a series of very efficient mechanisms implemented for managing all

these types of operations. Thus, a process can have any of the following

statuses (displayed with the corresponding character):

– D: uninterruptible process. This type of process generally tends to be-

long to the input/output of some type of device that could be dam-

aged if left unattended.

– R: process that when the command is executed is also being executed,

in other words, all those in the execution queue. The process execution

queue is where we place all the processes that share the CPU time.

– S: process dormant or pending some type of event for the system to

wake it and place it in the execution queue.

– T: process stopped by the user or the system.

– Z: zombie process. This status indicates that the process has had some

type of failure and does not function correctly. Usually, it is better to

eliminate this type of process.

• Another very useful command is top, which tells us interactively about

the system processes, CPU use, used and free memory, RAM used by each

process etc. This program is very appropriate when the system is not re-

GNUFDL • PID_00148393 33 Basic GNU/Linux

sponding adequately or when we notice a strange fault, since it helps us

to find quickly the process that is negatively affecting the system’s perfor-

mance.

As we have seen, the system tells us about all possible aspects of the system’s

processes. In addition, we can send certain signals to the processes to inform

them of some event, to take them out of the execution queue, eliminate them,

give them higher priority etc. Knowing how to handle all these aspects cor-

rectly is also very important, since it will allow us to use our computer more

efficiently. For example, if we are the administrators of a calculation centre,

where most of the executed applications require a lot of CPU time, we could

configure the system so that the most urgent ones are executed with higher

priority than others and finish first. The kill command allows us to send

signals to the processes in which we are interested. In general, all programs are

designed to receive this type of signal. Thus, depending on the type of signal

received they know what type of operation to perform. There are many differ-

ent types of signals that we can find in the kill manual, although the most

frequently used ones are those to oblige a process to end or to pause its exe-

cution. With the signal TERM (kill -15 PID), we are telling the process that

we want it to end, so that when it receives the signal it will save what is nec-

essary and finish executing. If there is some type of problem or the program

is not prepared to receive this type of signal, we can use kill (kill -9 PID),

which will automatically eject it from the execution queue. killall is used

to refer to the name of several processes at the same time instead of referring

to them by their PID and, thus, we can send a signal to all of them at the same

time. With the skill command we can also send signals to the processes,

but using a different syntax. For example, if we wish to stop all executions of

a particular user, we could use skill -STOP -u LoginName, which would

stop all processes of the user in question. To reinitiate them again, we could

use the CONT signal. When we are executing a program on a console and

we wish to send the TERM signal to it, we can use the Ctrl+C key combination.

With Ctrl+Z we can pause a program and revive it with fg.

Another way of looking at processes is from their hierarchy. As in the case of

the file system, the processes follow a certain hierarchy from parent to child.

Any process must be launched from another one, whether the commands in-

terpreter itself, the graphic environment etc., creating a parent-child relation-

ship. With the pstree command we can see this hierarchy in graphic terms.

If we execute it, we will see how the parent of all processes is one called init.

All others start from it, and in turn can have more children. This hierarchical

structure is very useful, since, for example, by killing a parent process that has

many children, we will also kill all its children. We can also use it to identify

where certain processes start from etc. If we do not pass any parameter onto

the command, by default it will compact all processes with the same name so

as not to show too large a structure, although this can also be configurable on

the basis of its parameters.

Process handling

With the process handling
commands we can carry out
any action that interests us:
from pausing a specific user’s
processes, to eliminating those
we are not interested in or
making some occupy more
CPU time to run quicker.

trap command

To handle signals in a shell
script (see later how to pro-
gram them), we can use the
trap command.

GNUFDL • PID_00148393 34 Basic GNU/Linux

All system processes have a certain priority. As we said before, this priority

indicates the CPU time the process will be allowed. The higher the priority

of the process, the more execution time it will have in relation to the rest.

The range of priorities goes from 20 to 19, from higher to lower. To launch a

process with a particular priority, we can use the nice command. If we want

to give a different priority to a process that is already being executed, we can

use renice. Only the root can use the negative priority range; this makes

sure that the root always has the possibility of executing processes faster than

users. By default, the priority with which programs are executed is 0. An aspect

to be considered is that with this priorities mechanism we cannot measure a

process’s real execution time because the CPU is shared by all the processes

in the execution queue. In calculation centres, which charge according to the

time the machines are used, it is very important to be able to measure this

aspect accurately. Therefore, the system offers us the time command, which

when we pass the program to be measured to it, returns the real CPU time

that the program has used.

2.5. Other useful commands

2.5.1. System help

As we have mentioned throughout this document, all commands have many

different options and parameters so that we can handle them as we wish. From

the beginning it was carefully considered that good documentation would be

needed for all of them. Likewise, all this information is needed for the system

configuration files, the new applications that we use etc. Therefore, the system

itself incorporates a manuals mechanism that we can consult on almost any

aspect of the programs, utilities, commands and existing configurations. The

most used command is man, which shows us the manual for the program that

we specify as a parameter. By default, this documentation is shown through

the less program, which we can use to move forwards and backwards using

the PgUp and PgDn keys, to search for a word using the character "/" followed

by the word ("n" to search for next occurrences and "N" for the previous ones),

"q" to quit etc. The system manuals are divided into different sections:

1) Executable programs (applications, commands etc.).

2) Calls to the system provided by the shell.

3) Calls to system libraries.

4) Special files (generally for devices).

5) Format of the configuration files.

GNUFDL • PID_00148393 35 Basic GNU/Linux

6) Games.

7) Macro packages.

8) System administration commands (generally those that only the root can

use)

9) Kernel routines.

If there is more than one manual available for the same word, we can be more

specific by passing the number corresponding to the section we want in front

of the word, for example man 3 printf. As with all other commands, man has

numerous different options documented in its own manual (man man), which

we can use for automatic searches, creating a manual file in printable format

etc. One of these options that can come in very handy when we know exactly

what program we are looking for is -k (the apropos command does almost

exactly the same). With man -k followed by a word that refers to the action

we wish to carry out, a search will be made through all the system’s manuals

and all the manuals whose description or name includes the specified word

will be shown. Thus, we can find anything we want without having to resort

to a book or reference outside the system.

mandb command

For fast searches, the man application uses an internal database that will search through
the files that contain the manuals and index them appropriately. If we wish to update
this manual (although normally the system itself already does this automatically), we
can use the mandb command.

If the manual does not provide us with all the information that we need, we

can use the info command, which is the same as manual but even broader. If

all we want is a brief reference to what a particular program, library etc., does,

we can use the whatis command.

2.5.2. Packaging and compression

Compressing a file, grouping several files into a single one or seeing what a

compressed file contains are tasks that we will carry out frequently in order to

make backup copies, move files from one place to another etc. Although there

are many different programs that allow us to carry out this type of operations,

generally in all GNU/Linux systems we will find the tar tool.. This program

will allow us to handle one or several files in any way in order to compress

them, group them etc. Although the options are interminable and extremely

flexible, here we will explain just a few of the more basic ones so that we can

have an idea of what we can do with this program. The syntax it uses is as fol-

lows: tar options DestinationFile OriginFile, where the destination

file will be the new file that we wish to create and the origin files will be those

for grouping or compression. It is important to bear in mind that if we wish to

group an entire folder, by default the process is recursive, meaning that when

GNUFDL • PID_00148393 36 Basic GNU/Linux

it is packaged it will cover all its levels and group everything it contains. To

create a new file, we need to pass the c parameter, and if we want to save it

in a file, we need to pass the f parameter. Thus, tar cf final.tar o* will

package all the files in the current directory that start with an "o". If we also

want to compress them, we could use czf which would use the gzip program

after packaging them. To depackage a particular file, the parameter we need is

x, so we should type tar xf indicating the packaged file. If it is compressed,

we will have to pass xzf.

Although we can use tar to compress files, the application is not designed

primarily for compression. As we have mentioned, for compression it uses

external programs like gzip. The gzip program uses its own compression

format different from the popular zip, which we can also use by installing the

corresponding application. Another fairly common compression application

which gives very good results is bzip2. In the following table, we can see

the extension that is normally used to identify what format a compressed or

packaged file uses:

Table 2.4

Extension Format

.tar tar

.gz gzip

.tgz tar + gzip

.bz2 bzip2

.zip zip

.z compress

2.5.3. Disk operations

Managing and handling the computer’s hard disks is another fundamental

aspect of system administration tasks. Although later we are going to take

a look at how to properly configure the disks that we have installed on the

computer, in this sub-section we are going to discuss the commands required

to obtain information about them. All hard disks are divided into partitions,

which we can access as if we were dealing with an independent device, which

we will refer to as a unit. This is very useful because it allows us to separate

information we have on the system appropriately, so that we can have more

than one operating system installed on the same disk, for instance. The df

command shows us, for each unit mounted on the system, the space used and

space available. Let’s interpret the following df output:

GNUFDL • PID_00148393 37 Basic GNU/Linux

Partition configuration

When we format a hard disk partition (with the ext2 or ext3 system), we can configure
the size of the block and many other parameters. These parameters can be adjusted to
make the system adapt better to our needs and to achieve greater efficiency.

Filesystem 1k-blocks Used Available Use% Mounted on

/dev/hda1 7787712 421288 6970828 6% /

/dev/hdb1 19541504 5742384 13799120 29% /info

/dev/hdc 664432 664432 0 100% /CD-ROM

As we can see, for each partition or device mounted on the system, the com-

mand tells us the number of blocks available and used. The disk block is a unit

that is used internally on the storage devices to make handling them more

effective. By default, this command shows us the information in 1k blocks,

although by passing the -h parameter (human readable) we can see it more

easily. The first line always shows us the root of the file system and then the

other devices. Observe how it also shows us the anchoring point (in the last

column), which is the folder we should go to in order to view its content.

Another very useful command is du, which shows us what a file really occupies

on the disk. For a clearer understanding of what we mean by this, we need

to look in a bit more detail at the internal organisation of the disks and how

the operating system handles them. As mentioned previously, for efficiency

reasons the operating system divides the disk space into smaller parts known

as blocks. The size of the block can be configured and generally depends on

the size of the disk, although we can also configure it to adapt better to our

requirements. Every time we want to add a new file, the operating system will

assign it to a block. This way, when reading or acting on it, the operating

system can read an entire block directly (of the configured size) in just one

step. When the file occupies more than one block, it is assigned more, trying

to make sure that they are as close together as possible, so that they can be

read consecutively thus increasing the read speed. The only inconvenience

with this type of system is that the blocks are wasted when the files are very

small, since if a particular file does not occupy an entire block, the remaining

space cannot be used for any other. In any case, this type of organisation is the

one used by all existing file systems, since it is the most viable for making use

of the hard disk. The du command, therefore, shows us the number of blocks

that a particular file really uses on the disk.

To know what parameters we have configured on our disk units formatted

with the ext2 or ext3 extensions, we can use the dumpe2fs command, adding

the specific partition. We will see how there are many different options that

allow us to adjust carefully its behaviour (we can find what each option means

in the manual). In any case, once we have formatted a partition, we will not

GNUFDL • PID_00148393 38 Basic GNU/Linux

be able to modify hardly any of these options. If we wish to change them,

we will have to copy all of the partition’s information, reformat and copy the

original files again.

Defragging a disk

Defragging (defragmenting) a disk is no more than reorganising the blocks of files to
place them in consecutive places to make access quicker. In the file systems that we use
with GNU/Linux it is not necessary to defrag the disks (although there are normally
programs for this purpose) because the system automatically takes care of organising
them properly.

The kernel functions that take care of managing files use a series of methods

to speed up the read and write processes. One of them is to use a disk cache,

so that we do not constantly have to be reading and writing on the physical

device, which is a slow and costly process. All that the cache mechanism does

is to keep a copy of the file on which we are working in the RAM (much

faster), so that the process is transparent for the user (the copy to disk is done

following a policy implemented in the kernel). The only problem with this

handling is that if there is a cut in the power supply and we have not shut the

system down properly, some files may not have been saved on the physical

disk and we may have an inconsistency in the file system. The fsck program

will check and fix a file system that has been left in this state. Although we

can execute it whenever we wish, generally the operating system itself will run

it when the boot process detects that the system did not shut down properly

(before switching off the computer, we must run the shutdown command,

which takes care of launching all the processes needed for the programs to

end, to unmount the file system etc.). In this regard, the ext3 file system is

more efficient than its predecessor because the journaling allows it to recover

more information on lost files and faster.

Naturally, if the files we are dealing with on our system are highly critical

and we cannot, in any circumstances, allow ourselves to lose them, we can

also configure the operating system not to use the disk cache system. At all

events, it is highly advisable to use this mechanism because it significantly

improves the system’s performance. If at any point we are interested in syn-

chronising the disk cache information with the physical disk, we can use the

sync command. Finally, we can also check a partition’s physical integrity us-

ing the badblocks command, which carries out a check on the indicated de-

vice to make sure that it has no damaged zones.

Most of the commands we have described in this subsection require special

permissions to be executed, meaning that only the root will be able to use

them.

GNUFDL • PID_00148393 39 Basic GNU/Linux

2.6. Operations with commands

2.6.1. Reroutings

Once we have learned to use some of the system’s commands, it is likely

that we will want to use them simultaneously in some cases so as to speed

up the actions we wish to carry out. A very interesting operation consists of

being able to take a command’s output to serve as another’s input and pro-

cess it appropriately. The operating system uses a pipes mechanism, which

allows us to reroute the outputs of any command or program to wherever

we want. It works very simply: all we have to do is place the "|" character

between the commands, so that the first one’s output serves as the input

for the second. Let’s look at it with an example: when we write the echo

field1:field2:field3:field4 command, all we would achieve would

be a screen displaying "field1:field2:field3:field4". If from this output we on-

ly wanted to take "field3", we could reroute it with a pipe towards the cut

command, for it to select just the field we are interested in as follows: echo

field1: field 2: field 3: field 4 | cut -d: -f 3. In the following

diagram, we can visualise this example graphically:

Figure 2.3

Of course, we can connect as many pipes as we need in order to carry out more

practical tasks than the one we have just seen. Another type of very practical

rerouting is related to files. This type of rerouting allows us to take all the

output of a command or program and to save it in a file using the character ">",

as we did with the "|". For example, if we wish to save in a new file everything

we write until pressing Ctrl+C, we could use the following: cat > test.txt.

With ">>" we can do exactly the same, but instead of always creating the new

file, if the file already exists, it would add information to the end of it. With

"<" the rerouting is made in the opposite direction, directing the content of

the file that we specify towards the indicated command or program.

GNUFDL • PID_00148393 40 Basic GNU/Linux

A very interesting aspect that we ought to know about UNIX type systems is

that they separate the normal output of a program from the errors output. Al-

though by default both outputs are directed at the console where the program

was executed, we can manipulate them to direct them wherever we want. To

see this in practical terms, we will try to delete a file that doesn’t exist using

the following instruction: rm file > results. Although we are rerouting

the command’s output to the results file, the screen will display an error mes-

sage telling us that the file has not been found. This is because by default,

reroutings only accept the program’s standard output and not the error out-

put, which by default is also displayed on screen. In order to reroute the er-

ror output, we should indicate, in front of the character ">", the number "2",

which is the error output ("1" is the normal output). Thus, by executing rm

file > results we would manage to reroute the output to the results file.

We can also save the normal output and error output in two different files: rm

file 1> results 2> errors. If on the other hand we wanted all outputs

to be directed towards the same file, we could use >&. Furthermore, with the

ampersand character (&) we could direct outputs of one type towards other

types; for example, if we wish to direct the errors output to the normal output,

we could specify this as follows: 2>&1.

It is important to remember that the order of reroutings is important: they are

always executed from left to right.

2.6.2. Specific bash commands

Although some of the commands that we have looked at are specific to bash,

this commands interpreter has other commands that can help us carry out

many more interesting operations. A very useful mechanism is to execute the

processes in what is known as background mode. This mode simply tells us

that the process is being executed, but that the shell is returning the command

line so that we can continue to execute other programs. To tell the bash pro-

gram this, we need to type the character "&" after the command or program

that we are about to execute. Once the process has been launched in back-

ground mode, a line is displayed telling us the job number and PID of the

launched process.

With the jobs command we can see what processes are launched in back-

ground mode (by passing the -l parameter we can also see its PID). If we wish

to pass one of these processes into the foreground mode (as if we had launched

it from the command line without the "&" character), we can use the fg com-

mand indicating the process PID. We also have bg, which sends a particular

process into background mode for us. This is useful, for example, when we are

running a program in foreground mode and we pause it by pressing Ctrl+Z. If

then we execute bg giving the PID, the process will continue to run in back-

ground mode. As we have seen in preceding subsections, processes also have

a parent child hierarchy. When we run a program in background mode we are

not interfering with this hierarchy, meaning that if we sign out of the session,

GNUFDL • PID_00148393 41 Basic GNU/Linux

all of these processes will finish because the parent (the commands interpreter

from which we have launched them) will no longer be running. If we wish to

unlink a process from its parent, we can use disown.

Another useful bash mechanism is the commands history. When we use the

system we usually have to repeat many instructions that we have written al-

ready. Using the Up and Down keys we can see all the commands we have

been using and we can repeat one by pressing "Return". We can also use his-

tory, which will display all executed commands on screen, numbered in or-

der of appearance. By writing !NUM the one corresponding to that history will

be executed. We can also write ! followed by the initial letters of a previous-

ly executed program and the program will search for the most recent one in

order to execute it.

The bash command interpreter also has fast access keys or shortcuts that allow

us to execute certain actions without even having to write them. Some of the

most common ones are:

• Tab: we don’t need to write the name of a file, directory or command in

full. If we write the first characters and then press the tab key, it will write

the rest for us. If there is more than one coincidence it will display the

different possibilities.

• Ctrl+L: clears the screen (like the clear command).

• Shift+PgUp: shows half the previous screen.

• Shift+PgDn: shows half the next screen.

• Ctrl+W: eliminates the last written word.

• Ctrl+T: interchanges the order of the last characters.

• Ctrl+U: deletes all characters in front of the cursor.

• Ctrl+D: exits the command interpreter (equivalent to executing a logout

command).

• ulimit this is a command that allows us to configure some of the internal

aspects related to the bash. For example, it allows us to specify the amount

of memory that the command interpreter can use, the maximum number

of files that can be opened etc. This command can help us to somewhat

restrict the actions that our system’s users can carry out (in the case of

administrating servers with lots of users).

Bash

The bash command inter-
preter provides us with end-
less tools for regulating any as-
pect of the command inter-
preter. In its extensive manu-
al we can find the documenta-
tion required to learn how to
manipulate them correctly.

GNUFDL • PID_00148393 42 Basic GNU/Linux

2.6.3. Shell scripts with bash

The shell scripts are files where we write a series of commands (any of the

ones we have seen in this section) to be executed. Although their syntax may

become quite complex and we should go into programming aspects in order to

understand it clearly, in this subsection we summarise some of their essential

characteristics so that we can understand them and use them at least (if we

want to go into greater depth we can go to the bash manual). The first line of

the shell script should specify the command interpreter that is used:

#!/bin/bash

After this line we can already start writing the commands we want to execute,

one on each line. As in any programming language, we can use variables,

conditional structures and loops. In order to declare a variable we will use the

following syntax:

variableName=content

If the content is a chain of characters, we will need to put it between quotation

marks, if it is a number, we do not have to put anything and if we want to save

a command output in the variable, we will need to put it between characters.

To refer to the variable’s content in other instructions, we must always place

the "$" character in front of the name. For conditional instructions we can use

the following structures:

if condition; then instructions else instructions fi

wherecondition can refer to a file, perform an arithmetical comparison op-

eration (between "(())" characters) etc. The test command is especially useful

in that it allows us to compare files, directories etc., and returns a Boolean.

Thus, for example, if we wanted to carry out one action or another depending

on the existence of a particular file, we could use the following structure:

if test -f /etc/inittab; then echo "The inittab file exists." else echo "The inittab file

does NOT exist." fi

Another conditional structure is the selection one:

case word in case1) instructions;; case2) instructions;; *) instructions esac

fc command

The fc command allows us,
like the shell scripts, to write a
series of commands to be ex-
ecuted but without having to
save the file.

GNUFDL • PID_00148393 43 Basic GNU/Linux

In this structure we compare word with case1, case2 etc., until finding the

one that matches in which case the corresponding actions will be executed. If

none is found, it would pass onto section *), which is optional. This structure

can come in very handy, for example, when we want a particular script to

carry out one action or another according to the parameter that we establish.

We can refer to the parameters using $1 for the first, $2 for the second and so

on consecutively. For loops we can use any of the following structures:

#LOOP TYPE FOR for i in list; do instructions where #LOOP TYPE WHILE while condition;

do instructions done

Of course, before we can execute a shell script we should give the execution

permission to the corresponding file (chmod 750 fileName command).
Comments in shell scripts

To write comments in the
shell scripts we can use the
"#" character followed by the
comment we wish. This will be
valid until the end of the line.

GNUFDL • PID_00148393 44 Basic GNU/Linux

3. Knoppix workshop

3.1. Introduction

This workshop aims to be your first experience with a UNIX environment. For

this reason, it is carried out step by step, but of course leaving the door open

for the curious among you to investigate of your own accord.

The main objective of this workshop is to become familiar with the GNU/Lin-

ux operating system and to see that everything that we are used to doing with

other operating systems, can be done exactly the same with the GNU/Linux

operating system. In this workshop, we are also going to start working with

the command line, becoming familiar with it and losing our fear of anything

that is not a graphic environment. So, let’s go ahead, it’s time to put into prac-

tice everything that has been explained theoretically up until now.

This workshop can be carried out on any computer, since the risk of damaging

the information we could have is minimal. We have chosen this distribution

because it does not require prior knowledge of the operating system to boot

it, and because, once we stop the system, it leaves no trace.

KNOPPIX by default mounts all the hard disk partitions on the system but

with read only permissions; therefore, we can neither write nor execute any-

thing, unless we force it to by changing the permissions. Obviously, if we have

a different GNU/Linux operating system, we can use it to follow the workshop.

As this is a bootable distribution on CD-ROM or DVD-ROM, we can work

without leaving any trace on the computer where it has been executed when

the stop process has finished; it means that even though it is based on De-

bian, the file system does not comply with the Debian Policy in this regard.

Nonetheless, these differences will not affect the workshop, and everything

we learn will be valid for later ones. Furthermore, its good to become used

to working with different distributions from the beginning and to learn to

distinguish between what is common to all UNIX-based systems and what is

particular to each distribution.

Before we start, just one piece of advice: let’s go ahead with our own initia-

tives, try to answer our questions ourselves, consult the help provided by the

man command, carry out tests, if they fail, analyse why, try again, over and

over until we achieve the desired results; this is how to learn UNIX, fearlessly,

learning from our mistakes.

GNUFDL • PID_00148393 45 Basic GNU/Linux

3.2. System boot

First of all we need to make sure that our computer will boot from the CD-ROM

or DVD-ROM reader. To do this we will enter the BIOS (Basic Input Output

System), usually by pressing the Del key during the RAM memory check pro-

cess, and check that the CD-ROM or DVD-ROM is configured as the first boot

device; if it is, we can already exit the BIOS without having to save anything

and put the KNOPPIX CD-ROM or DVD-ROM into the reader. If it is not, we

will make the relevant changes and save them before exiting the BIOS.

After restarting the computer, following several seconds the KNOPPIX boot

screen will appear with the following lines at the bottom:

Figure 3.1

We can press the F2 or F3 key to enter the screen showing the options accept-

ed by KNOPPIX for booting, next we can see the information presented by

pressing the F2 key:

GNUFDL • PID_00148393 46 Basic GNU/Linux

Figure 3.2

and this is the information that we are shown when we press the F3 key:

Figure 3.3

For example, we could boot with the Spanish keyboard in the Spanish lan-

guage for interaction with GNOME as windows manager and activate the

scroll wheel of the mouse; to do so, we could just type on the command line

(boot:) as follows knoppix lang=es gnome wheelmouse. But we won’t;

the previous example was just to show the capabilities of KNOPPIX. After in-

serting a new formatted disk in the disk drive on which we will take our first

steps in GNU/Linux, thus safeguarding all the information we may have on

our hard disks, we will simply write knoppix 2 and press Enter to boot the

system in text mode.

GNUFDL • PID_00148393 47 Basic GNU/Linux

Figure 3.4

Initially, the keyboard is configured for the United States (us), so some char-

acters differ from the Spanish keyboard; we can fix this immediately, but even

so, it is interesting to know where certain US characters are on the Spanish

keyboard:

• "=" is on the key ¿.

• "/" on key o on the number pad.

• "-" on key? or on the number pad.

After pressing "Intro", KNOPPIX will start to load the operating system, show-

ing on screen the results of some of the tests that it carries out during the

auto-configuration.

Once this process is over, we will have the command line:

GNUFDL • PID_00148393 48 Basic GNU/Linux

Figure 3.5

We are now inside the system. In this case, no user or password has been

necessary, we have entered directly as root, and we know this because the

prompt ends with the character "#". For any other user than the root, the last

character would be "$".

3.3. Stop system

Once inside the system, the first thing that we should know, as we have already

mentioned, is how to stop it. Let’s remember once more that we cannot stop

the computer without previously stopping the operating system (GNU/Lin-

ux). There are several ways of doing this. The most common are: pressing the

key combination Ctrl+Alt+Del or using the halt command (there are many

more, through the reboot command, changing the runlevel from 0 to 6 etc.).

Once we have given the system the order to stop, it will start executing the

relevant stop instructions (demounting devices, stopping processes etc.), and

at the end of this entire process KNOPPIX will eject the CD-ROM or DVD-ROM

and ask us to press Enter in order to stop the computer.

3.4. Keyboard configuration

Once we know how to start and stop the system, we will boot it again following

the same steps as before. Once we are inside the system, the first thing we will

have to do is to configure the correct keyboard layout. There are several ways

of doing this:

• manually and if we boot in console mode (knoppix 2):

GNUFDL • PID_00148393 49 Basic GNU/Linux

Figure 3.6

• graphically with the kbdconfig command selecting the option es es.

Figure 3.7

• using the kbd-config command and selecting the following options:

GNUFDL • PID_00148393 50 Basic GNU/Linux

Figure 3.8

We have an advantage when it comes to writing on the terminals: it is the au-

tocomplete option, we press "Tab" once, and if there is just one possible choice,

it autocompletes; or we press it twice in a row, and if there is more than one

option we are shown the different choices. We can test it using the loadkeys

command. We type just an "l" and press the Tab key once, the system makes

a beep, and then we press the key a second time to get the following:

Figure 3.9

GNUFDL • PID_00148393 51 Basic GNU/Linux

In this case we do not want to be shown the 211 possibilities. Therefore, we

press "n" and add the letter "o", and repeat the previous operation of pressing

the Tab key twice. Now we get a different result:

Figure 3.10

All we need to do is add "adk" and press the Tab key again for the autocomplete

to function giving:

root@tty1[/]# loadkeys

The autocomplete feature can also be used to refer to files and directories. We

just have to type "loadkeys /u" and press Tab to get:

root@tty1[/]# loadkeys /usr

and press Tab again to get:

root@tty1[/]# loadkeys /usr/

Autocomplete is a very useful tool not just because it saves typing, but also

because it helps to make sure that we have written the commands correctly,

as well as directories and files. The lack of this tool is noticeable for those

accustomed to using it.

GNUFDL • PID_00148393 52 Basic GNU/Linux

3.5. System inspection

Once we have configured the keyboard, we will proceed to inspect the system

a bit. Firstly, where in the directories structure are we at present? We can find

out through the pwd command:

root@tty1[/]# pwd /

We are in the system root, and we know from the command return pwd, but

we could also have known by reading the information given by the prompt:

root@tty1[/]#. We already learned about the meaning of the "#" character,

now let’s learn about the rest of the information that it tells us.

"root", in this field the username appears in this case, root, slightly redundant

information, since the "#" character is already telling us this. But for other

users it is interesting, since all of them end with the "$" symbol, and this way

we can know whether it is Isabel, Daniel or another user.

Following the "@" character, which simply serves to separate fields, we have

"tty1", this field is telling us what terminal we are on, and this is because, as we

have already mentioned, GNU/Linux is multi-user and multi-process; there-

fore, it is not surprising that we can access the system from different terminals.

KNOPPIX in particular offers four terminals by default, which we can access

through the following key combinations: Alt+F1 (tty1), Alt+F2 (tty2), Alt+F3

(tty3) and Alt+F4 (tty4); this is extremely useful, since it allows us to have up

to four work sessions meaning that for example we can be testing a command

on one, have the man for the command in question on another in order to

read about its options, while on another we may have an editor open in order

to take note of what we are doing (many distributions offer six terminals in

text mode and reserve the seventh for the graphics terminal; in KNOPPIX the

graphics terminal, if it has been enabled, which is not our case, would be the

fifth terminal). So, we try the Alt+F2 combination, observing that "tty2" now

appears in the field that we are studying, and execute a command, for exam-

ple man man, to read the man or help of the man application . For the

moment we will leave it there and return to tty1, checking that everything

is as we had left it.

Finally, and continuing with the interpretation of the prompt, in front of the

field "#" we already know, we find "[/]": this tells us the current directory, the

root in this case, as we were told by the pwd command. The difference stems

from the fact that the prompt only gives us the current directory, whereas the

pwd command gives us the full path.

For example, if we were in /home/sofia we would have:

GNUFDL • PID_00148393 53 Basic GNU/Linux

root@tty1[sofia]# pwd /home/sofia

Now we can list the content of the directory that we are in. To do so, we will

use the ls, first without passing any option onto it:

Figure 3.11

and now we will pass two options (normally the options are preceded by a

"-", although there are commands that do not require this), to tell it to return

more detailed information. So, once we have typed the "-" we will write the

options la to obtain this information:

GNUFDL • PID_00148393 54 Basic GNU/Linux

Figure 3.12

Let’s look at the different colours in which the results are displayed (we will

see these colours on our computer screens as we advance through the Knop-

pix workshop): navy blue for directories, magenta for symbolic links (whose

destination is shown following the combination of characters "->"), green for

scripts and executables (although, obviously, we do not expect to find any in

the root directory, since as we have seen in UNIX, the order within the filesys-

tem is very rigid) etc.

Let’s go into a directory where we are sure to find executables, such as /usr/

bin/ (to do so, let’s execute cd /usr/bin/). The directory /usr/ is really a

symbolic link over /KNOPPIX/usr/; therefore, we could access its content by

entering it directly through the cd command, or follow the real destination

through the same command. However, we will choose the first option since

this directory will be a real directory when we are in a UNIX system installed

on a hard disk:

GNUFDL • PID_00148393 55 Basic GNU/Linux

Figure 3.13

We have probably not been able to see more than the last few lines of what

has been shown on screen. We can visualise a few more results by pressing

Shift+PgUp to go back through the list and Shift+PgDn to advance. Even so,

the terminal buffer has a limit and using this technique we are unlikely to see

all of the information returned by the ls command. Therefore, we need to

resort to other techniques, rerouting output (in this case on a file) or using

pipes ("|") and paginators (less in this case, which uses the PgUp and PgDn

keys to move the content shown on screen, and the Q key to quit). We will use

this last one, since we are not interested at all in saving a directory’s content

list; we will also take the opportunity to practice another utility that saves us

typing: pressing the up and down arrow keys we can move through all the

command lines that we have passed to the system; thus, to obtain the line

we want, ls -la | less, all we will have to do is press the arrow up key

once and add | less.

less is a very powerful paginator that KNOPPIX and most distributions use

to show the contents of the man (although, like most Linux services, we can

configure it to our own taste). Therefore, we can do a man less to find out a

bit about this command while getting used to this help’s morphology at the

same time. Obviously, since we are under less, to quit man all we have to do

is to press Q.

GNUFDL • PID_00148393 56 Basic GNU/Linux

Note how for all the directory content lists that we have been doing two rather

special directories always appear: . and ... When we create directories, the

system automatically creates these as subdirectories within the created directo-

ry, and they contain very special information. The . directory, which is known

as the current directory, refers to the directory itself (so if we execute a ls

-la . command, we will get the same information as by executing a ls

–la command). And the .. directory, which is known as the parent directo-

ry, refers to the parent directory of the directory that we are in (executing a

ls -la .. command will give us the content list of the parent directory or

directory immediately above).

Activity

3.1 Look at the man of the ls command and understand the functions of the -a and
-l parameters.

Can we remember where we are in the file system? No? Well the pwd command

will remind us. Let’s go back to the root directory. There are basically two ways

of doing this and another especially for this case; in any case, they are all based

on using the cd command, and differ only in the argument that we pass in

each case.

The first way is to rise up repeatedly through the parent directories using cd

.. (note, the system does not understand cd.. , because it interprets that we

are trying to execute a command called "cd..", which does not exist) until we

reach the root directory (we will see it in the prompt).

The second is more efficient, since with just one command line we will achieve

our purpose, which is to go to the root directory. To do this, we need to pass

the root directory as argument to the cd command (cd /); this second option

is much more powerful and allows us to pass directly to directories belonging

to different branches, for example, we could have done cd /etc/rcS.d/ (the

last slash is optional) to go to this directory, from /usr/bin/.

As we have mentioned, for this case (going to the root directory) there is a

third option to achieve the same goal with variations: it involves executing the

cd command without passing any argument, and it would place us directly in

the system’s root, since in the case of KNOPPIX this is the home directory (an

exceptional and somewhat particular case, since in most distributions, and

according to the Filesystem Hierarchy Standard, root must have its own home

/root); a variation of this method is "cd ", since " " is the equivalent to the

user’s home, the root directory in this case. There is yet another option for

returning to the root directory, or rather, to return to the directory we’ve come

from, the root, since we had executed cd /usr/bin", and it is cd -, since in

"-" it saves the last directory we were in prior to the current one.

GNUFDL • PID_00148393 57 Basic GNU/Linux

3.6. Handling files and directories

Having examined different options for achieving the same purpose, we are

still in the root directory. Now we can learn how to create files and directories,

move, copy, delete them etc. We will do this on the disk that we used to boot

KNOPPIX, which the system has mounted itself while booting (later we will

learn how to mount and unmount devices).

Let’s remember that in UNIX before devices can be used they need to be

mounted, and that before the support is removed, they need to be unmount-

ed. This last point is extremely important, since otherwise the data’s integri-

ty cannot be fully guaranteed. For example, we can attempt to remove the

CD-ROM by pressing the eject button before proceeding to work on the disk.

Surprise! we can’t; we shouldn’t think that the device has broken, much less

that GNU/Linux has done this. It is simply that the system has mounted this

device automatically during the boot, and, therefore, it has become part of

the system; it would make no sense to be able to remove the CD-ROM with-

out telling the system beforehand; therefore, the system has taken control of

this device and, among other things, has disabled the eject button for the CD-

ROM, precisely in order to avoid it being removed without first having been

unmounted. This is not the same with the disk drive: for this device the eject

button functions mechanically, meaning that the system cannot prevent us

from ejecting the disk without telling it first, but this is not advisable, since

as we have already said, it could entail the loss of the data that it contains.

Therefore, until we learn how to mount and unmount data support devices,

the disk must remain in the disk drive from the moment the system boots

until it stops, since, along with other operations during the stop process these

devices will be unmounted. Let’s go to the disk; but, where is it? Where has the

system mounted it? To find the answer to these questions we will execute the

mount command with no arguments or additional options (this is precisely

the command used to mount devices, and umount to unmount them):

GNUFDL • PID_00148393 58 Basic GNU/Linux

Figure 3.14

This command executed without arguments shows us the devices mounted

on the system at the moment of executing it and some additional information

regarding them (we can find this same information in the file /etc/mtab;

consequently, executing cat /etc/mtab (to show the content of mtab) we

would obtain the same results). In the second line returned by the command,

we can see that indeed the CD-ROM, /dev/CDROM, is mounted on the system

and additionally we can see that it is mounted on the directory /CD-ROM/.

The last returned line answers the questions we made before: the system has

mounted the disk, /dev/fd0/, on /mnt/auto/floppy/. Therefore, we will

change to this directory in order to start working on the disk and check that

it is effectively empty:

root@tty1[/]# cd /mnt/auto/floppy root@tty1[floppy]# ls -la total 8 drwxrwxrwx 3 knoppix

knoppix 7168 Jan 1 1970 . drwxr-xr-x 3 root root 0 Mar 3 19:34 ..

We create our first directory, enter it and create a couple of subdirectories:

root@tty1[floppy]# mkdir dir00 root@tty1[floppy]# cd dir00/ root@tty1[dir00]# mkdir

subdir00 subdir01 root@tty1[dir00]# ls subdir00 subdir01

We enter the first subdirectory and create our first file:

root@tty1[dir00]# cd subdir00 root@tty1[subdir00]# touch file00 root@tty1[subdir00]# ls

-la total 1 drwxrwxrwx 2 knoppix knoppix 512 Mar 3 20:21 . drwxrwxrwx 4 knoppix knoppix

GNUFDL • PID_00148393 59 Basic GNU/Linux

512 Mar 3 20:21 .. -rwxrwxrwx 1 knoppix knoppix 0 Mar 3 20:21 file00

In reality touch is not for creating empty files although it will if the file does

not exist, but rather to change information concerning file times and dates.

We can put some content into our first file and check that it has indeed been

saved:

root@tty1[subdir00]# echo "my fist hello world in Linux" > file00 root@tty1[subdir00]# cat

file00 my first hello world in Linux

We add a bit more text:

root@tty1[subdir00]# echo "Nice to meet you, we're gonna be good friends" >> file00

root@tty1[subdir00]# cat file00 my first hello world in Linux Nice to meet you, we're

gonna be good friends

Let’s not forget to use the arrow keys to save typing, or autocomplete. Now

we can use a text editor to create our second file. To do this, we will use the vi

editor. Let’s remember that this editor has two modes: the command mode,

that we enter when it boots, and the editing mode. To enter the editing mode

we just need to press "i", and to go into command mode we just need to press

Esc. If we want to save, we need to go into command mode and write :w and

:q to quit (vi has many more commands, but for the time being these two

are enough). It is very interesting to know these basic vi commands, since this

editor comes with almost all the basic installation packages of any distribu-

tion, and if it fails at any time, it can be useful to modify a file and continue

with the installation.

We execute the vi command followed by the name that we wish to give our

second file, we press I, write what we want, press Esc and :wq to save and exit.

Using more, another paginator, we can check that everything has worked as

expected:

root@tty1[subdir00]# vi file01 it seems we're on the right way, mate!!! I agree.

~ ~ ~ :wq

root@tty1[subdir00]# more file01 it seems we're on the right way, mate!!! I agree.

USB memory devices. The USB can connect peripherals such as a mouse, key-

board, scanner, digital camera, PDA etc. But we are going to focus on USB

memory devices, since these days they are commonly used instead of the older

disks. They allow us to store several hundred megabytes of information on a

small and easy to carry device: USB memory devices. There are different sys-

tems, such as the flash system or memory�stick system.

GNUFDL • PID_00148393 60 Basic GNU/Linux

These systems function perfectly well with the Linux kernel. It is enough to

mount them as if they were SCSI disks, normally they will be in /dev/sda1,

or if there are other SCSI disks, in /dev/sdb1 or /dev/sdc1.

As we have already seen, the mount command allows us to mount any file

system, and with umount we can unmount it. To know how many file systems

there are and how they have been mounted, we need to execute the mount

command without any option. The information is obtained from the /etc/

mtab file, since this file contains the list of file systems mounted at that time.

In fact, it is the mount and umount programs that keep this list in the /etc/

mtab file..

Like the following command:

knoppix@0[knoppix]$ mount /dev/root on / type ext2 (rw) /ramdisk on /ramdisk type tmpfs

(rw,size=401312k) /UNIONFS on /UNIONFS type unionfs (rw,dirs=/ramdisk=rw:/KNOPPIX=ro:

/KNOPPIX2=ro,delete=whiteout) /dev/hdc on /cdrom type iso9660 (ro) /dev/cloop on

/KNOPPIX type iso9660 (ro) /dev/cloop2 on /KNOPPIX2 type iso9660 (ro) /UNIONFS/dev/pts

on /UNIONFS/dev/pts type devpts (rw) /proc/bus/usb on /proc/bus/usb type usbfs (rw,devmode=0666)

automount(pid2320) on /mnt/auto type autofs (rw,fd=4,pgrp=2320,minproto=2,maxproto=4)

/UNIONFS/dev/sda1 on /mnt/sda1 type vfat (rw,nosuid,nodev,umask=000,user=knoppix)

The file /etc/fstab is the one that contains what devices are usually mount-

ed, where and how (what their options are). But when we mount other devices

or unmount any device, this is reflected in the file /etc/mtab, which is the

one that describes the file systems that are mounted at that moment in time.

Activity

3.2 How do we mount the USB stick or memory so that any user can write to it? If we
want this type of USB memory to be mounted by default (when the system boots) and
to have read and write permissions for all users, what line should we add?

Activity

3.3 Repeat all the actions of activity 3.2 on handling files and directories but instead of
using the disk use the USB memory.

Now, from the disk or USB stick let’s try to delete our first file. We will do so

using the rm command:

root@tty1[subdir00]# rm file00 rm: remove regular file 'file00'?

We certainly did not expect the system to ask us this question. We press Ctrl+C

to cancel, n for no (do not delete) and y for yes (delete). Now it is important

for us to understand why the system has asked us this question. If we read

the man of the rm command we will see that it should delete the file without

asking us any question (let’s remember that we can run this man on another

GNUFDL • PID_00148393 61 Basic GNU/Linux

tty, and that on tty2 we still have the man open, unless we have quit (pressing

q), or switched off the computer since we invoked it, and continued working

on the tty that we were on. But let’s look at the explanation of option -i in

this same man. What is happening? It looks as though this option is enabled

by default. It is not really so, what happens is that by default the system has

established some aliases; to view them all, let’s execute the alias command:

root@tty1[etc]# alias alias ..='cd ..' alias cp='cp -i' alias l='ls -a --color=auto' alias

la='ls -la --color=auto' alias ll='ls -l --color=auto' alias ls='ls

--color=auto'

alias mv='mv -i' alias rm='rm -i' alias where='type -all' alias which='type -path'

Here we will start to understand much more, for example why the return of

the ls command is in colours, or that to do an ls -la we just need to type

la. And we also understand why when we have executed the previous rm, the

system has asked us if we really wanted to do this. Through aliases we can

establish and modify the default behaviour of commands or even create other

new ones:

root@tty1[subdir00]# alias hi='echo¨I say hello"' root@tty1[subdir00]# hi I say hello

Continuing with the man of the rm command, we are about to read about

the use of -f and -r options.. The first is for the command to execute

without a prompt, or in other words, disobeying the -i options, so that if

we did not delete our first file, we can do so now through rm -f file00.

The second option forces recursivity, in other words, extends the order over

potential subdirectories and their content. These options are common to most

basic commands for handling files and directories; therefore, we can create a

second directory in the root of the disk with all the contents of the first one

that we have created through the cp command; to do this, we must appeal

to recursivity:

root@tty1[subdir00]# cp /mnt/auto/floppy/dir00/ /mnt/auto/floppy/dir01 -r

Activity

3.4 Repeat this recursive copy of the disk’s /dir01 to the USB stick or memory.

In this case we have used absolute routing (for specifying both the origin and

the destination) to carry out the copying operation. In other words, we have

specified the full path, starting from the root directory, for both the origin and

the destination. Similarly, we could have used relative directioning to specify

the origin of the operation, its destination or both. When we use relative di-

rectioning, the routing origin is the current position within the file system. As

in most cases, the system gives us the possibility of achieving the same results

GNUFDL • PID_00148393 62 Basic GNU/Linux

using different methods. The more we know the better and we can choose the

most effective one in each particular case. Thus, we would have achieved the

same result by using cp ../../dir00/ ../../dir01 -r, i.e. telling the

cp that the origin is the directory /dir00/, which is two branches below our

current position, and that the destination is /dir01/, which we also want

to place two branches below our position. Also, the line cp -r ../../../

dir02/ would have been perfectly valid for the same purpose.

Activity

3.5 Explain the reason for this last assertion.

Now we can go down one subdirectory, placing us in /mnt/auto/floppy/

dir00/ and copy the second file that we have created into the /subdir00

subdirectory within this same directory:

root@tty1[dir00]# cp subdir00/file01 .

We need to fully understand the meaning and reasoning behind the previous

line. Firstly, we specify the origin of the file that we wish to copy (among

many other options, ./subdir00/file00) would also have been valid) and

secondly we must specify the destination, which is the current position, i.e.

".". Through un ls we can check whether we have achieved the desired result.

Now we can position ourselves in the parent directory, where it is mounted on

the disk, and delete everything that we have created up until now. To do so,

we will use the "*" wildcard (we also have the "?" wildcard, which is for just one

character, in addition to other methods for specifying ranges of characters,

and to refer, in general to more than one file or directory) to save typing:

root@tty1[floppy]# rm -rf *

Activity

3.6 Read the man of rm and understand why rm -rf * is so dangerous.

3.7. User administration

We should be alarmed by the fact of having performed all the previous tasks

as home, since we already understand clearly that this user should only be

used when necessary.

Nevertheless, it is justified since up until now we had not had any direct con-

tact with a UNIX system, and this has allowed us to familiarise ourselves a bit

with its basic commands and with its file system. The time has come to start

working as we always should as of this moment, i.e. using the home account

only when it is strictly necessary, such as in the first step that we will take next,

creating a new system user and giving him or her an account, which is an op-

eration that can only be done by home. Therefore, let’s go on to create a user.

GNUFDL • PID_00148393 63 Basic GNU/Linux

root@tty1[etc]# useradd user00

We have created our first user, but the process has been somewhat opaque

since the system has not returned any information to us regarding this com-

mand that we have just executed. Therefore, we do not know what group or

groups this user belongs to, where his home directory is, what default shell

has been assigned to him or her etc. We will find a lot of this information in

the passwords file (/etc/passwd) so let’s analyse its content field by field:

root@tty1[/]#cd /etc root@tty1[etc]# cat passwd root:x:0:0:root:/home/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/bin/sh bin:x:2:2:bin:/bin:/bin/sh . . .

partimag:x:104:65534::/home/partimag:/bin/false user00:x:1001:100::/home/user00:/bin/bash

We can find the information we want from the last line of the file, since our

user is the last one to have been added. Let’s analyse the content of this line:

• user00 is the username, which we already know because we have created

it ourselves.

• x his password is in the shadow file, /etc/shadow.

• 1001 is his user identification number (UID).

• 100 is the identification number of his group (GID).

• He has no associated comment.

• /home/user00 this is his home directory, as was to be expected, since all

users have their home in /home/user.

• /bin/bash the shell the user will encounter when logging in is the bash,

the same one we have used up until now.

The question we ask immediately upon seeing this information is to do with

the user’s password. Therefore, we need to consult the shadow file, since we

are told this by the file /etc/passwd. At the same time, we will introduce a

new concept, the filter, which in this case materialises in the form of the grep

(general regular expression processor) command. Filters are extremely potent

tools, commonly used in UNIX, and their scope of action extends well beyond

what is commonly understood by a filter. In this case, we will pass, through

a pipe, the output of cat to grep, so that it displays on screen the lines that

contain the word that we pass as a parameter, user00:

root@tty1[etc]# cat shadow | grep user00 user00:!:12115:0:99999:7:::

GNUFDL • PID_00148393 64 Basic GNU/Linux

As of now we don’t need to worry any more: the second field tells us that our

user has no password. If the user had, we would not be able to know it, because

as we have mentioned, the passwords are saved encrypted and encryption

is unidirectional. But this should not concern us either, since, through the

passwd command, home can change the password of any other user. There-

fore, the only thing that we really need to do is to try not to forget the pass-

word of home, which does not have a password in this case either, as we are

told by shadow, although if this were to happen, it can also be resolved. Let’s

continue investigating the properties of our new user. /etc/group will help

us to know exactly what groups he belongs to:

root@tty1[etc]# cat group | grep user00

root@tty1[etc]# cat group | grep 100 users:x:100:knoppix knoppix:x:1000:

With the first command line we ask, with a negative answer, whether /etc/

group has any explicit reference to user00 (we could also have done this

through the groups: groups user00 command). With the second we search

for the reverse of group 100, the primary group of the user00 according to

/etc/passwd, a group called users in this case. Therefore, we can already af-

firm that our new user belongs to just one group and that this group is user.

We can also edit the file /etc/group to add users to groups and to create new

groups, but we should note that in no circumstances can we put the name of

another group in the field of users belonging to a particular group with the

intention of adding all the users of the former to the latter. But we do not

recommend doing this, since there are specific commands for working with

groups (newgrp, addgroup etc.)

There is just one last issue to be resolved: if we list the contents of /home/, we

will see that the subdirectory /user00/ does not exist. Therefore, we need to

create it and to give it the properties and relevant attributes manually:

root@tty1[etc]#mkdir /home/user00 root@tty1[etc]#chown user00 -R /home/user00

root@tty1[etc]#chgrp users -R /home/user00 root@tty1[etc]# cd /home root@tty1[home]#

ls -la total 0 drwxr-xr-x 5 root root 100 Mar 4 08:12 . drwxrwxrwt 4 root root 80

Mar 4 08:35 .. drwxr-xr-x 2 knoppix knoppix 40 Mar 4 08:35 knoppix drwxr-xr-x 2 root

root 40 Mar 4 08:35 root drwxr-xr-x 2 user00 users 60 Mar 4 08:12 user00

New users in Debian

The process of adding new users to the system through Debian is much simpler, as we
will see later. But creating one through KNOPPIX has not been in vain since it has helped
us to become familiar with the system and to learn new commands.

Activity

3.7 Through man, understand the functioning of the chown and chgrp commands.

GNUFDL • PID_00148393 65 Basic GNU/Linux

The time has come to enter the system as a new user. We will do so through

the su command, which opens a child process with the login of the user that

we have passed to it. As root we can always use this mechanism to enter as

another user without having to know the password, since when we execute su

as root the password is not required; also, it so happens that the user that we

have created does not have a password, and therefore, it will not be requested.

But, if we tried to execute su in any other circumstances we would be asked

for the user’s password:

root@tty1[home]# su user00 su(pam_unix)[4312]: session opened for user user00 by (uid=0)

user00@tty1[home]$

First, let’s note the changed appearance of the prompt. We have stopped being

a home user, to become user00, so we have lost the privileges of the root,

as shown by the change in the last character of the prompt. Now we can

access our home directory, create a file and let’s change its attributes so that

only user00 can read, write and execute it. For the time being, the execution

permission does not make much sense to us, since we still do not know how to

create executable files, but it is good to know in advance for when we need it:

user00@tty1[home]$ cd user00@tty1[user00]$ echo "only user00 can read, write and execute

this file." > user00file user00@tty1[user00]$ chmod 700 user00file

Activity

3.8 Create a new user following the steps described previously, and check that this new
user indeed cannot even read the recently created file or write on it.

3.8. Manage processes

UNIX is characterised by its excellent management of the processes execut-

ed over the system. First of all, we should learn to detect what processes are

running on the system and their particular features (mode in which they are

running, resources consumed, who is executing them etc.). We will execute

the ps (process status) command passing several parameters to see how these

affect the information returned by the command:

root@tty1[/]# ps PID TTY TIME CMD 481 tty1 00:00:00 bash 1559 tty1 00:00:00 ps

Without arguments ps tells us what processes are running on the terminal

on which it is executed; naturally, the first process will always correspond to

the shell.

GNUFDL • PID_00148393 66 Basic GNU/Linux

We could order another process to be executed in the background, sleep, for

example (a process that simply waits for the number of seconds that we pass

to it as a parameter to finish) and observe the ps return:

root@tty1[/]# sleep 300 [1] 1703 root@tty1[/]# ps PID TTY TIME CMD 481 tty1 00:00:00 bash

1703 tty1 00:00:00 sleep 1705 tty1 00:00:00 ps

Now we can ask ourselves about all the processes that are running on the

system:

root@tty1[/]# ps aux USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root

1 0.4 0.0 72 72 ? S 15:41 0:07 init [2] root 2 0.0 0.0 0 0 ? SW 15:41 0:00 [keventd] root

3 0.0 0.0 0 0 ? SWN 15:41 0:00 [ksoftirqd_CPU0] root 4 0.0 0.0 0 0 ? SW 15:41 0:00 [kswapd]

root 5 0.0 0.0 0 0 ? SW 15:41 0:00 [bdflush] root 6 0.0 0.0 0 0 ? SW 15:41 0:00 [kupdated]

root 52 0.0 0.0 0 0 ? SW 15:41 0:00 [kapmd] root 59 0.0 0.0 0 0 ? SW 15:41 0:00 [khubd]

root 433 0.0 0.1 1368 616 ? S 15:41 0:00 pump -i eth0 root 475 0.0 0.1 1316 596 ? S 15:41

0:00 /usr/sbin/automount root 481 0.0 0.3 2864 1988 tty1 S 15:41 0:00 /bin/bash -login root

482 0.0 0.3 2864 1988 tty2 S 15:41 0:00 /bin/bash -login root 483 0.0 0.3 2856 1952 tty3 S

15:41 0:00 /bin/bash -login root 484 0.0 0.3 2856 1976 tty4 S 15:41 0:00 /bin/bash -login

root 2086 0.0 0.3 3436 1552 tty1 R 16:06 0:00 ps aux

In certain situations it can also be interesting to execute the top command,

which tells us the activity of the CPU, use of memory etc., interactively.

Now we are going to boot a process, stop it, and order it to be executed in

the background. To do this, we will execute a sleep 20 and press the Ctrl+Z

key combination before 20 seconds, to stop it, jobs to make sure that it has

indeed stopped and obtain its identification number, and bg together with its

identification number to order it to run in background mode:

root@tty1[/]# sleep 20 <Ctrl+Z> [1]+ Stopped sleep 20 \intro root@tty1[/]#jobs [1]+

Stopped sleep 20 root@tty1[/]# bg 1 [1]+ sleep 20 & [1]+ Done sleep 20 root@tty1[/]#

Once the 20 seconds have passed, the process has stopped while still in the

background, and we have been told this on screen. We can check through ps

that indeed there is no process running. At this point, we can stop a process

and return it to the foreground using fg:

root@tty1[/]# man ls <Ctrl+z> [1]+ Stopped man ls root@tty1[/]# jobs [1]+ Stopped

man ls root@tty1[/]# fg 1

GNUFDL • PID_00148393 67 Basic GNU/Linux

3.9. Enabling and using the mouse

The mouse is an extremely useful tool for working in console mode, since it

can be used to select and paste text (this is how we have captured all inputs

and outputs to prepare this workshop’s text, for example).

Therefore, the first thing that we will do is to configure the mouse, and we

will do this using the most commonly used program, the gpm, which already

runs automatically in background mode (this is because gpm is a daemon, a

term that we will analyse in subsequent sections).

There are many types of mouse devices (mechanical, optical, laser and track-

ball) and many types of connections (serial port, PS/2 port, USB, laser, wire-

less: radio frequency, infrared or bluetooth), although currently the ones used

most often are the ones that have the USB or PS/2 type connectors (normally

they are distributed with the two types of connector). If we have a mouse of

the first type, we will execute the following line:

#gpm -m /dev/input/mice -t autops2

If what we have is a mouse connected to the PS/2 port, to enable it we will use

the same procedure as above varying only the device and type of mouse:

#gpm -m /dev/psaux -t ps2

In principle, after executing one of the two command lines above, as home,

by moving the mouse we should see the mouse arrow on all terminals, and

by executing:

sofia@tty1[/]$ ps aux | grep gpm

we should obtain a reply of the type

root 3594 0.0 0.1 1632 532 ? Ss 00:28 0:00 gpm -m

/dev/input/mice -t autops2

while gpm is running in the background.

If not, it means our mouse is non-standard. In this case we will need to read

the man of the gpm carefully and execute gpm -t help to try and identify

the type of mouse that adapts to the one we have.

Once the mouse has been configured, we can select the part of the text we are

interested in, and when we press the middle button we will paste the selected

content in the cursor’s current position. If we are used to using the mouse for

GNUFDL • PID_00148393 68 Basic GNU/Linux

placing the cursor, we could find that the results we obtain are not precisely

the ones we wanted, but by practicing a bit, we will soon get used to this way

of working.

We can also configure the gpm through the gpmconfig command or the dp-

kg-reconfigure gpm utility.

Activity

3.9 How would we configure the Touch Pad to emulate a two-button mouse?

We should note that the buffer content of the mouse is kept when we pass

from one tty to another.

Activity

3.10 Taking advantage of the fact that the mouse buffer content is kept between termi-
nals, open a vi session and on another place yourselves in the file system root, list its
content in detail and port this data to the text editor. Save the text file’s content and
using cat, check that we have effectively obtained the required results.

3.10. Other operations

To finish this first workshop, we will execute a series of commands to continue

with the process of becoming familiar with the system and acquiring resources

to solve potential problems in future.

We should find out about the system, the type of machine we are running on,

the hardware we have installed etc.

So here you have a few commands, remember that with man and the name

of the command you have some help to find out what the commands are for

and all the options that they can have.

knoppix@0[knoppix]$ uname -a Linux Knoppix 2.6.12 #2 SMP Tue Aug 9 23:20:52 CEST 2005 i686

GNU/Linux knoppix@0[knoppix]$ cat /proc/cpuinfo processor : 0 vendor_id : GenuineIntel cpu

family : 15 model : 2 model name : Intel(R) Pentium(R) 4 CPU 2.80GHz stepping : 7 cpu MHz :

2801.835 cache size : 512 KB fdiv_bug : no hlt_bug : no f00f_bug : no coma_bug : no fpu :

yes fpu_exception : yes cpuid level : 2 wp : yes flags : fpu vme de pse tsc msr pae mce cx8

sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe cid bogomips

: 5455.87 knoppix@0[knoppix]$ lspci 0000:00:00.0 Host bridge: Silicon Integrated Systems

[SiS] SiS645DX Host & Memory & AGP Controller (rev 01) 0000:00:01.0 PCI bridge:

Silicon Integrated Systems [SiS] Virtual PCI-to-PCI bridge (AGP) 0000:00:02.0 ISA bridge:

Silicon Integrated Systems [SiS] SiS962 [MuTIOL Media IO] (rev 14) 0000:00:02.1 SMBus:

Silicon Integrated Systems [SiS]: Unknown device 0016 0000:00:02.3 FireWire (IEEE 1394):

Silicon Integrated Systems [SiS] FireWire Controller 0000:00:02.5 IDE interface: Silicon

Integrated Systems [SiS] 5513 [IDE] 0000:00:02.6 Modem: Silicon Integrated Systems [SiS]

AC'97 Modem Controller (rev a0) 0000:00:02.7 Multimedia audio controller: Silicon

Integrated Systems [SiS] Sound Controller (rev a0) 0000:00:03.0 USB Controller: Silicon

GNUFDL • PID_00148393 69 Basic GNU/Linux

Integrated Systems [SiS] USB 1.0 Controller (rev 0f) 0000:00:03.1 USB Controller: Silicon

Integrated Systems [SiS] USB 1.0 Controller (rev 0f) 0000:00:03.2 USB Controller: Silicon

Integrated Systems [SiS] USB 1.0 Controller (rev 0f) 0000:00:03.3 USB Controller: Silicon

Integrated Systems [SiS] USB 2.0 Controller 0000:00:04.0 Ethernet controller: Silicon

Integrated Systems [SiS] SiS900 PCI Fast Ethernet (rev 91) 0000:00:08.0 CardBus bridge: O2

Micro, Inc. OZ6912 Cardbus Controller 0000:01:00.0 VGA compatible controller: ATI Technologies

Inc Radeon R250 Lf [Radeon Mobility 9000 M9] (rev 01) knoppix@0[knoppix]$ df S.files 1K blocks

Used Free Use% Mounted on /dev/root 2471 21 2450 1% / /ramdisk 401312 8388 392924 3% /ramdisk

/UNIONFS 7764900 7371976 392924 95% /UNIONFS /dev/hdc 4067388 4067388 0 100% /cdrom /dev/cloop

4963828 4963828 0 100% /KNOPPIX /dev/cloop2 2399762 2399762 0 100% /KNOPPIX2 /UNIONFS/dev/sda1

255452 14552 240900 6% /mnt/sda1 knoppix@0[sda1]$ free total used free shared buffers cached

Mem: 514720 495232 19488 0 15476 350084 -/+ buffers/cache: 129672 385048 Swap: 497972 0 497972

Activity

3.11 In the virtual directory /proc/ and in its subdirectories we will find a lot of infor-
mation regarding our system in text files. Place yourselves in this directory, and using
more or cat explore these files’ information.

3.11. Conclusion

This has been our first contact with a UNIX environment. It has helped to

break the myth that working on this type of operating systems is complicated

and difficult. Additionally, it has helped us to start understanding its capabil-

ities and versatility. We have learned how to move through its file system and

to carry out operations with the files, to search for information etc. Everything

we have learned up until now will be very useful from here on and will serve

as a basis for expanding our knowledge.

At the same time, the enormous hardware autodetection and configuration

capabilities of KNOPPIX means that it can be very useful to us when it comes

to installing Debian in the next workshop, in case hardware problems arise.

We can always restart KNOPPIX and study how it has solved this problem

(basically by studying the configuration files).

As a last workshop activity, we can reboot KNOPPIX in graphic mode, in other

words, without passing parameter 2 when we initiate it (another way of doing

this is by passing the knoppix lang=es wheelmouse parameters).

GNUFDL • PID_00148393 70 Basic GNU/Linux

4. GNU/Linux installation

4.1. Introduction

In this section we will look at the essential steps followed in most GNU/Linux

installation processes. Although each distribution has its own installation en-

vironment, all of them share some basic steps. In this section we will look at

these steps and explain the concepts we need to carry them out successfully.

It is important before we install a new operating system that we are suitably

familiar with the main components that we have installed on our computer

so that we can configure everything properly, even if the distribution we use

includes hardware detection.

It is possible that we may have two totally independent operating systems in-

stalled on just one hard disk. Although the process of installing another oper-

ating system on the same disk (or on another disk installed on the same com-

puter) should not interfere with the others’ partitions, it is advisable to make

backup copies of all our documents. Despite the fact that if we follow all the

steps we describe below correctly it is practically impossible to lose informa-

tion, caution is always advisable and so is making backups of important files.

Preparation to install Linux

Before starting with the installation process it is convenient to know the brand and mod-
el of the graphic and sound card we have installed; the network card; the brand, type
and characteristics of the monitor, as well as any other special hardware that we have.
Generally, for the motherboard, the CPU and the RAM, we do not need to know their
characteristics. To obtain this information, we can study the manuals given to us when
we purchased the computer or, if we have another operating system installed, use it for
this purpose (on WindowsTM systems we can obtain this data from the control panel).

4.2. Booting

In general, all GNU/Linux distributions provide some type of means for boot-

ing the installation process. Currently, it is typical to provide a start-up CD or

DVD or if our computer does not have the corresponding reader or if we wish

to do a remote installation, a start-up disk is provided.

The first step of the process tends to be selecting the type of installation we

wish to carry out. In general, this choice is given in order to identify the type

of user installing the system, providing accordingly more or less information

and allowing the user to configure the system in more detail or not. If we

have sufficient knowledge, it is advisable to do the installation in expert mode

(or similar) so that we can adapt the system better to our particular needs. In

some distributions, this first step also serves for choosing the version of the

kernel that we wish to install or to configure the installation process in graphic

GNUFDL • PID_00148393 71 Basic GNU/Linux

mode, text mode etc. It is essential to read carefully all of the information we

are provided with in this first phase so that we can choose correctly what best

suits the use we wish to give our system.

Next, most distributions will allow us to choose the type of keyboard (or sim-

ilar configuration) that we wish to use. Although there are many different

types, the most common ones are qwerty (the first characters starting from

the top left of the keyboard), so we will select qwerty/ es (Spain).

4.3. Partitioning the disk

Partitioning the hard disk is one of the most critical parts of the entire process.

This step involves dividing the disk into various sections, so that each one is

taken as an independent unit. If we already have an operating system installed

on our computer, the disk will be partitioned into one or several partitions,

but if the disk is new, it generally won’t be.

To install GNU/Linux we need to have at least one partition for it. The fact

that when we modify the size of a partition we need to eliminate it and create

it again implies losing all the information it contains. For this reason and oth-

ers, there are programs that allow us to modify the size of partitions without

having to eliminate them. fips is a program with a GPL license that allows

us to resize our partitions formatted with FAT (for WindowsTM systems of the

non-NT branch) without losing their information. There are also other com-

mercial programs that allow us to carry out this type of operation with any

other file system, meaning that if we do not want to lose our system’s infor-

mation, we should use one of them before starting with the entire process.

Disk partitions

Although with one or two partitions we would have enough to be able to install GNU/
Linux, it is interesting to divide the disk into more fragments and to place certain di-
rectories in different units so that we can manage the resources more efficiently, avoid
system crashes due to disk saturation etc. At all events, we will leave these aspects for
more advanced courses on administration.

It is advisable for GNU/Linux to use two hard disk partitions. One will serve

for saving the system files and the other for swap. Swap is an exchange zone

between the computer’s RAM and the hard disk. It helps when the operating

system’s RAM is totally occupied and the programs being executed need more

memory. This is when we start using the swap to save zones of the RAM that

are not being used, interchanging them so that the applications are not left

without available memory. It is also possible to do without swap, but it is

not advisable because the system will not be able to manage the resources

as efficiently; besides, when we use several applications simultaneously they

will be left without enough memory much more easily. Although the size of

the swap can be as big as we want, we advise making it the double of the

RAM installed on the computer if we have 64 MB or less, and the same if

we have more. These calculations are based on system performance tests that

Installation methods

Some GNU/Linux distributions
allow us to carry out the in-
stallation via any means: CD,
DVD, FTP, HTTP, hard disk,
NFS etc. There are also instal-
lation methods that allow us
to boot the process from other
operating systems.

Choice of file system

Although there are ways of in-
stalling GNU/Linux using the
file system of another operat-
ing system, it is not advisable
to use this type of installation
because the system’s perfor-
mance is significantly reduced.

GNUFDL • PID_00148393 72 Basic GNU/Linux

show that they reach a point where, if the applications need to use too much

swap memory, the performance decreases a lot, causing the system to become

almost saturated (to see what amount of RAM and swap memory is being used,

the system gives us the free command).

There are several applications for fragmenting the disk. One of the first

to appear was fdisk, although currently there are others such as cfdisk,

diskDruid etc. In some installation processes, we can choose which we wish

to use, although they all allow us to do exactly the same thing with changes

in the environment’s presentation. The way GNU/Linux identifies the disks

is /dev/hdX for IDE disks and /dev/sdX for SCSI and Serial ATA, where in

both cases the X is a letter corresponding to the disk to which we wish to refer

as follows:

Types of hard disks

For personal computers there are three types of hard disks: IDE, Serial ATA and SCSI. At
present, most motherboards carry Serial ATA controllers. SATA controllers allow up to
four or six hard disks. SCSI controllers (Small/smart Computer System Interface) allow up
to 8 devices and have higher transfer rates, although they are also much more expensive
than IDEs.

Table 4.1

Device Meaning

/dev/had Master of the first IDE channel

/dev/hdb Slave of the first IDE channel

/dev/hdc Master of the second IDE channel

/dev/hdd Slave of the second IDE channel

/dev/sda First disk of the SCSI or SATA controller

/dev/sdb Second disk of the SCSI or SATA controller

If we have more than one disk in our computer, before we enter the fragmen-

tation program we can choose which one to work on. When we create a par-

tition we will be asked if it should be primary or logical. On a hard disk we

can have up to four primary partitions and up to 64 logical ones. If we do

not need more than 4 partitions, we can choose either of the two types. If we

need more, we should bear in mind that the logical ones are placed within a

primary one (up to a maximum of 16 for each) so we cannot have 4 primary

partitions created and then add other logical ones. In this case, we should cre-

ate 3 primary ones and up to 16 logical ones in the fourth primary partition.

The following figure gives us a graphic example:

Master boot record

To save the information of par-
titions and the boot program,
the disks have a reserved data
zone called MBR (Master Boot
Record).

GNUFDL • PID_00148393 73 Basic GNU/Linux

Figure 4.1

When we create a partition, we need to specify what file system we will use for

it (Linux ext2, Linux ext3 or Linux swap). Once we have made the partitions,

we will save the configuration and we must tell the installation process where

we wish to place the root filesystem and system swap. Once we have carried

out these steps, we can continue with the rest of the installation process.

4.4. Installation of modules

The kernel’s modules are software parts specialised in a particular task. With all

manner of different devices and dozens of functions for multiple file systems,

online management operations etc., it was decided not to include all of these

drivers and functions as standard. In one of the first versions of Linux, when

the kernel we had did not include any function, we had to recompile it in

full and generate a new one adapted to our needs. With the incorporation of

modules this process is no longer necessary and we can directly choose the

functions we need.

Generally, the distributions already incorporate hundreds of different modules

for the Linux kernel. They tend to be organised into different categories to

make finding them easier and normally, with the same name of the module or

the brief description that comes with it we can already know what device it is

designed for or what function it carries out. This is why we mentioned earlier

that it is important to know what hardware our computer has: in this step we

can choose in more detail what modules we need. For some of them we may

Active partition

Of all the partitions of a hard
disk we can select one to
be the most active. This flag
serves to tell the system’s BIOS
or EFI which partition should
be initiated if it finds no start-
up program in the MBR.

GNUFDL • PID_00148393 74 Basic GNU/Linux

have to pass a special parameter (such as the I/O address, the interruption used

by the device etc.), information that we can obtain from the system’s BIOS or

EFI or through the procedures mentioned before.

It is also true that if the installation process carries some type of program for

automatic hardware recognition, the whole process of selecting and loading

modules is not necessary because it is already carried out automatically. How-

ever, it may not detect correctly a device we have installed, in which case we

will need to include the corresponding module manually.

If we forget to include a module (or install some new device) at the time of

installing the system, we can always use the following commands: insmod (to

add a new module), lsmod (to list the modules installed), rmmod (to eliminate

a module) and modprobe (to test one, and if it works correctly, include it in

the kernel). All of these modules are no more than binary files that we tend

to find in the system’s /lib/modules/ directory.

If we have problems discovering what hardware we have installed, a very prac-

tical utility that tends to come with the distributions is discover. We can use

it to know exactly what components we have and what modules1 correspond

to them.

4.5. Basic network configuration

After configuring the modules that will be included in the operating system’s

kernel, we need to configure the network (if we have the required card). Al-

though in this document we will not go into the details of computer networks,

we will provide the necessary ideas to carry out this step without any compli-

cations.

(1)We can normally find the mod-
ules configuration file in /etc/
modules.

The first thing we will be asked for is the name we wish to give the system.

This name will serve to refer to it without always having to remember its IP

address. Once we have entered the name, we will normally be asked if on our

network we use a mechanism called DHCP or BOOTP, which consists of having

a special server responsible for automatically assigning IPs to computers that

boot. If we use this mechanism, we need to specify that this is the case, and

if not, we will be asked for the IP and mask of our computer. If we do not

know this data, we must ask our network administrator. Next we will have to

enter the IP of our network’s gateway. The gateway is a device or a computer

that acts as a bridge between our local network and the Internet (if we do not

have any device of this type, we can leave this field blank). Next, we should

specify the name server or servers that we use. A name server (DNS server) is

a machine that gives us the equivalence between a name and an IP address. If

we do not know which one we are using we will also have to ask the network

administrator.

IP address

An IP address is a computer’s
identification within a network
when we use the TCP/IP pro-
tocol, the most commonly
used on the Internet.

GNUFDL • PID_00148393 75 Basic GNU/Linux

If we are in a local network, we will need to consult its administrator to pro-

vide us with all the necessary information in this regard. If we have another

operating system installed on the computer, we can also access its configura-

tion in order to obtain this information. However, we should never invent

these values, since the most likely result is that it will not configure properly

and we will cause problems on the local network.

4.6. Boot system

Once we have configured all these settings, we will need to install a small pro-

gram on the hard disk so that during the computer boot process we can choose

which of the operating systems we have installed we want to boot. Even if

we have only installed GNU/Linux on the system, we should still install this

program, since its boot system requires it.

There are various applications for carrying out this process. The most com-

mon ones are Lilo (Linux Loader) and Grub (GNU Grand Unified Bootloader).

The only thing these applications do is to initiate the process of loading and

executing the kernel of the operating system that we specify. In general, all

distributions detect whether we have another operating system installed on

the hard disks and automatically configure the boot system for us. All we need

to bear in mind is that we will have to place this program correctly so that

it runs when the computer is started up. Normally, it tends to be placed in

the MBR of the master disk of the first IDE channel or SCSI, which is the first

place that the computer’s BIOS or EFI inspects in search of a program of these

characteristics.

4.7. Package selection

Most installation processes include two ways of selecting the programs that

we will install on the system: basic or expert. With the basic selection process

the available packages will normally be grouped into large sets of programs:

administration, software development, office suites, mathematical etc. If we

still do not know exactly what programs we are going to use, this type of in-

stallation is the most appropriate, since we can choose what type of programs

we use in general and without going into detail.

Packages

A package consists of one or several interrelated programs/libraries, grouped to comprise
a single block. Most distributions include utilities for handling packages (installation,
elimination, configuration etc.). This type of organisation is very useful because when
we need a program, utility etc., we can install it all at once.

When we know a bit more about the system and know exactly what we are

going to use it for, the expert package selection is better. With this type of

selection we can adjust the programs that we need much better, saving disk

space and avoiding the system loading more programs than are necessary.

RedHat update

RedHat has also adopted a
download or update system in
a similar style to Debian’s apt.

GNUFDL • PID_00148393 76 Basic GNU/Linux

When we install a system for a specific use (http server, cvs etc.) it is advisable

to choose only those programs that we will really use, in order to avoid security

problems (the fewer doors we leave open, the safer the system).

Some distributions also allow the possibility of obtaining packages from dif-

ferent locations, such as one or several CDs or DVDs, from servers on the In-

ternet etc. Debian GNU/Linux was the first to have a system of this type, called

apt. This type of management is very useful because it gives us a great deal

of flexibility and keeps us informed about the latest program corrections and

updates.

4.8. Other aspects

We need to know what to do if we have had any problem with the installation

or at some time the boot system has not allowed us to load the operating

system. Usually, during the installation process there is a step that asks us if

we wish to create a recovery disk. It is always advisable to generate this disk,

since it allows us to load the operating system and access the file system in

order to fix what is needed.

In some distributions, we can do the same with the start-up CD. In the case of

Debian for example, the boot process itself includes a console (we can access

it by pressing Ctrl+F2) with the basic commands for us to carry out essential

recovery operations. At all events, if we are facing a serious problem that does

not allow us to boot the system correctly and we want all the usual tools, we

can also boot with a live CD of Knoppix or any other distribution and mount

the unit where we have the system installed in order to fix the fault. What is

important is to have one of these tools and to have tested it before a serious

problem occurs so that we are always prepared.

Most installation processes use an application called bootstrap, which we can

also install on the system with the corresponding package. With it we could

create our own installation process or see how the system really carries out

these installation and configuration tasks. We can reproduce most of them

with the base-config program or any of the others that it calls itself (you

can find further information in the manual), although we can always turn to

the operating system’s configuration files to do it manually.

GNUFDL • PID_00148393 77 Basic GNU/Linux

5. Debian Etch installation workshop

5.1. Introduction

Whereas the first workshop helped us to take our first steps on a UNIX-type

system, and to do so we used a distribution that leaves no trace on our com-

puter, since it booted and was executed from a CD-ROM or DVD-ROM, this

one serves to teach us how to install a basic GNU/Linux system on our com-

puter.

The distribution selected for this workshop is Debian GNU/Linux 4.0, known

as Etch (the latest one at the time of publishing this work), which was released

on 8th April 2007 following 21 months of continuous development. Debian

GNU/Linux is a free operating system that supports a total of eleven processor

architectures.

In terms of the software, its innovations include the desktop environments

GNOME 2.14, KDE 3.5.5a and Xfce 4.4; Office suites OpenOffice.org 2.0.4a,

KOffice 1.6, GNUcash 2.0.5, GNUmeric 1.6.3 and Abiword 2.4.6; Coreo Evo-

lution 2.6.3 and instant messaging Gaim 2.0; iceweasel 2.0.0.2 is the Firefox

navigator, while icedove 1.5 is the Thunderbird mail client; both programs are

versions that the registered trademarks do not use.

It also includes cryptographic programs, it is compatible with FHS version 2.3

and with the programs developed for version 3.1 of the LSB.

Debian GNU/Linux 4.0 introduces a new graphic interface for the installation

system which supports spellings that use compound characters and complex

languages. The installation system for Debian GNU/Linux is now translated

into 58 languages. As of Debian GNU/Linux 4.0, security and the efficiency of

the package management system has improved.

Debian GNU/Linux can be executed on computers running from PDAs and

pocket systems to supercomputers, via almost any intermediary system. It of-

fers maintenance for a total of eleven architectures: Sun SPARC (sparc), HP

Alpha (alpha), Motorola/IBM PowerPC (powerpc), Intel IA-32 (i386) e IA-64

(ia64), HP PA-RISC (hppa), MIPS (mips, mipsel), ARM (arm), IBM S/390 (s390)

and (introduced for the first time in Debian GNU/Linux 4.0) AMD64 and Intel

EM64T (amd64).

The choice between Debian and RedHat for this workshop and the two re-

maining ones was not easy, since RedHat offers commercial products that

are very well received in the business world, and in general it is considered

GNUFDL • PID_00148393 78 Basic GNU/Linux

much simpler to install a Red Hat than a Debian distribution. The fact that we

have chosen Debian is due to the following main reasons: firstly, this distri-

bution reflects the philosophy of GNU/Linux more faithfully and everything

is achieved thanks to the voluntary work of thousands of people; secondly,

it is probably one of the distributions that gives users most freedom when it

comes to installing and maintaining it; and as a last fundamental point, for its

packages system, which is probably the most consistent one currently avail-

able with 18,733 packages. Therefore, Debian has been chosen not because it

is considered better than RedHat (there are certainly as many opinions in this

regard as there are users of each distribution), but simply because its flexibility

makes it suitable for academic purposes. But aware of the influence of RedHat,

we have dedicated an appendix to this distribution so that readers can learn

about it too and form their own opinions.

Neither should we forget that aside from these two distributions there are

many more. But we believe that once you have had an initial contact with

any of them, it is each user’s job to test different distributions and form an

opinion of which best adapts to his or her needs or demands. For this reason,

once again we would encourage each individual to experiment and to test and

to target efforts in the most appropriate direction. GNU/Linux is not a closed

system, on the contrary, GNU/Linux is synonymous with freedom, and for

this reason the basic intention of this module is, in general, that once the

necessary foundations of knowledge have been established, this freedom can

be exercised with no impediments, with the benefit of all its advantages and

assuming all of its consequences.

We would note that in Spain, and in the educational context in particular,

many autonomous communities have chosen free software. It started in Ex-

tremadura, with GnuLinEx, a GNU/Linux distribution based on Debian. And

it was followed by Guadalinex in Andalucía, LliureX in the Community of Va-

lencia, Max in the Community of Madrid, Molinux in Castilla-La Mancha etc.

Although initially they were all based on Debian, some of them have changed

and are now based on Ubuntu, a GNU/Linux distribution that is currently

becoming very popular.

So, aware of the growing force of Ubuntu, we have dedicated an appendix to

this distribution so that readers can also become familiar with it and form

their own opinions.

Activity

5.1 This activity aims for you to visit the web pages indicated above to find out about the
actions that are being carried out, in different autonomous communities, to introduce
and promote the use of free software in the educational context.

Activity

5.2 Since we are going to install Debian, we advise visiting its web page and becoming
familiar with its content. Thus, we propose you visit the web page and its subsections.

GNUFDL • PID_00148393 79 Basic GNU/Linux

Once more we encourage readers to give their curiosity free rein, and on this occasion
to pursue the links they find interesting.

5.1.1. Installation systems

The installation system is understood to mean the resources or devices used

to install the operating system. Currently, almost all the distributions provide

different possibilities for carrying it out, but essentially we can distinguish

between two installation systems: CD-ROM/DVD-ROM or Internet. Also, in

general, it is possible to combine different systems.

Debian offers various types of installation:

• Using a set of CD-ROMs or DVD-ROMs that use debian-installer. This

set of CD-ROMs/DVD-ROMs contain all the Debian packages, meaning

that we can carry out a full installation without connecting to a network.

We can download Debian GNU/Linux using bittorrent (this is the recom-

mended method now), jigdo or HTTP/FTP.

• Using a CD-ROM. There are two different network installation images for

CD-ROM ("netinst") that can be used to install Etch with the debian-in-

staller. These images are designed so that you can boot from the CD and

install the additional packages you wish from the Net, hence the name

"netinst". The difference between the two available images is that the full

"netinst" image contains the installer and the base system, the "visitor’s

card" image is smaller and does not contain the base system, meaning it

has to download it from the Net. You can obtain a full CD image that does

not need a connection to the Net to complete the installation. To do this

you will just need to use the first CD of the set of Debian CDs.

• Through the boot disk (boot.img), when the disk boots, it will ask you to

insert a second disk (root.img). If you are going to carry out the network

installation, you will need the image floppy/net-drivers.img, since

it contains additional controllers for many Ethernet network cards, and

also includes support for PCMCIA. In the case of carrying out the instal-

lation from CD-ROM, and not being able to boot from it, boot first from

a disk and use the image floppy/cd-drivers.img as controllers disk to

complete the installation using the CD-ROM.

• Using the USB memory device. The easiest way of preparing your USB

memory device is by downloading hd-media/boot.img.gz and using

gunzip to extract the image. Next, mount the memory device (it will have

a FAT file system) and, finally, download an image of the Debian "netinst"

CD and copy this file onto the memory device (it should be .iso).

GNUFDL • PID_00148393 80 Basic GNU/Linux

• Using the network. The different methods for network booting depend on

the architecture and configuration for network booting (for example, by

DHCP). The easiest way to configure a network boot is probably using PXE.

• Using the hard disk. It is possible to boot the installer without using re-

movable means, but only if there is an existing hard disk, which could

have a different operating system. Download hd-media/initrd.gz, hd-

media/vmlinuz, and a Debian CD image in the highest level directory

on the hard disk (the CD image should have a file name ending in .iso).

Now we just need to boot Linux with initrd.

This summary is merely designed to list the different types of installation that

Debian offers. But to carry out the installation we advise you to visit its web

page, as we have already mentioned, and to carefully read the "HOWTO in-

stall".

The degree of interaction that an installation requires will also depend on

the system and selected type of installation. As can be expected, each one of

these systems has its advantages and its inconveniences: whereas a standard

installation allows us to configure step by step, something extremely useful

for adapting the system to our needs and possibilities, a totally automatic in-

stallation system requires more advanced infrastructure and knowledge, and

therefore more of an investment in both time and money, which can only be

justified if the number of systems that we are going to mount is very large (for

example, we could consider the implementation of this type of installation in

a department where computers designed for personal use cohabit with others

designed for parallelisation, and where their number often increases).

When it comes to choosing a system and a type of installation, we need to

consider several factors, such as: how many installations are we going to carry

out?, how many different installations are we going to carry out?, what level

of experience do we have? etc. The fact that this is our first installation leads us

immediately to the most interactive and frequently used type of installation:

the standard interactive installation.

Now, we just need to determine the installation system, and this will depend

fundamentally on whether we have an Internet connection and its speed. Ob-

viously, if we do not have an Internet connection or our access speed is very

low, we have no choice but to choose the installation based on a set of CD-

ROMs or DVD-ROMs; if on the other hand we have an acceptable Internet

access speed (such as provided by lines based on ADSL technology) or high

access speed (direct Internet connection via a gateway), the best option will

be to choose a network installation.

A network installation offers many advantages over one carried out by CD-

ROM or DVD-ROM, and especially with Debian, since it will allow us to in-

stall the latest available versions of the packages; furthermore, updating all the

GNUFDL • PID_00148393 81 Basic GNU/Linux

packages installed on the system is as easy as executing a single instruction.

But this fact should not make us abandon an installation using CD-ROM or

DVD-ROM if, as we have mentioned, we do not have an Internet connection

or the one we have is too slow (we should not underestimate either the pack-

ages that these CD-ROMs or DVD-ROMs contain, since Debian is characterised

as a distribution that only includes extensively tested packages). And once we

have completed the installation we can always change the content of the file

/etc/apt/sources.list and add the relevant lines to access the Internet

also, especially for security updates.

5.1.2. Types of packages

Next we focus on Debian and its packages system. A Debian package can be

identified by its .deb extension. All packages included in the official Debian

distribution are free according to the Debian free software guidelines. This en-

sures the free use and redistribution of the packages and all of their source

code. The Debian distribution distinguishes between four different classes of

packages. The distribution’s own packages are included in the main class,

whereas classes contrib, non-free and non-US are provided by the Debian or-

ganisation for the benefit of their users:

• main. Packages that comply with the Debian free software guidelines,

in other words, free use and redistribution of all the binaries comprising

them, in addition to their complete source code, is guaranteed.

• contrib.�Packages that, while free and therefore like the binaries have their

source code available, depend on other packages that are not.

• non-free. Packages that although they may be free of charge, have restric-

tive conditions that in some way limit their use or redistribution.

• non-US/main.�The packages of this area are free themselves, but cannot

be exported from a server in the US.

• non-US/non-free. Packages that cannot be exported from the US because

they contain ciphered software or software that can affect issues relating

to patents.

The official Debian distribution consists of the content in the main section

of the Debian file.

5.1.3. Package development status

The package development status will condition the type of distribution that

we install. Thus, there are three different types of distribution:

GNUFDL • PID_00148393 82 Basic GNU/Linux

• Stable�.�this is the most recent official version of the Debian GNU/Linux

distribution. It consists of stable well-tested software and changes only to

incorporate important security or usability corrections.

• Testing�.�Distribution that contains the packages expected to become part

of the next stable distribution. There are a series of very strict requirements

that each package must fulfil before moving from unstable to testing. Testing

does not have the security team’s updates at the same time as they are

released..

• Unstable� . This distribution includes the most recent Debian packages,

and consequently, the least tested. Therefore, they can contain serious

enough problems to affect the system’s stability.

Although all packages have their own dependencies, there is no problem in

mixing the packages of different distributions. apt-pinning (consult, man

apt-pinning) makes this task much easier. Even so, in critical systems it is

advisable to use only the stable distribution’s packages, which are the most

reliable.

5.2. Installation of Debian Etch

As commented, Debian presents various types of installation, from DVD-ROM,

CD-ROM, USB memories and diskettes, to using a network. The most com-

monly used types of installation are: CD-ROM or DVD-ROM, minimum CD-

ROM or network installation. If we can master the first and the last, the sec-

ond one is irrelevant. Therefore, we will start by installing our first system us-

ing the set of DVD-ROMs and, once finished, we will analyse the differences

between this process and the network installation.

For the first time in Debian GNU/Linux, multi-architecture CDs and DVDs are

provided that allow multiple architectures to be installed from a single disk.

5.2.1. Debian Etch flavours

Debian GNU/Linux 4.0 or Debian Etch supports twelve main architectures and

some variations of each architecture known as flavours (different pre-com-

piled kernels designed to support different types of hardware).

For example, Debian GNU/Linux 4.0 for Intel x86 architecture comes by de-

fault with version 2.6.18 of the kernel. For more information, you can consult

the document containing the installation instructions for the Debian GNU/

Linux 4.0 system (key name "etch"), for the Intel x86 architecture. Also, it

contains links to other sources of information, in addition to information on

how to make the most of your new Debian system.

GNUFDL • PID_00148393 83 Basic GNU/Linux

5.2.2. Installing Debian GNU/Linux 4.0 For Intel x86

The basic document that Debian offers us to install it is the Installing Debian

GNU/Linux 4.0 For i386, included in the DVD1 (/doc/install/manual/en/

index.html) available in different languages, including Spanish (/doc/in-

stall/manual/es/index.html). We advise reading this document and hav-

ing a copy of it at hand in case there is any problem, such as not having a

bootable DVD-ROM unit.

5.3. Installation of Debian Etch from DVD-ROM

We will carry out this installation on a standard computer over an ATA hard

disk connected as master over the standard primary IDE port. Where con-

trollers and SCSI disks are concerned, these will be detected without any prob-

lem during the start-up process, as in the case of Serial-ATA disks. From the

Debian web page we can download the three DVDs that belong to this version

although for a basic desktop system we will have enough with just the first

one.

5.3.1. Before starting the installation

Before starting with the installation itself, we will need to make sure that we

have a minimum disk space on our hard disk (we advise, having between at

least 2 and 3 GB of free space). If it is new, we can start directly with the

installation even if we are also considering installing another operating system

on it (all we will have to do is reserve the space for it with the type of partition

that it requires).

If we have a space that we had previously reserved, because we already had

in mind to install GNU/Linux, or we have a partition of any other operating

system where we wish to install it, we can also continue with the installation,

in other words boot from the DVD-ROM.

If on the other hand the hard disk is full and has just one partition (some-

thing we do not recommend since in general this makes the performance of

any operating system decrease considerably, and particularly those with not

very consistent file systems), we will need to liberate space so as to install De-

bian GNU/Linux 4.0. The difficulty of carrying out this operation will depend

strictly on what file system the partition contains.

It is likely that the operating system in question belongs to the Microsoft TM

product family; if the file system is of the FAT or FAT32 type (used by MS-

DOSTM, Windows95TMand Windows98TM) the problem is relatively simple to

GNUFDL • PID_00148393 84 Basic GNU/Linux

overcome, since the distribution itself provides an application (fips20.exe

on DVD1 /tools/fips20.zip) which will help us to repartition the hard

disk and create space for installing GNU/Linux.

If we already had a GNU/Linux operating system installed, we can use one

of the many applications that there are for resizing hard disk partitions and

creating new ones. Like partman for example (an original GNU/Linux tool),

cfdisk, gparted (hard disk partitioning graphic editor under GNU/Linux

and Gnome) or qtparted (hard disk partitioning graphic editor under GNU/

Linux and KDE). These applications manage FAT or FAT32 type file systems

as well as NTFS.

If we did not have a GNU/Linux operating system installed we can use the

Gparted Live CD, it is a live CD that contains a small and basic GNU/Linux

operating system executed directly from the CD-ROM containing the Gparted

application.

And as a last option, we can always turn to commercial applications.

Irrespective of the application that we use, we will always have to defrag�the

disk beforehand. The disk defragger is a utility that analyses local disks, find-

ing and consolidating fragmented files and folders. It can also defrag disks

from a command line using the defrag command. This will avoid problems,

since we could have fragmented files with part of them at the end of the par-

tition. Therefore, when we resize and take space from this final part, we would

delete these files and in the best of cases we would lose the information, but

if they are system files, we could render the operating system inoperative.

Therefore, it is very important to defrag the disk before repartitioning, and

likewise to make backup copies of all of the disk’s information. Better safe

than sorry.

5.3.2. Booting the installation system

Having reached this point, we are ready to start with the installation itself. To

do this, we will boot the computer making sure that the first device read when

it starts-up (boot) is the DVD-ROM unit (by entering the BIOS), and we will

place DVD1 in it. In a few moments a welcome screen will appear as follows:

GNUFDL • PID_00148393 85 Basic GNU/Linux

Figure 5.1

If we press the F1 key, a screen like the following one will appear:

Figure 5.2

We can press any of the options that the menu provides, if we press F6 for

example, the following will appear:

GNUFDL • PID_00148393 86 Basic GNU/Linux

Figure 5.3

But the most interesting one is F3, which will offer us the different methods

permitted for the installation. We can install using the default method, with

the graphic installer, in expert mode for greater control or in expert mode with

the graphic installer. So, let’s key in expertgui for an installation in expert

mode with the graphic installer:

Figure 5.4

and let’s start with the installation:

GNUFDL • PID_00148393 87 Basic GNU/Linux

Figure 5.5

Having done this, the kernel will load (for a few instants we will see the out-

puts of the various tests carried out on screen) and immediately afterwards

a Choose Language screen will appear so that we can select the installation

language using the cursors.

Figure 5.6

As of now, by pressing the Alt+F2 key combination and Enter, we have a shell

that, although very basic, can be used at any time during the installation.

On tty3 (Alt+F3) the kernel leaves its messages (in other words, the content

of file /var/log/messages).

GNUFDL • PID_00148393 88 Basic GNU/Linux

5.3.3. Installation language configuration

It is advisable to select the English option in the Choose language screen in

order to avoid potential translation errors. In general, and where possible, it

is always preferable to work with the original language; although, once again,

readers are free to decide what they consider best; in this case, they can choose

the language to be used during the installation.

Because this manual is documented in Spanish, it has followed the same phi-

losophy and all the installation captures have been made in that language.

Now that we are here, we select the language and press Continue:

Figure 5.7

On the Choose a country, territory or area screen, as with the language, readers

are free to decide what to choose. In this case, we have chosen Spain:

GNUFDL • PID_00148393 89 Basic GNU/Linux

Figure 5.8

Next, depending on the language and selected country, we are offered several

localisation parameters and we choose the one that supports UTF-8:

Figure 5.9

5.3.4. Keyboard configuration

As a first suggestion, the installation’s interface will prompt us to configure

the keyboard on the Choose Keyboard Layout screen and we will select the

keyboard layout that we wish to use:

Language configuration

The installation language does
not condition the keyboard
configuration or the language
in which we interact with the
system or other language con-
figurations. This option is on-
ly valid during the installation
process.

GNUFDL • PID_00148393 90 Basic GNU/Linux

Figure 5.10

We will press Continue so that the input device responds to the Spanish

keyboard’s mapping of characters. On tty2 we can verify that indeed we have

accents, for example.

5.3.5. Detecting and mounting the CD-ROM

The next step is to detect and mount the CD-ROM (DVD-ROM). We are told

that it has been detected and are advised to select all the modules that we are

going to load:

GNUFDL • PID_00148393 91 Basic GNU/Linux

Figure 5.11

And, next, if we are carrying out the installation on a laptop computer, we

will be asked if we wish to initiate the PC card services to use PCMCIA cards,

to which we will answer selecting Yes:

Figure 5.12

5.3.6. Network configuration

The next step of the installation process that we will carry out is to Detect

network hardware:

GNUFDL • PID_00148393 92 Basic GNU/Linux

Figure 5.13

We can configure the network by DHCP or manually. In this case, we will

select the option to configure the network by DHCP.

Figure 5.14

Once we have configured the network, it is time to name the system that we

are installing, we are asked for the Name of the machine, which by default it

suggests calling debian. We can delete this suggestion and give it a name that

we prefer, consisting of just one word.

GNUFDL • PID_00148393 93 Basic GNU/Linux

Figure 5.15

Now, all we have to do is specify the system’s local name. If it is going to form

part of a network, and therefore, needs a domain, this will be specified on the

following screen.

5.3.7. Hard disk partition

Once we have specified the name of the machine and its domain (where nec-

essary) the installation process will suggest that we detect disks and then par-

tition the disks.

GNUFDL • PID_00148393 94 Basic GNU/Linux

Figure 5.16

When it comes to partitioning the disks, the size, characteristics, and number

of partitions will depend to a great extent on the type of use and available

amount of the hard disk space. Since this is an installation for educational

purposes, information is given next on the partitions to be created assuming

that we are working on a space of between five and fifteen gigabytes designed

for the new installation.

We need to create two partitions at least: a first one for mounting the system

and a second one as swap (it is true that we can perform installations without

the swap, but, as already mentioned, it is highly inadvisable). To increase the

system’s efficiency, we will create six partitions.

The tool that Debian provides for disk partitioning is cfdisk and it functions

based on using the cursors to move through the disk partitions (upper part of

the screen, with the Up and Down cursors), as well as to select the potential

operations that can be carried out at each time (lower part of the screen, with

Left and Right), since these will vary according to the status of the selected

partition. To create a new partition, we need to select the [New] option; next,

if we can still create primary partitions (the maximum number is four), we will

be asked whether we wish to create it as a primary or a logical partition; then

we need to specify the size of the partition, and finally, its physical location

on the disk (it is advisable to make a sketch of how we want to do this before

starting to partition the disk, and to create the partitions on this basis, so that

we can always answer this question with [Beginning]).

The first partition is the one designed to host the root (/); it does not have

to be very big and for this reason we will allocate it at least ten percent of

the hard disk, preferably in a primary partition, but if we do not have it, we

GNUFDL • PID_00148393 95 Basic GNU/Linux

can create it as a logical partition without it mattering. We will specify that

the partition goes at the beginning of the free space and that the type of file

system chosen for the partition is ext3.

The second will be used for the swap partition (swap). It should have at least

the same size as the RAM, 512Mb, 1024Mb etc., with this size we will make

sure, save for exceptional cases, that it will never become saturated; it is also

preferable for this to be a primary partition, but if it has to be logical, it will not

affect the system’s performance either. If we have more than one GNU/Linux

installation on the same computer, we can use the same swap partition for all

of them, since the information that can be stored on it during the system’s

functioning is totally volatile. The file system for the swap partition will be

of the swap type (swap area).

The third partition will be for the usr directory (/usr); we need to bear in mind

that this partition will host most of the software to be installed, meaning that

its size will have to be significant, approximately forty percent of the disk. Its

file system will be ext3.

The fourth partition will be used for the var directory (/var), where libraries,

log files etc., are kept. As in the previous case, it will also be ext3.

The fifth partition we will use for users’ home directories (/home), designed to

store users’ data, and depending on the size of the hard disk, we can allocate

between ten and twenty percent of the hard disk to it, depending on the num-

ber of users and use to be made of the system. This partition will also be ext3.

The remaining space, the sixth partition, will be used for the var directory

(/tmp) and its file system will also be ext3.

The distribution of partitions above is merely a suggestion, with two objec-

tives: on the one hand, to improve the performance in relation to an instal-

lation based on just one or two partitions, and on the other hand to make

the system more robust. Among other advantages, having the data distributed

over different partitions means that the corruption of one of them does not

automatically imply the loss of all the system’s information. Obviously, we

can create other partitions or omit some of the ones we have proposed (the

order of the partitions does not affect the system’s behaviour).

Therefore, having detected the disks, we can select the partition method,

which can be either guided or manual. If it is manual, we can create the par-

titions we wish, with the size and type of file system, as we have explained

above, for example.

And if we select the guided option, it will suggest the partitioning system for

us. Because this is our first installation, we will select the guided option.

GNUFDL • PID_00148393 96 Basic GNU/Linux

Figure 5.17

Next, we will be shown the choice of devices to be partitioned. If we have

more than one hard disk, we can use the cursors to select which one we wish

to operate on. Having made the selection, we press Continue.

Debian suggests various partitioning schemes: all the files on the same parti-

tion, adding a partition for user data, or separating the main partitions. As we

have seen beforehand, it is not advisable to do the installation on the same

partition.

Since we have an option that allows us to separate the partitions automatically

/home, /usr/, /var and /tmp, we will choose this option for our first instal-

lation of a Debian GNU/Linux system.

GNUFDL • PID_00148393 97 Basic GNU/Linux

Figure 5.18

So we will follow the previous partitioning scheme, obtaining the following

partitions table:

Figure 5.19

As we can see, this is the proposed partitioning that the application automati-

cally suggests. If we wish to modify a partition (its size, position or filesystem),

to add or even delete any of the proposed partitions, we can select the parti-

tion in question and make the relevant changes, or go to the Undo changes

to partitions option and repartition.

GNUFDL • PID_00148393 98 Basic GNU/Linux

If, however, we wish to apply this proposed partitioning, we just need to select

the Finish partitioning and write the changes to disk option and Continue.

Now this information will be written on the MBR and the changes will become

effective. We quit the cfdisk application and continue with the installation.

Figure 5.20

5.3.8. Time configuration

Immediately after partitioning the hard disk, we enter the system’s time con-

figuration.

GNUFDL • PID_00148393 99 Basic GNU/Linux

Figure 5.21

Next, we select UTC time for the clock, universal time coordinated.

Figure 5.22

5.3.9. Configuring users and passwords

Once we have completed the procedures for configuring the system’s time, it

is time to configure users and passwords.

Bibliography

For more information on
universal time coordinat-
ed, visit the "Universal
Time Coordinated" entry in
Wikipedia.

GNUFDL • PID_00148393 100 Basic GNU/Linux

First of all, the system will ask us if we want to enable the encrypted passwords

option, so that only the root user has access to the file containing the pass-

words (/etc/shadow). This represents an additional security measure for our

system.

The second question is to decide whether we will allow the root user access

to the system or whether we want to create a user with permissions to be

the administrator using the sudo command. Here, we will leave the reader to

decide how he wants to work when carrying out administration tasks; in this

first installation, we will allow the root user access to the system.

Figure 5.23

Now we need to write the password of the root. It is important to follow the

recommendations in selecting this password and to remember it. In order to

confirm that the required password has been entered and avoid possible typ-

ing errors, we are asked to retype the password as confirmation.

GNUFDL • PID_00148393 101 Basic GNU/Linux

Figure 5.24

As mentioned, always working as home is bad policy for various reasons.

Therefore, the system advises us to create a normal user account.

Figure 5.25

It will ask us for the full name of the new user:

GNUFDL • PID_00148393 102 Basic GNU/Linux

Figure 5.26

and next, for the name of this account, in other words, the user to access the

system:

Figure 5.27

and, finally, for the user’s password, which for the same reason as before, needs

to be written twice:

GNUFDL • PID_00148393 103 Basic GNU/Linux

Figure 5.28

5.3.10. Base system installation

With all of this information, the system starts installing the base system:

Figure 5.29

The first thing it will ask us for is the kernel we would like to install. As we

can see from the following image, we can choose between four kernels. We

will select the first option:

GNUFDL • PID_00148393 104 Basic GNU/Linux

Figure 5.30

5.3.11. Configuring the package manager

Figure 5.31

GNUFDL • PID_00148393 105 Basic GNU/Linux

5.3.12. Selecting and installing programs

Figure 5.32

5.3.13. GRUB installation

Next, the package starts installing GRUB boot loader. It analyses our hard

disk and looks for all installed operating systems so that once the installation

of Debian is finished when we restart our computer, we can choose between

the installed operating systems. It will ask us for confirmation to install it on

the MBR, and we will reply affirmatively.

5.3.14. Reinitiating the system

We have reached the end of the base system installation, and this is the dis-

played screen:

It is time to reinitiate the system to boot the base system that we have installed

on our hard disk, and from there to start customising our first GNU/Linux

installation. Therefore, we will remove the DVD-ROM and click the Continue

option shown on the previous image.

5.3.15. Base system boot

If everything has gone as it should, when we reinitiate we will see that the

system allows us to choose the Debian GNU/Linux operating system:

GNUFDL • PID_00148393 106 Basic GNU/Linux

Figure 5.34

After a few moments, during which the screen will display the results of vari-

ous processes executed during boot, the system will display a welcome screen

and invite us to continue with the installation, reminding us that we can re-

peat this process whenever we want by executing the base-config command

as root. We click OK and continue:

Figure 5.35

5.3.16. apt configuration

In this section we are asked about the sources where apt must go to find in-

formation for building its database over the packages (dependencies, installa-

tion status etc.). Since we are carrying out an installation fully based on DVD-

ROM, we will select the first option, cdrom, and click on OK:

GNUFDL • PID_00148393 107 Basic GNU/Linux

Figure 5.36

On the following screen, we will click OK again:

Figure 5.37

And since we have inserted the DVD-ROM 1, after a few moments during

which apt extracts the information regarding the packages that this DVD con-

tains, we will be asked if we wish to add the content of another DVD to the

database. Once we have inserted the DVD-ROM 2 in the reader, we will answer

this question with yes:

GNUFDL • PID_00148393 108 Basic GNU/Linux

Figure 5.38

We do the same with the third DVD-ROM. Once the content of the three

DVD-ROMs has been scanned, we will be asked if we wish to add any other

source from which apt can obtain packages, and for the time being we will

answer no.

5.3.17. Tasksel

Next, the package selection program tasksel will run:

Figure 5.39

We will not mark any option, since we will also be able to run this program

from the command line once we have completed the installation. As root we

will simply have to execute the tasksel command. There is also another

package selection program, dselect.

Next, we will be asked for the Exim configuration; since this workshop is not

dedicated to configuring this mail management program, we will select option

6 to quit the program:

GNUFDL • PID_00148393 109 Basic GNU/Linux

Figure 5.40

And this is where the configuration of the Debian base system ends:

Figure 5.41

Finally, after a few moments the screen will display debian login and next

we will key in the user that we have created during the installation process,

for example sofia, and after hitting Enter, we will write the password to initiate

the session in the Debian GNU/Linux system that we have just installed:

GNUFDL • PID_00148393 110 Basic GNU/Linux

Figure 5.42

Now we have a standard basic system installed on our computer. Now be-

gins the task of tailoring the system to our requirements. Having reached this

point, it is very important to distinguish between two types of systems: devel-

opment systems and production systems.

A development system is one designed for experimentation, where tests and

experiments are carried out, and where stability and efficiency are not primor-

dial. It is a system designed to acquiring knowledge about the system itself.

However, stability and efficiency are the main concerns for a system designed

for production. Therefore, we need to make sure that it contains solely and

exclusively the strictly required packages, since having unnecessary packages

installed will be detrimental for the system’s efficiency. The strategy to be ap-

plied before mounting a production system (a web server, applications server

etc.) always includes working first on a development system, where different

tactics can be rehearsed and tested so that we can draw conclusions before

mounting the production system.

Our first system will obviously be a development system, both because we

have not conceived it to cover a particular need, and because it is our first

experience of mounting a system, for the main purpose of acquiring knowl-

edge. We will install and uninstall various packages, test different configura-

tions etc., and of course this will seriously affect the system’s stability and

efficiency. Hence, we encourage students once they have completed this sec-

tion and have a global idea of what installing a system involves, to reinstall

the entire system again starting from scratch, to adapt it strictly to their own

requirements.

GNUFDL • PID_00148393 111 Basic GNU/Linux

5.4. Network installation of Debian Etch

Many of the steps for carrying out a network installation are the same as for

a DVD-ROM installation, so we will highlight and focus only on the aspects

that differ from the process described above.

5.4.1. Particularities of a network installation

The basic difference between an installation made from a set of DVD-ROMs

and from a network is the location of the packages when it comes to installing

them. Whereas for an installation made using DVD-ROMs we will have to

insert at least one of them in the disk drive each time we install a new package

so that we can extract the necessary data from it, with a network installation

the packages are obtained remotely, which allows us firstly, to access their

latest version, and update all the ones we have installed with just a single

command line (apt-get upgrade).

At the same time, to carry out a network installation, we generally need just

one CD-ROM or single DVD-ROM containing the necessary information for

booting a basic operating system from which we can make the installation

program run (which is already included on the CD-ROM or DVD-ROM, to-

gether with the modules that may be necessary for configuring the network

access), and from here onwards, the rest of the information will be obtained

remotely.

5.4.2. Aspects common to the different methods of installation

As already mentioned, many of the steps that we need to follow to carry out

a network installation are similar to those for carrying out an installation us-

ing the distribution’s set of DVD-ROMs. Therefore, we can launch the instal-

lation program in the same way as before ([5.3.1.] and [5.3.2.]) and initially

follow the same steps to configure the installation language, the keyboard, to

partition the hard disk and to activate the partitions ([5.3.3.], [5.3.5.], [5.3.6.]

y [5.3.7.]).

At this point, normally the kernel will have recognised our network card and,

if not, we will proceed to configure the relevant module in order to make it

operative. In many cases the configuration, the passing of parameters, can be

done automatically through modprobe, a program that can be launched from

the installation interface itself after selecting a module. Having done this, we

will need to configure the Network (through DHCP is the most convenient),

specify from which site we will obtain the sources, and from here on, follow

the same steps as with the CDROM to finish the installation.

GNUFDL • PID_00148393 112 Basic GNU/Linux

5.4.3. Network module installation

This is a key point for carrying out the network installation, since this is where,

if the driver of our network card has not been compiled within the kernel,

we will have to select the required module in order to obtain access to it.

In the first place, we need to find out whether our network card has already

been detected during the boot process and whether its corresponding driver

has been loaded. To do this, we will access the second terminal (Alt+F2) and

execute the dmesg command. Now we need to search, from the various lines

returned by this command, whether any one refers to our network card. As an

example, for a RTL-8029 card (Realtek Semiconductors) we should get:

sofia@debian:~$ dmesg . . . ne2k-pci.c:v1.02 10/19/2000 D. Becker/P. Gortmaker

http://www.scyld.com/network/ne2k-pci.html PCI: Found IRQ 11 for device 00:0b.0

PCI: Sharing IRQ 11 with 00:07.2 eth0: RealTek RTL-8029 found at 0xe400, IRQ 11,

52:54:00:DB:FB:D4. . . .

If the search has been unsuccessful, firstly we need to determine what network

card we have. To do this, the best thing is to turn to the documentation that

comes with it or to inspect it visually. If this is not possible, there are other

strategies for determining what our card is, like pressing Alt+F2 to access the

console and investigating the content of the /proc/pci file (using cat, for

example), or we can refer to the information that another operating system

we have installed on the computer may be able to provide.

Once we know what type of network card we have, we need to find out what

module will allow us to access the card. The safest strategy for this purpose is

to use any search engine, for example Google, enter key words for our card,

(reference of the card NIC linux module, for example) and read some of the

pages that we find. We can also go to the pages of the main linux distributions

and enter the card reference in their searches. As a last resort, we can go to the

documentation of kernel network modules, where it specifies the correspond-

ing module for all supported cards.

It is also good to know whether the manufacturer has developed its own mod-

ule. Finding a module for a card can be a fairly complicated task, it can even be

impossible, since there might not be support for that card or maybe advanced

methods are needed in order to configure it; for this reason, we always advise

using the most standard possible cards.

Once we have found out what module we need, after installing the kernel,

we should select the suggestion given to us by the Configure Device Driver

Modules main menu. After a warning screen, reminding us that many drivers

are already included in the kernel, we will enter the Select Category module

selection screen, (we can access this interface at any moment by executing the

modconf command. This command serves as a front-end for administrating

GNUFDL • PID_00148393 113 Basic GNU/Linux

drivers that have been compiled in a modular fashion with the kernel) and

using the cursors we will select the kernel/drivers/net option. Once inside the

screen for selecting network card modules, Select Kernel/drivers/net modules,

we will select the module we need, again using the cursors. After answering

yes to whether we really want to install the module, we can let the autoprobe

configure the module for us, unless we need to pass a particular parameter to

the module in question. After a few seconds, we will get a message telling us

whether the module has been installed correctly or not.

5.4.4. Network configuration

Once we know that the network card is operative, from the installation main

menu we will follow the proposed Configure the Network step in order to con-

figure the network. In the first place, we will need to configure the host name

(before Debian was suggested, for example), without entering the domain.

Next, we will need to enter the IP, network mask, gateway, domain name, and

DNS servers (up to three, separated by spaces).

5.4.5. apt configuration

Once we have configured the network, the following steps we should follow

are identical to those with the CD-ROM installation, until we reach the Apt

Configuration. At this point, instead of choosing the CD-ROM option, we will

select the most appropriate network option. For practical purposes it is the

same to select the http protocol as the ftp. After making the selection we will

be asked whether we want to use non-US type packages; in principle, unless

there are legal problems, we will answer yes.

Regarding the answer to the following question, referring to the use of non-

free packages, students are allowed to make their own choices according to

their own ethical principles. Next, we will be asked what status the mirror

will have from which apt will obtain the packages; we should always choose

the one most readily accessible, which tends to be the one nearest to us geo-

graphically speaking. Having selected the status, we will be asked to select a

specific server (the netselect application is designed to facilitate the choice

of package servers based on the criterion of access speed). When this issue has

been resolved, we will be shown the proxy access configuration screen; if we

do not need to use this service, we will leave the line blank.

It is important for security reasons to obtain critical packages from secure

servers. For this reason, we advise obtaining them specifically from http://

www.debian.org/security/. Having completed all these steps, apt will connect

with the mirror that we have specified in order to configure its database. From

here onwards, for the rest of the installation we will follow the same steps as

we did for the CD-ROM installation.

GNUFDL • PID_00148393 114 Basic GNU/Linux

5.5. Conclusion

In this workshop we have learned how to install GNU/Linux on our comput-

er. Although for now our system is very basic, the workshop’s objective has

been totally fulfilled, since we have laid the groundwork for starting to take

advantage of the flexibility and potency of this operating system. In the next

workshop we will learn how to configure the system and how to install new

applications so that we can adapt it and equip it with all the tools we consider

necessary in order to cover our needs.

GNUFDL • PID_00148393 115 Basic GNU/Linux

6. Basic configurations

6.1. The login system

If we have still not configured the graphic environment, when we boot a GNU/

Linux system a login screen will appear asking the user to identify himself or

herself before starting to use the system. In fact, most distributions launch

several consoles that we can access through Alt+F1, Alt+F2 etc.

This allows us to work simultaneously with several accounts at the same time,

having various sessions open to run different programs etc. The program re-

sponsible for managing each of these consoles is getty. The only thing that

this program does is to open a connection with the appropriate device (in the

case of the screen consoles, it is /dev/ttyX, where the X is the number of

the console) and to launch the login application. This mechanism gives us a

lot of flexibility, since the getty program itself allows communication with

different devices meaning that we could connect a terminal to the computer’s

serial port, mount a console using a telephone line and a modem etc.

Before launching the de login application, a welcome message appears on

screen. We can configure this message in the /etc/issue file, writing what-

ever we want. In this same file we can also show some of the system’s variables

referring to them as:

Table 6.1

\d current date

\s name of the operating system

\l console number

\m computer architecture

\n name of the computer

\o name of the domain

\r operating system version

\t current time

\u number of active users on the system

Once we have entered the system, the login program takes care of display-

ing the day’s message. This message is what is written in the /etc/motd file,

which we can also change. This mechanism is very useful for informing all

users of a specific event, warning them of any problem etc. If a user wish-

GNUFDL • PID_00148393 116 Basic GNU/Linux

es to suppress this message, he can do so by creating an empty file called

.hushlogin in his home directory. After displaying this message, the login

process launches the shell configured for the user by default. The first thing

the commands interpreter will do is to execute the content of the .profile

file (which should be in the user’s home directory). This file serves to execute

the configured instructions every time the user enters the system. In addition

to this one~/.profile, we also have the /etc/profile, which is executed

for all system users and should be configured generically for all users with the

options we want without having to put the instructions in each user .pro-

file.

6.2. Exploring the bash

Although the .profile file is executed irrespective of the shell that we use,

the files .bashrc or .bashprofile tend only to execute when we use the

interpreter or bash shell (although it can be configured from the user’s .pro-

file, which is where the execution of this file is called). Let’s look at a few of

the instructions that we can find in these files:

#BASIC CONFIGURATIONS mesg n umask 022 #PATH export PATH= /usr/local/sbin:/usr/local/bin:

/usr/ sbin:/usr/bin:/sbin:/bin:/usr/bin/X11 #PROMPT export PS1='\h:\w\$ ' #USER ALIAS

alias l='ls - - colour=auto' alias ll='ls - - color=auto -al' alias

rm='rm -i' alias cp='cp -i' alias mv='mv -i' alias v='vim'

As we can see, in this file we can define whatever we want. The first two in-

structions of the file annul other users’ incoming messages and configure the

permissions that the new files that we create will have. The following instruc-

tion is the definition of the PATH. The PATH is the directories where we have

the commands, programs, applications etc., that we want to be able to call

from any place within the file system hierarchy without having to write the

full path [we separate every PATH directory with a colon (:)]. The following

declaration is the system’s prompt. The prompt is the line that appears in the

shell before the "#" character (for the root user) or "$" (for all other users). We

can configure this prompt for ourselves as we wish using the following system

variables:

Table 6.2

\d system date

\h name of the machine

\s shell that we use

\u user name

\v bash version

\w current directory

GNUFDL • PID_00148393 117 Basic GNU/Linux

\! history number command

\$ the "#" appears if we are the root user and "$" appears for all other users

PATH variable

If we wish to execute the programs from the directory that we are in without having to
place "./" at the beginning, we could add this entry to the PATH declaration. Likewise,
if the PATH does not have the program that we need to execute, we can specify its full
path in the command line. In any case, it is not advisable to add "./" to the PATH because
it can become a security hole.

Finally, we have the user alias. The alias2 are synonyms, generally for the com-

mands that we use most often (to avoid having to write them in full). For ex-

ample, in one of the alias that we had in the example we defined that when

we write lls --colour=auto should execute.. This way, we can use long

commands without having to write everything every time we use them.

(2)We can see all the aliases defined
from the same alias command.

In defining both the PATH and the prompt we have used the export com-

mand. This command allows us to define what we call an environmental

variable. The shell uses these variables to carry out certain operations, save

certain types of information etc. We can see all the ones that are declared using

the same export command. With set and unset we can also handle other

attributes of the command interpreter.

Some of these variables and attributes that the bash has by default, are:

• PWD: current directory.

• BASH VERSION: bash version that we are using.

• RANDOM: generates a different random number every time we display its

content.

• SECONDS: number of seconds that have passed since we opened the shell.

• HOSTNAME: system name.

• OSTYPE: type of operating system that we are using.

• MACHTYPE: computer architecture.

• HOME: user’s home directory.

• HISTFILESIZE: size of the history file (number of commands that are

saved).

• HISTCMD: number of the current command in the history.

• HISTFILE: file where the command history is saved (in general, .bash

history the user’s home directory).

By handling these variables we can customise our commands interpreter much

more adapting it better to our tastes and needs.

echo command

With echo $VariableName
we can see the content of
these variables and their at-
tributes.

GNUFDL • PID_00148393 118 Basic GNU/Linux

6.3. The boot system

Although with the installation of the operating system a boot system is already

configured and installed, in this subsection we will look in more detail at what

options we are given and how we can customise them and adapt them to our

requirements. Although there are many, Lilo and Grub are the most common

ones in GNU/Linux environments, so we will only focus on these two.

Before going into detail about the configuration of these two programs, we

will explain how a standard PC’s boot system works. As we already know, we

can configure a computer’s boot sequence from the BIOS or EFI. Generally,

this sequence tends to start searching in the disk drive continuing with the

CD/DVD drive and the hard drive. Although we can install Lilo or Grub on a

disk or boot sector of a CD, it is more usual to install it on the hard disk so as

not to have to insert the disk every time we boot our computer.

When the computer’s boot system searches for the hard drive, the first thing

it will inspect is whether the MBR (Master Boot Record) of the first hard drive

(master of the first IDE channel or first disk of the SCSI channel) contains

any indication of the system to be loaded. The MBR is the first track of the

hard disk, where the information regarding configured partitions is stored,

and optionally, the program responsible for initiating the operating system.

If this program is not found here, the boot sector of the disk’s active partition

will be inspected. Whenever we wish to install a program in the computer’s

boot system we must place it in one of these zones. In the following figure

we can see this entire process when the boot sequence is first the disk drive

and then the disk:

Figure 6.1

GNUFDL • PID_00148393 119 Basic GNU/Linux

Whenever we install a boot system, we need to remember that the order in

which this sequence is carried out is important: if we install one on the MBR

and another on the active partition, the MBR’s will be executed because this

is the area that the BIOS or EFI inspects first. If we do not have an active

partition, we need to place the boot program in the MBR. At all events, the

most advisable is to always install the program on the MBR because it is the

first thing to be inspected. Although we may have other operating systems

installed on other disks, we should install Lilo or Grub in one of these zones.

In the program configuration we will tell it where the operating system that

we wish to load is located.

Normally, in modern computers the boot sequence is: CD/DVD, hard disk,

USB, network etc.

6.3.1. Grub

Grub allows us many different configurations to carry out almost any action

with the computer’s boot system. Grub also serves to install a program in the

computer’s boot zone that we wish.

It offers many more possibilities that make it very versatile: it provides a small

commands interpreter when we boot the computer, gives us access to the disk

partition files without loading any operating system etc. As in the previous

case, in this subsection we will just look at its basic configuration. If we wish

to go into further depth about its use, we can study its manual or the corre-

sponding HOWTO.

The Grub3 boot system is loaded in two phases. Generally, with the installation

of the package, two files corresponding to these two phases are incorporated.

When we start up Grub if we do not want to be shown any menu for selecting

the operating system we wish to load, all we have to do is execute the Grub

program and execute in the commands interpreter that it shows us:

Boot system

The boot system of a GNU/Linux or similar system allows us, with the same file system,
to load various different kernels. This way, we can work with different kernels without
having to install the system anew. To configure it we will just need to specify two local
sections, placing which kernel we will use in each one.

$ install (hd0,0)/PATH/stage1 d (hd0) (hd0,0)/PATH/stage2

This instruction installs Grub on the MBR of the master disk of the first IDE

channel. The way of referencing the disks varies very little from how it is done

in GNU/Linux and with Lilo. In hdX the X, instead of a, b,... , is 0, 1 etc. For

partitions, we also start with number 0 to name the first and unlike hda1, we

should write (hd0,0) and so on for the rest. Reading the instruction in this

way let’s look at how the first parameter serves to designate where the file of

the first phase of Grub is (we specify the corresponding partition, directory

(3)Grub (Grand Unified Bootloader)
is the boot program of the GNU
project.

GNUFDL • PID_00148393 120 Basic GNU/Linux

PATH and file stage1). In general, when we install the Grub package we also

add these two files for each one of the loading phases (they are normally found

in /usr/share/grub/i386-pc/). The d parameter (hd0) indicates that the

first phase of the Grub will be installed on the MBR of the first disk. The last

option indicates where the file is located for the second phase of loading,

which is executed by the first.

Passing parameters to the Linux kernel

With Grub we can pass parameters to the Linux kernel at the moment of booting. This
is very useful when we wish to carry out a specific operation on the system; for example,
by passing single or 1 the system would initiate in runlevel 1, with root=/dev/hda3
we would specify the file system root etc.

With this configuration, when we restart the computer, the Grub commands

interpreter will appear by default. With it we can handle many aspects of the

disk, boot the operating system that we want etc. If we wish to boot a GNU/

Linux system we will write the following instructions:

$ kernel (hd0,0)/vmlinuz root=/dev/hda1 $ boot

With the first we are specifying where the kernel image is located (with the

parameters we want) and with the second we initiate the process of loading

the operating system. If we choose a selection menu so that we do not have

to write these commands every time we start the computer, we can generate

a menu file like the following one (the comments begin with "#"):

#Specification of the operating system to be loaded by #default. This number corresponds

to the order of the #systems on the sections local to the #operating systems. default 0

Help for Grub

To see all of the commands that are available in the Grub shell we can hit the Tab key.
Help is also included for a full reference of all commands.

#Let’s specify that it should wait 10 seconds before loading the system #configured by default.

timeout 10 #Boot configuration for a GNU/Linux system title Debian GNU/Linux kernel

(hd0,0)/vmlinuz root=/dev/hda1 #Boot configuration for a Windows XP title Windows XP system

root (hd0,2) makeactive

To install4 Grub with this boot menu we must execute the same instruction as

above but adding the p (hd0,0)/PATH/menu.lst parameter with the disk,

path, and menu file. To protect the boot system we can place the password

order in the global section of the configuration file. This way, when we wish

to enter the Grub shell from the menu we will be asked for the password. If

we use this instruction it is very important that only the root can read this

configuration file (although in this case there is also the option of placing the

password encrypted with MD5).

(4)Another way of installing grub
is using the grub-install pro-
gram.

GNUFDL • PID_00148393 121 Basic GNU/Linux

There is also another type of boot that uses an image called RAM Disk (ini-

trd). This other type of boot serves for making a modular configuration of

the Linux kernel. It is frequently used when we need a kernel with some sort

of special configuration, to include modules in the same kernel, to make a

boot image for a live CD, to have the same image for all the computers of a

laboratory stored on a single server etc. In any case, the standard installations

of the operating system almost never use this type of boot. If we wish to create

an image of this type, we can find out more in the initrd manual and in the

manual for the mkinitrd program.

6.4. Access to other partitions and devices

UNIX-type systems treat all of the computer’s devices as if they were files. This

gives us a lot of flexibility since we can take advantage of all the mechanisms

and functions that we used with the files and apply them to devices. In the

/dev/ directory we have all the devices recognised by the system. If the system

does not recognise a device correctly, or if we wish to create a special one, the

mknod command allows us to carry out this type of operation, although it is

important to know exactly what we want to do before using it, since defective

use could damage parts of the system.

For the storage units, the system offers us another type of operation to access

its file systems, the mount operation. For this operation, we will use the mount

and umount commands, which mount or unmount all of the file system of a

specific device/unit in an existing system directory. The basic way to use the

command is mount directory device, where device can reference any

device on the IDE or SCSI channel (/dev/hdXX, /dev/sdXX, the disk drive

/dev/fdX, backup tapes, USB memories etc. and directory is the location

where we will mount the file structure of the device. It is helpful if the direc-

tory where we mount these devices is empty, as it is not possible to access the

devices when this directory is used as a mount point.

To unmount one of these devices, we can use umount directory, where di-

rectory must be the mount point used. If we mount devices such as a diskette or

CD, it is important not to remove the device from the medium before we have

told the system, so that it can update the device’s file system cache. Likewise,

we cannot unmount the device if any user or application is using any of its

files or directories (the system would display an error message if we tried this).

Notice that we are not specifying the type of file system used in the unit that

we are mounting at any point in the operation; this means that it has to be

determined automatically. If we do want to specify the type of file system

manually, we can use the mount command with the -ttype parameter where

type could be any one of the ones on the following table (see the mount

manual for the full list):

Disk drive and CD/DVD
directories

For the disk drive and CD/DVD
many distributions create a
default directory where they
can be mounted (/floppy/
or /mnt/floppy/ and /CD-
ROM/ or /mnt/CD-ROM/). The
/mnt/ and /media/ directo-
ries are also normally provided
and in these we can create di-
rectories for other devices that
we have on the system.

GNUFDL • PID_00148393 122 Basic GNU/Linux

Table 6.3

Type System

Ext GNU/Linux (versions of the kernel preceding version 2.1)

ext2 GNU/Linux (versions of the kernel after version 2.1)

ext3 GNU/Linux (versions of the kernel after versions 2.2 or 2.4)

swap Swap system in GNU/Linux

sysv UNIX type systems

minix MINIX

iso9660 File system that most CDs use

nfs Remote file system (Network File System)

smbfs Remote file system in Windows TM networks (Samba File System)

ntfs Tree of WindowsNTTM

msdos MS-DOSTM

vfat Tree of Windows95TM

Mounting and unmounting file systems

By default, superuser privileges are needed to mount/unmount file systems. What usually
happens is that a user is defined as an administrator in the sudoers file so that the
sudoer order in front of the command can carry out administration tasks, permitted
from this sudoers file.

Apart from entering the type of file system used by the unit that we want to

mount, we can also indicate other options that can be very useful in certain

situations (always preceded by -o and separated by commas, if we want to

enter more than one):

Table 6.4

Meaning�of�the�option Allow Don’t�allow

Running binaries exec noexec

Use of the bit of SetUserId suid nosuid

Read-only files ro rw

Synchronised system (use of disk cache) sync async

Interpretation of special blocks or characters dev nodev

Permission for any user to mount or unmount the device user nouser

Swap type system sw

(If we entered defaults, we would use the rw, , dev, exec, auto, nouser and async op-
tions.)

GNUFDL • PID_00148393 123 Basic GNU/Linux

The following figure shows an example of how to use this command to mount

various different devices:

Figure 6.2

Apart from these commands that will mount and unmount units, the oper-

ating system provides us with another way of doing the same thing and al-

ways keeping the same configuration for each unit. In the /etc/fstab file we

can save this information so that each line indicates a unit with its respective

mount directory and the options that we want to configure. The syntax of

each of these lines will be:

<dev> <dir> <typeSystem> <options> <dump> <order>

In the first field, we must specify the device just as we did with the mount

command and the second field will contain the directory in which we want to

mount the unit in question. In the typeSystem, we can specify the file system

that the unit uses or auto so that it detects it automatically. In options, we

can write the same things that we did when we used the mount command,

separated by commas, if we want to put in more than one. A useful option

in this field is the configuration of auto or noauto, with which we can tell

the system to automatically mount (or not) the unit that has to be booted

up. The dump field indicates whether we want to make backup copies (more

information in the dump manual). If we do not use this system, we can enter a

0. The last field can be used to specify the order in which the units should be

mounted. If we enter 0, we specify that the order is not important. The root

file system is the first thing that has to be mounted; therefore, there should

be a 1 in this field.

GNUFDL • PID_00148393 124 Basic GNU/Linux

An entry that we always see in this file and that can be surprising is the /

proc/ directory, which has a special meaning. In reality, there are no files in

this directory; instead, we have the value of many of the variables that the

system’s kernel uses. As was the case with the operating system, where it must

be possible to reference everything as a file, in the /proc/ directory, we can

also determine certain internal variables of the kernel, as if they were files.

Although this design for mounting the units in the hierarchical structure of

the directories is very powerful and provides a lot of flexibility, in some cases it

is not too practical. For example, each time we want to copy a file to a disk, we

must mount the unit, copy it and unmount it again. Consequently, there are a

few other applications that make the whole process easier and save us having

to take certain steps. One of these is mtools, which is a package with various

applications that allow us to copy files to and from a disk directly, as well as

a few other interesting tools. There is also a package called autofs, which

automatically detects any device that is added to the system and mounts it

without the administrator having to write any commands whatsoever.

6.5. Device configuration

Although this was not the case initially in GNU/Linux, currently more and

more manufacturers provide drivers for their special devices for GNU/Linux.

Before trying to configure them, we have to find information on them in

the actual system manuals, the modules, Internet etc. to save us some prob-

lems when we start them up. Although most devices currently have HOWTOs,

manuals or other types of documentation, it is important to find out whether

there is any kind of driver available for a device before buying a new one.

Although we will only show how to configure some of the devices that are

most frequently used in personal computers in this subsection, the process

can vary significantly from distribution to distribution. Although we will only

look at a system that uses Debian GNU/Linux in this subsection, if you learn

how the basic process works from the start, you shouldn’t have problems un-

derstanding the configuration used in other distributions.

6.5.1. The keyboard

Configuring the keyboard properly is very important for solving any problem

that may arise with it. Firstly, we must know that, when the system boots up,

a character map corresponding to the one configured during the installation

process will be loaded. This character map is usually located in /etc/con-

sole/boottime.kmap.gz or in some other directory in /etc/. If we were

to change the keyboard, all we would have to do would be to change this file

with the one corresponding to the new keyboard and reboot the system, as the

new map would then be loaded. All existing character maps are usually locat-

ed in the /usr/share/keymaps/ directory, sorted by computer architectures

mount to command

The mount to command is
used to mount all the devices
that have the auto option en-
abled (which is the default set-
ting) for this configuration file.

GNUFDL • PID_00148393 125 Basic GNU/Linux

and countries. Specifically, the character map used in Spain with computers

based on the i386 architecture and a standard keyboard, would be found in

i386/qwerty/es.kmap.gz.

Although all these character maps are compressed in gzip format, we can de-

compress them and change some of the entries, to adapt them to our needs.

In each line, we will find the keycode directive, which indicates that we are

defining a key, indicated in the number that follows the command (we can

find out which number corresponds to each of the keys on the keyboard using

the showkey command). After making this definition, we need to define what

happens when the key is pressed on its own, or with the Shift key etc.

Let’s take a look at an example:

keycode 53 = minus underscore control keycode 53 = Delete

In the first line, we indicate the corresponding character when we press the

key on its own (minus) or with the Shift key (underscore). The second line

shows the function that will be performed if we press the key along with the

Ctrl key (the following character would be eliminated). All the information

you may need to configure a file of this type correctly will be found in the

manual called keymaps, which is very useful if problems arise when using

special keyboards or keyboards made in other countries. If we do not want

to reboot the system when changing this map file, we can use the loadkeys

command (dumpkeys shows us the configured ones).

Terminal font

Using the consolechars program, we can load the font that we want in the terminal.
We need to differentiate clearly between a font and a character map: the map determines
the meaning of each key, whereas the font is simply the graphical representation that we
give to the key. All font configurations for the character are usually found in etc/con-
sole-tools/config.

Another aspect related to the keyboard is the question of umlauts, accents

etc. We can configure all of this using the /etc/inputrc file (all possible

directives for this file are specified in the readline manual). What can be

more useful is convert-meta, which, if we disable set convert-meta off,

allows us to use accents and umlauts. Finally, another important configuration

(that is indirectly related to the keyboard) is that of the locales. With locales,

we can configure the geographical region or regions in which we are so that

we can use the keyboard’s special keys, see the dates in the format that we

are used to etc. This configuration is used by many of the system libraries;

this means that this configuration will be used for many of the commands

and applications in the system to adapt certain functions to our location. We

can configure this in /etc/locale.gen and we can use the locale-gen and

locale commands to see the configuration or update it.

Reconfiguring keymaps
and locales

Another way of reconfiguring
the keymap and the locales
in Debian is to use apt-re-
configure console-data
or apt-reconfigure lo-
cales respectively.

GNUFDL • PID_00148393 126 Basic GNU/Linux

6.5.2. Network card (Ethernet type)

To configure a new network card (Ethernet type), the first thing we have to do

is to add the necessary kernel module so that it can be properly recognised.

Although with some cards we may not have to carry out this step because

the kernel itself is already compiled to recognise the most common cards, we

must make sure (before buying the card) that the necessary driver or module

is available.

Network card module

We can find out which module our network card needs by using discover -module
Ethernet. If we want to configure it so that it always loads, we have to overwrite it in
/etc/modules (otherwise, we can insert it with modprobe or insmode).

Once the system has recognised the card, we can configure it however we

want.

In the /etc/network/interfaces file, we can specify the whole configura-

tion; we will also have the configurations of all the other interfaces in the sys-

tem in this file. An interface is a (real or virtual) device linked to the network

with which the system can communicate with other computers, offer certain

services etc. The interface is the gateway that the system can use to commu-

nicate. This file should be used to specify the directives that are necessary to

make the device work

Let’s look at it with an example:

 #loopback interface auto lo iface lo inet loopback #NIC auto eth0 iface eth0 inet static

 address 192.168.0.10 netmask 255.255.255.0 network 192.168.0.0 #optional broadcast

 192.168.0.255 #optional gateway 192.168.0.1 #optional

The first entry we will usually find in this file is for the loopback interface.

This interface does not correspond to any real device or card in the computer,

but is a mechanism in the operating system that makes it possible to use the

communication protocols internally. In effect, if we are carrying out network

functions without communicating with any other computer, it is not even

necessary to have a network card installed. We will find the auto directive in

all the entries, before specifying the configuration of the device. This directive

indicates that the card can be mounted automatically when the system boots.

The iface directive specifies the type of card and the protocol that will be

used with it through the following syntax: iface device familyProtocol

methodConfiguration. With the Ethernet cards, the device will be ethX,

where theX will be a number starting with 0, that indicates the number of

the card installed in the computer. The family of the communication protocol

using the card is usually any of the following:

NIC

Network cards are also re-
ferred to as NICs (Network In-
terface Cards).

GNUFDL • PID_00148393 127 Basic GNU/Linux

• inet: IPv4, used in Internet and most local networks.

• inet6: IPv6, the new version of IPv4, which is gradually being implement-

ed.

• Ipx: for NovellTM networks.

Finally, the last field is used to indicate how the network card is configured (the

address, the network in which it is, the gateway that has to be used etc.). The

following table shows what these options are for the inet protocols family:

iproute2

Since version 2.2. of the Linux kernel, it is possible to use a new network infrastructure
called iproute2. We can use this to handle all the aspects related to our NICs and the
internal tables that the operating system uses to handle everything that is related to the
network.

Table 6.5

Config Options Description

loopback Method to define the loopback interface (it must be used
with the lo).

staticinter-
face

Method for configuring a NIC with a static IP address

address IP address of the interface. Field must be filled in.

netmask Mask of the IP address Field must be filled in.

broad-
cast

Broadcast address. If this is not specified, the system will calcu-
late it automatically.

network Network ID address.

gateway IP address of the gateway that we use for this interface.

dhcp Method for remotely configuring the IP of all the computers
on a local network (Dynamic Host Configuration Protocol).

hostname DHCP server IP.

lease-
hours

Time, in hours, that the IP is rented (this is renewed, once the
time has elapsed).

lease-
time

Time, in seconds, that the IP is rented.

vendor Server type identifier (generally dhcpd).

client Client type identifier (generally dhcpd).

bootp Method for remotely configuring the IP of all the computers
on a local network (BOOT Protocol). Currently, DHCP is the
more widely used protocol.

bootfile File that will be used when booting up.

server IP address of the BOOTP server.

GNUFDL • PID_00148393 128 Basic GNU/Linux

Config Options Description

hwaddr MAC address of the BOOTP server.

ppp Method used with the point to point protocol, which is used
in various modems.

provider Service provider.

Although we will not go into further detail where computer networks are con-

cerned in this subsection, it is important to note that we have many com-

mands available for handling the network configuration of the operating sys-

tem. The most widely used are ifconfig, with which we can see the config-

ured devices, ifdown and ifup, which allow us to turn the interface that we

want on or off and route which shows us the systems routing table.

6.5.3. WiFi card

A wireless network (wireless LAN), also known as WiFi, is a piece of technology

that is based on the IEEE 802.11 standard. The most common definitions are

amendments b, a and g of the original protocol. The 802.11b and 802.11g

standards use spectrum band 2.4 GHz, which means that they can interfere

with other devices that use the same band, such as wireless telephones. The

802.11a standard uses spectrum band 5 GHz.

The use of radio frequency spectrums is strongly regulated by governments.

Most WLAN card devices cannot be distributed as open code. The part of the

device that defines the frequencies of the radio waves is normally distributed

as firmware, which, in principle, means that it cannot be modified.

Wireless communication networks are becoming more common, in domestic

settings as well as in institutions, schools or businesses. To install these net-

works, it is necessary to have what are known as access points, which are the

devices connected to the institution’s physical network. These access points

make it possible to connect any computer in the vicinity to the network, using

WiFi cards (whether they are PCI, PCMCIA, integrated in the motherboard or

in a USB adaptor). This greatly simplifies the cabling in buildings.

For our GNU/Linux system to detect and configure a wireless card properly, we

must add the necessary modules to the system’s kernel, which in many cases

are already compiled in the same kernel. If we do not have any other Ethernet

cable installed, it will be referred to as eth0, or eth1 if we already have one

etc. At this point, the only thing that we have yet to do so that the card will

connect to the access point will be to edit the /etc/network/interfaces

file and add the required configuration so that an IP address can be assigned.

Naturally, this system interface can be treated like any other interface, using

GNUFDL • PID_00148393 129 Basic GNU/Linux

the firewall mechanisms of the system, with the iproute2 applications etc.

We will now look at an example of the configuration of the eth1 card, which

is WiFi:

wireless network auto eth1 iface eth1 inet dhcp wireless_essid miwifi wireless_channel 6

wireless_mode managed wireless_keymode open wireless_key1 millavehexadecimal wireless_key2

s:millaveascii wireless_defaultkey 1

If we look at the entry in the manual for the iwconfig command, we will see

the meaning of each one of the preceding commands.

6.5.4. Modems

The pppconfig application is normally used to configure a modem; the ap-

plication writes the configuration files that are necessary for the PPP system’s

daemon, which is the program in charge of establishing the Internet connec-

tion. Whenever using pppconfig (or similar applications), a series of steps

must be taken, as explained below:

ppp and pppconfig
packets

The packets that contain the
programs required for a mo-
dem to connect to the Internet
are usually called ppp and pp-
pconfig.

1) Name of the provider: the provider is the company with which we

have contracted the Internet connection service. This name can be used

to identify each connection that we configure individually.

2) Configuration of name servers: When we establish the contract with

our provider, we are usually given the IP(s) of the name servers that must

be used. If we have these IPs, we must indicate that we are using a static

configuration, after which we will be asked for these IPs. We should only

choose a dynamic configuration when our provider tells us that the DNS

configuration is dynamic. With the third option, which tells us that the

DNS will be treated by other means, we can use the file configuration

/etc/resolv.conf.

3) Authentication method: the authentication method will be PAP or

CHAP. Generally, the providers normally use PAP (Peer Authentication

Protocol), although we should find out about this if it does not work for

any reason.

4) User name and password: this is the information that the providers

give us so that we can connect and access their services.

5) Modem speed: depending on the modem that we have, we may access

Internet at a greater or lesser speed. Currently, the speed of all modems

is 115200 bps, which means that the most advisable thing is to leave the

value at 115200. If we have a slower modem, this is usually detected and

the value is automatically reconfigured when connecting.

Observation

With pppconfig, we have a
menu that allows us to add,
modify or delete connections.
The steps that we show here
correspond to the creation of a
new connection.

GNUFDL • PID_00148393 130 Basic GNU/Linux

6) Pulse or tone dialling: most telephones now work with tone dialling,

although the old pulse dialling system is still used in certain rural areas.

7)� Telephone number: this number should also be provided by the Inter-

net service provider.

8)�Communication port: the communication port is the port to which

we connect the modem. If we ask the system to detect the modem auto-

matically, it will check all the ports and configure them automatically.

Otherwise, we can enter /dev/ttySX, where the X is a 0 for COM1, a 1

for COM2 etc.

All these configurations are usually stored in the files located in the /etc/

ppp/ directory. Although it is also possible to edit these files and change the

directives automatically, it is more advisable to use an automatic application,

as configuring these files is quite complex. To establish the connection with

our provider, we must start up the daemon by running /etc/init.d/ppp

start. To stop it, we can use /etc/init.d/ppp stop.

6.5.5. ADSL and PPPoE

Asymmetric digital subscriber line (ADSL) is a communication technology that

makes it possible to transmit data through telephone and television cables.

Asymmetric communication implies that the download and upload time rates

are different; generally, the upload rate is slower.

ADSL uses a cable modem or a concentrator depending on the method imple-

mented by the Internet service provider. Both connect the respective devices

to the computer’s Ethernet interface (generally, the first one, eth0 and some-

times to a USB port).

The ideal configuration for the Ethernet interface would be in DHCP mode,

with the modem cable providing the IP address, DNS etc. as this means that

everything configures itself automatically.

PPPoE (Point-to-Point Protocol over Ethernet) is a protocol that is very similar

to PPP that uses an Ethernet interface instead of a modem. This type of pro-

tocol has been adopted by some ADSL Internet providers.

The ADSL connection is generally part of the telephone service. The signals

(telephone and ADSL signals) are divided in a device called a splitter, which

separates them to their respective frequency ranges. The ADSL signal then

enters a device known as a concentrator that is connected to the computer’s

Ethernet interface with a twisted pair cable, with RJ45 connectors or to one

of the computer’s USB ports.

GNUFDL • PID_00148393 131 Basic GNU/Linux

6.5.6. Soundcard

The soundcard needs a module of the system’s kernel to be inserted in order to

work properly. If we have installed the discover application, we can discover

which module corresponds to our soundcard using the discover --module

sound command. We can also determine the manufacturers and chipset using

the lspci | grep audio command.

To install the module, we can use the insmod or modprobe commands, and if

we want to leave it configured permanently, we should write it in the /etc/

modules file. Although we can already use the soundcard properly once the

corresponding module has been included, it is generally common to install

the ALSA (Advanced Linux Sound Architecture) infrastructure as well. Gener-

ally, most distributions include this architecture by default; however, if this is

not the case, it can be installed with the corresponding package.

For a normal user to be able to use the sound devices, it is necessary for the

user to be a member of the audio group.

addgroup audio user

This will mean that the user will be added to the list of the members of the

audio user group in configuration the /etc/group file.

6.5.7. Printer

Printers can be configured using many different applications in GNU/Linux.

Although lpd (Line Printer Daemon) was one of the first printer management

programs that appeared in UNIX type systems, there are currently plenty of

programs that are easy to configure and manage. We will discuss some of the

most widely used programs below:

• lpd: one of the first printing daemons for UNIX type systems. It has to

be configured manually.

• Ipr: the BSD version of lpd. It is very advisable to use some form of auto-

matic filter such as magicfilter or apsfilter to configure the printers.

This type of filter automatically detects the type of file that will be printed

and prepares the print properly (it uses a filter called IFHP).

• lprng: applications based on lpr with the advantage of incorporating a

configuration tool called lprngtool, which makes it possible to configure

the printer graphically and easily.

• gnulpr: the GNU version of the printing system lpr. It also incorporates

graphical configuration tools, service management tools etc.

ALSA

ALSA is a project that has de-
veloped a lot of software relat-
ed to sound processing appli-
cations, new modules for the
Linux kernel etc.

GNUFDL • PID_00148393 132 Basic GNU/Linux

• CUPS: stands for Common UNIX Printing Systems; this set of applications

is compatible with the lpr commands and can also be used in WindowsTM

networks. It uses a set of its own filters and supports most of the printers

on the market.

Although all of these applications have their own configuration methods, all

use the /etc/printcap file to save it. In general, they also use some form

of daemon so that the printing system will be operative. The daemon can

be configured so that the computer to which the printer is connected serves

as the printing server. In this way, various computers on the same network

will be able to use the same printer, which saves on resources. For printing

clients, the same programs can be used, specifying, during configuration, that

the printer is remote (the IP of the printing server and the printing queue will

usually be required).

If we wish to configure a printing server for WindowsTM networks or config-

ure a printer of a WindowsTM server from a GNU/Linux client, we must use

other types of programs. Sambathis is a set of GNU/Linux applications that

use the protocols of the WindowsTM networks. Although there are many more

functions apart from that of configuring a server or printing client, in order

to use printers in WindowsTM we need to use this set of applications or those

provided by CUPS.

Secure configuration of the printer server

When configuring a printer server, it is important to define which machine/users are
allowed to use the printer. Otherwise, a hostile user could take advantage of the vulner-
ability and take advantage of our resources, leaving the printer without paper etc.

Swat

Swat (Samba Web Administra-
tion Tool) is a tool that is very
useful for configuring a samba
server.

GNUFDL • PID_00148393 133 Basic GNU/Linux

7. Daemons and runlevels

7.1. The daemons

As we know, GNU/Linux allows us to run as many processes as we want simul-

taneously, by sharing the CPU time equally among the processes. In fact, the

mechanism for handling the processes must also take into account what are

known as interruptions. An interruption is a signal that reaches the system’s

kernel from any of the devices that we have installed in our computer. These

interruptions are usually linked to a specific process, which means that the

kernel must wake up the process in question (if it is not running) and redirect

the interruption so that it processes it properly. A typical example of an inter-

ruption is when we press a key on the keyboard or move the mouse: when we

do this, the device sends a signal that must be redirected to the right applica-

tion so that it is properly treated.

In order to properly handle all the interruptions that occur, the kernel does

not listen permanently to the devices in the system, waiting for their signals.

Instead, the system runs the operations of the processes in an execution queue

and it is only when the interruption occurs, that the system attends to the

device that has generated the interruption. This has to take place in this way

due to the large differences in the speeds of the system’s devices and the CPU.

The way interruptions are treated is fundamental for any operating system,

as this mechanism, among others, is the one that makes it possible to run as

many processes as we want and, as soon as the interruptions arrive, wake up

the processes that are waiting for it.

A daemon (disk and execution monitor) is a process that, generally, we have

loaded in the memory, waiting for some signal (from an interruption in a de-

vice or the kernel itself) to wake up and execute the functions required to treat

it. Although this definition can also apply to other processes in the system

(launched by the users or the system itself), a daemon also tends to run in

this manner (although it does not in certain special cases). In this way, the

daemons that we have loaded do not take up CPU whilst they are not strictly

necessary and we can always work on the computer without a problem no

matter how many we have loaded in the memory.

GNUFDL • PID_00148393 134 Basic GNU/Linux

Figure 7.1

Shell scripts of the daemons

The shell scripts of the daemons are nothing more than a tool for facilitating the whole
boot up process, shut-down process etc. In some cases, we can also use the mechanism
and the organisation of these daemons to execute certain operations that we are inter-
ested in (writing a shell script that executes when a determined runlevel is entered).

Although a daemon will be a process like any other that runs in the back-

ground, the way in which we organise and treat them is different to the rest of

the commands and programs in the system. Generally, all the daemons have

a shell script located in the /etc/init.d/ directory that make it possible to

start it, stop it or see its run status. In order to carry out one of these tasks, we

must run the shell script corresponding to the daemon that we want to deal

with, by specifying some of the following parameters:

• Start: to start the daemon. If it is already running, an error message will

appear.

• stop: to stop the daemon. If it is not already running, an error message

will appear.

• restart: restarts the daemon. This can be used to reread its configuration

files.

GNUFDL • PID_00148393 135 Basic GNU/Linux

• reload: although not all the daemons allow this, this parameter can be

used to reload the configuration files, without having to stop it.

Most of these scripts use a program called startstop-daemon which is pro-

vided by the operating system and is used for handling these processes. When

we are administrating a server, we will often have to design our own dae-

mons in order to carry out a specific task. The directory containing all the

shell scripts of the daemons also usually contains an example of one (/etc/

init.d/skeleton) so that we can use it when we need to configure a new

one that is not already in the distribution They are generally programmed as

follows:

#!/bin/sh PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin: /usr/sbin:/usr/bin

DAEMON=/usr/sbin/daemon NAME=daemon DESC="some daemon" test -x $DAEMON || exit 0 set -e

case "$1" in start) echo -n "Starting $DESC: $NAME" start-stop-daemon --start --quiet

--pidfile \ /var/run/$NAME.pid --exec $DAEMON echo "." ;; stop) echo -n "Stopping $DESC:

$NAME " start-stop-daemon --stop --quiet --pidfile \ /var/run/$NAME.pid --exec $DAEMON

echo "." ;; restart|force-reload) echo -n "Restarting $DESC: $NAME" start-stop-daemon

--stop --quiet --pidfile \ /var/run/$NAME.pid --exec $DAEMON sleep 1 start-stop-daemon

--start --quiet --pidfile \ /var/run/$NAME.pid --exec $DAEMON echo "." ;; *)

N=/etc/init.d/$NAME echo " Usage: $N {start|stop| \ restart|force-reload}" >&2

exit 1 ;; esac exit 0

Running a daemon

In order to run a daemon, we have to call it up with its complete path /etc/init.d/
nameDaemon and enter the parameter in question. Some distributions have the service
command, which makes it possible to do the same thing without having to specify the
complete path.

As we have seen, in the variables stated at the beginning of the shell script,

we have to specify which PATH is necessary for processing the daemon, the

program that we will run (DAEMON), the name that we will give it (NAME, which

must be the same as the name of the shell script) and its description (DESC).

The only thing that the code does when booting the daemon is to write a file

in the /var/run/ directory with the PID of the process. When it is stopped,

this PID will be searched and the stop signal will be sent to the corresponding

process. Naturally, we will find shell scripts prepared for carrying out many

operations with the daemon that we will handle, although, at the least, they

must all have this structure.

Programming the daemons

Although the daemons are programs like any other program, programming them is some-
what different to programming the user applications because we need to include func-
tions for suspending them and having them wait for the signals to wake them up etc.

GNUFDL • PID_00148393 136 Basic GNU/Linux

7.2. The runlevels

The daemons that we have running at a determined moment, show us the

services that the operating system is offering and/or receiving. The fact that

we can have so many different daemons does mean that we need to organise

them properly. We understand a runlevel (or�execution�level) as the execution

of specific daemons, which, in turn, provide specific services. When installing

a server, it is common to design a configuration so that certain services can be

offered at certain moments and not at other moments. To allow this kind of

function, the operating system offers us different runlevels that we can adapt

to our needs.

Although we can configure the number of runlevels that we want and the

functionalities of each one, UNIX-like systems generally provide us with 6

different runlevels with the following properties:

Table 7.1

Level Functionality

0 Runlevel 0 is configured to stop the system.

1 This level is called single user, as it only allows the root user to enter the sys-
tem. Only a minimal number of daemons are started and it is used for mainte-
nance tasks.

2-5 Runlevels from 2 to 5 are there to be configured according to the require-
ments of each installation process. When installing the system, they are all the
same, by default. These levels are also called multi-user levels as, by default,
they allow more than one user to work on the system.

6 The last runlevel is prepared for rebooting the system. It is very similar to run-
level 0 but it has the rebooting function.

The command necessary for changing the runlevel is init (we enter the run-

level that we want as the parameter) and runlevel can be used to see our

current runlevel.

The only thing that the halt, reboot, shutdown or poweroff commands

do is to call up runlevel 0 or 6 after performing a specific operation (see the

manual for more information). Only the system’s home user can use all of

these commands.

The way in which these daemons are organised in each runlevel is very simple.

Each runlevel has a directory located in /etc/rcX.d/ where X is the number

of the level. In these directories, we will find symbolic links to the shell scripts

of the daemons located in /etc/init.d/, which we can use to tell the system

whether we want to start up or stop the daemon that they point to. The name

of the link itself identifies the operation that we will perform: if the link begins

with an s (start) we tell the system that we want to start the daemon, whereas

if it starts with a k (kill) we tell the system that we want to stop or kill it. If

the name does not begin with either of these letters, the system will not do

GNUFDL • PID_00148393 137 Basic GNU/Linux

anything. After this letter, a number with 2 figures, between 00 and 99, must

be entered, to indicate the order in which they must start or stop. This order

is important, because some daemons need others to be running before they

can start up.

When changing the runlevel, the system will inspect the daemons of the cor-

responding directory and will begin, firstly, by stopping the indicated dae-

mons and will then start up the others. The only thing we do here is call up

the daemon entering the start or stop parameters so that if we stop any

that are not running at the time, there will be no problem because the shell

script itself takes this into account. This can be used to change the runlevel

without taking into account the previous level that we were in. The following

table shows an example of how to configure 3 runlevels:

Table 7.2

Runlevel 2 Daemons running

K50sshd
K51apache-ssl
K52tftpd
K53telnet

S10sysklogd
S12kerneld
S20dhcpd
S50proftpd
S90apache

sysklogd
kerneld
dhcpd
proftpd
apache

Runlevel 3

K50dhcpd
K51proftpd
K52apache
K53tftpd
K53telnet

S10sysklogd
S12kerneld
S20sshd
S50apache-ssl

sysklog
kerneld
sshd
apache-ssl

Runlevel 4

K50dhcpd
K51proftpd
K52apache
K53tftpd
K53telnet

S10syslogd
S12kerneld
S20tftpd
S50telnet

sysklogd
kerneld
tftpd
telnet

The /etc/inittab file contains all the definitions of the configurations of

the runlevels: the default runlevel, the number of consoles available for each

of them etc. Each line of the file is a directive with the syntax: <id> :<run-

levels> : <action> : <process>. The first field is the identifier of the

directive; the next shows the runlevel in which that directive is valid, the op-

eration that we will perform and the process that will be launched. The fol-

lowing example explains how to configure these directives:

The default runlevel (in this case, 2) id:2:initdefault: # Scripts to be run when the

system boots up (before # entering the default runlevel) si::sysinit:/etc/init.d/rcS # Program

that is called up when entering runlevel # single user (the wait operation indicates that the

process is launched and nothing else happens) ~~:S:wait:/sbin/sulogin # Configuration of the

different runlevels # available in the system l0:0:wait:/etc/init.d/rc 0 l1:1:wait:/etc/init.d/rc

1 l2:2:wait:/etc/init.d/rc 2 l3:3:wait:/etc/init.d/rc 3 l4:4:wait:/etc/init.d/rc 4

GNUFDL • PID_00148393 138 Basic GNU/Linux

l5:5:wait:/etc/init.d/rc 5 l6:6:wait:/etc/init.d/rc 6 # Command that runs when pressing

Ctrl+Alt+Del ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now # Definition of the consoles open

on each # runlevel (the respawn action indicates # that when the process finishes running # getty

will launch again) 1:2345:respawn:/sbin/getty 38400 tty1 2:23:respawn:/sbin/getty 38400 tty2

3:23:respawn:/sbin/getty 38400 tty3 4:23:respawn:/sbin/getty 38400 tty4 5:23:respawn:/sbin/getty

38400 tty5 6:23:respawn:/sbin/getty 38400 tty6

Observation

We could also use this file to configure a terminal that communicates with the system
through a modem and another computer with the directive T1:23:respawn:/ sbin/
mgetty -x0 -s 57600 ttyS1. In this way, we could have a console of the system in
another terminal, communicating with a telephone line.

As we can see, this file is used to configure everything related to the runlevels

in a very flexible manner, which means that we can change whatever we want,

to better adapt it to our needs. Note that, although we are defining the default

runlevel here, we could also specify it when booting up the system with Grub.

This is very useful, for example, when we have severe problems in the system

that we cannot solve properly; if we boot up with the first runlevel (entering

1 or single in Grub), only the most essential functions will load and we will

be able to access the system to fix whatever is necessary.

7.3. Booting up the system

The parent process of all the others is init. This process is in charge of start-

ing up the others that are available in the configured runlevel. However, be-

fore entering this runlevel, all the shell scripts of /etc/rcS.d/ (configured

in /etc/inittab), that may be daemons like those of the other runlevels

or simply shell scripts necessary for the system (loading the character map,

loading the kernel’s modules etc.), will run. If we wish to eliminate any of

them, we must know exactly what we are doing, as they are generally essential

for the operating system to work properly. Once these daemons have booted

up (or the shell scripts), we enter a runlevel configured by default, stopping

and starting the daemons specified there. Once we have learnt how all this is

organised, we can start adapting the system’s booting up process to our needs

by creating and placing the daemons that we want in any of the places we

have discussed.

7.4. Basic daemons

Depending on the GNU/Linux distribution that we use, the same installa-

tion process already configures certain daemons. Nevertheless, all distribu-

tions tend to incorporate the daemon for the logs system and the one for the

regular and delayed running of the applications (although the configurations

of these can vary somewhat). In this subsection, we will look at how these

GNUFDL • PID_00148393 139 Basic GNU/Linux

three basic daemons work and how we can configure them. It is important to

know how to handle these basic daemons because they can help us a lot with

some of our administration tasks.

7.4.1. System logs (sysklogd)

The system logs are traceable files that a daemon of the operating system gen-

erates so that any action performed in the system can be traced back. The

daemon in charge of these tasks is sysklogd, which is configured in /etc/

syslog.conf. Each line in this file consists of a rule with two fields: the se-

lector and the action. The selector is used to configure the service that we wish

to log and the level of priority. The action is used to indicate where we want

to redirect the logs (to a file, a console etc.). The following tables show the

options that are valid for these fields.

Generally, all the log files of the system are saved in the /var/log/ directory.

Although most of the log files are in plain text format and we can see them

with any editor, there are also some special ones that do not save the data

in this format. Generally, they are the /var/log/wtmp and /var/log/btmp

files, which are the user entry logs in the system and the invalid entries, re-

spectively. To see these files, we can use the last and lastb. commands. If

we have these logs configured in any other file, we could also see them by

entering the -f file parameter with the last command.

Table 7.3

Selector

Ser-
vice

meaning Prior-
ity

meaning

auth-
priv

Permission messages or security aspects. emerg The system is unusable.

cron Daemon crond and atd. alert The action must be performed im-
mediately.

dae-
mon

Daemons of the system without log op-
tions.

crit Critical conditions.

ftp Daemon of the FTP server (File Transfer
Protocol).

err Error conditions.

kern System kernel messages. warn-
ing

Emergency conditions.

lpr Printing subsystem messages. notice Normal, but important, notices

mail Mail subsystem messages (if we have
configured it).

info Information messages

news News subsystem messages (if we have
configured it).

debug Debugging messages.

sys-
log

Logs generated by the daemon itself
syslogd.

klogd

The system’s kernel also
launches a daemon to manage
its logs called klogd.

lastlog

We can also see the last user
entry logs by using the last-
log command.

GNUFDL • PID_00148393 140 Basic GNU/Linux

Selector

Ser-
vice

meaning Prior-
ity

meaning

user Logs of user-level applications.

uucp Messages generated by the UUCP system
(Unix-To-Unix Copy Protocol).

local0~7Reserved for local use.

(The services and priorities can be combined however we want).

Table 7.4

Action

Destination Explanation

Regular file The complete path of the file is specified. If we put a hyphen (-) in front,
it is not necessary for the file to be synchronised each time we write in it
(although the log will be lost if the power fails).

Named pipe This system makes it possible to redirect the messages to a pipe creat-
ed before starting up the daemon sysklogd with the mkfifo com-
mand. It is indicated by putting the vertical line character (|) before the
file name. It is very useful for program debugging operations.

Console By specifying /dev/ttyX where X is a console number or /dev/con-
sole, the logs will be redirected to the specified screen.

Remote machine To specify that the logs must be redirected to a remote machine, we
must precede the name of the remote host with the commercial at sym-
bol (@).

Users If we specify the name of the user or users (separated by commas), the
corresponding logs will be redirected to these.

Users online With an asterisk (*) we will specify that the logs must be redirected to all
of the users who are in the system when the log occurs. This is used to
warn the users that some critical action has occurred in the system.

(The actions can be put in all the selectors that we may want).

This way of treating the logs provides a lot of flexibility if we want to configure

them when we install a server, which is a very important task if we need to

control the aspects that most interest us in the system . Nevertheless, if we had

to save all the logs generated in a server, we would certainly end up saturating

the disk due to the growing size of these files. To avoid this, there is a logs rota-

tion system, which consists of regularly compressing these files and only sav-

ing those that have been around for a certain period. Although they are gen-

erally compressed once a week and only those dating back one or two months

are saved, we can configure all of this using the /etc/logrotate.conf file.

The logs of certain servers and/or applications can also be configured explic-

itly so that they can be controlled properly. The personalised configuration

of the logs for these applications are usually located in /etc/logrotate.d/.

Internally, the system uses some programs to handle this whole log system in

a better way. We can use logger to write in the system’s log system. savelog

and logrotate can also be used to save and, as an option, compress some of

GNUFDL • PID_00148393 141 Basic GNU/Linux

the log files that we have (with the latter, we can configure more options than

with the former). These commands can also be used to create our own log files

or, if necessary, to manually handle those of the system (for more information

on how to treat and handle these files, please see the manuals).

Observation

If we want to configure a console in the system so that we can see all the logs that are
generated, we can add the line *.* /dev/ttySX (where X is the console where we want
to see the logs) to the /etc/syslog.conf file and reboot the sysklogd daemon.

Legal aspects of administration

Depending on the server that we are administrating, we have to take into account the
legislation in force (according to the country), which, in some cases, requires that we
preserve the files containing some types of logs for a specific period of time.

7.4.2. Regular executions (cron)

Many of the administration tasks for a server must be performed regularly.

There are also lots of actions, such as updating the logs or the internal databas-

es that use certain commands, which need to be performed regularly for the

system to work properly. For this reason, it is very important for the operating

system to provide us with some kind of tool for configuring all these regular

executions efficiently.

The cron daemon is the one that handles the whole system for all regular ex-

ecutions. It is very simply organised: the /etc/crontab file is where the in-

ternal configuration of the daemon is saved; the /etc/cron.daily/, /etc/

cron.weekly/ and /etc/monthly/ directories, contain the shell scripts of

the programs that will run every day, week or month, respectively. There is

also /etc/cron.d/, where we can place the files in a special format for con-

figuring the execution of certain programs in a more flexible manner.

Configuring cron

Many of the applications of the system require some form of regular update, generally
configured using cron. If the computer is switched on all day, it is important to configure
cron properly, so that the operations take place at a time that we know the computer
will be switched on.

Generally, we will find the following directives in /etc/crontab:

SHELL=/bin/sh PATH=/usr/local/sbin:/usr/local/bin: /sbin:/bin:/usr/sbin:/usr/bin #m h dom

mon dow user command 25 6 * * * root test -e /usr/sbin/anacron || run-parts --report

/etc/cron.daily 47 6 * * 7 root test -e /usr/sbin/anacron || run-parts --report

/etc/cron.weekly 52 6 1 * * root test -e /usr/sbin/anacron || run-parts --report

/etc/cron.monthly

GNUFDL • PID_00148393 142 Basic GNU/Linux

The definition of the variables SHELL and PATH, which are used to tell the dae-

mon to interpret the commands that are to be used and what the PATH will

be. The following three lines are formed by the fields: <minute> <hour>

<dayMonth> <month> <dayWeek> <user> <command>. The first five indi-

cate when the corresponding command should run (they must be coherent)

and the sixth shows the user account that will be used to run the command

specified in the last one. Note how in the configuration file, the commands

that run once a day, once a week or once a month, are in charge of launching

the shell scripts that are in the specified directories. If the anacron program

exists, they will run with it; otherwise, run-parts will be used, which, whilst

it does not have as many functions as anacron, can also be used to run all

the shell scripts that are in a specific directory. This configuration is the one

that allows us to have the whole directory structure that we discussed above.

If we wanted to, we could change the directives of this file to adapt them to

our needs.

Although we could also use this same configuration file for entering our own

commands, it is better to use the directories structure provided by the dae-

mon itself. The only one that does not appear in this configuration is /etc/

cron.d/, which the daemon already takes into account automatically. We can

put files with exactly the same syntax as /etc/crontab in this directory so as

to schedule personalised executions. This means that we have total flexibility.

anacron program

If we install GNU/Linux in a
computer that is not switched
on all day, it is advisable to in-
stall the anacron program
because it will run the scripts
configured with cron appro-
priately (even if at different
times than expected).

Configuration of regular
executions

If we use the /etc/crontab
file to configure our own regu-
lar executions, each time that
we modify it, we have to re-
boot the cron daemon. This
will not be necessary if we use
its directory structure.

Whilst it is advisable to use the whole of this structure for regular adminis-

tration tasks in the system, when it is the users that configure some regular

task, it is more usual to use particular files for each one of them. The crontab

command can be used to enter the -u USER -e parameters and the particu-

lar configuration file for the specified user will be edited. The particular user

files are saved in the directory /var/spool/cron/crontabs/ (in fact, the

/etc/crontab file is the same as the particular file of the root user). In order

to limit which users can use this daemon, we can edit the /etc/cron.allow

and /etc/ cron.deny files, where we can specify, respectively, the list of

users that we allow to use cron and those that we don’t.

7.4.3. Delayed executions (at and batch)

Observation

The crontab command, used
when saving the file, checks
that the syntax is correct.

Although cron makes it possible for certain operations to take place regularly,

every certain period of time, the atd daemon makes it possible to execute a

command or run an application at a given moment. As occurs with the pre-

ceding daemon, we can configure which users can use it or not, using the /

etc/at.allow and /etc/at.deny files. In this case, we do not have an ex-

plicit configuration file for the daemon, so it is the at command that we use to

specify the moment at which we want a certain operation with the syntax to

occur: at f file TIME. Generally, the file is a program or shell script created

by the same user, where the instructions that need to be executed are written.

Specifying the TIME can be a very complex procedure, as it can determine an

HOUR with the format hh:mm, a time following the time of execution with now

System load

The system load is a param-
eter that tells us the amount
of activity taking place in the
computer. We can use the top
command to see this load in
an interactive format.

GNUFDL • PID_00148393 143 Basic GNU/Linux

+ XX minutes etc. (all the possible formats are specified in the corresponding

manual). With atq we can see the operations that are delayed and atrm can

be used to delete any of the ones that are in the queue. Finally, if we want

to run all the jobs in the at queue, we can use the atrun command. This

allows us to enter the -l LOADAVERAGE parameter where LOADAVERAGE must

be a number that indicates the moment at which the delayed commands may

execute when the system is loading. This links directly with the batch com-

mand, which does exactly the same thing as at and follows the same syntax,

but with which we need to specify the exact execution time. The operations

configured in this queue are finished when the system load goes below 1.5.

Mechanisms of the run queue

The whole system of at and batch works with certain execution queue mechanisms
(one for each of the two). Although we can configure the system further, generally, these
will be enough to carry out any type of delayed execution in the system.

In this way, when we need to run a specific command at a specific time, we

need to use the at command, whilst, for other operations that we wish to per-

form without them getting in the way of the normal working of the comput-

er, we must use the batch command. The /var/spool/cron/atjobs/ and

/var/spool/cron/atspool/ directories are where the files corresponding

to all the delayed tasks are stored.

GNUFDL • PID_00148393 144 Basic GNU/Linux

8. Installation of applications

8.1. Introduction

Managing and handling the packages is an essential aspect of any GNU/Lin-

ux distribution. A package is one or various programs, libraries or software

components that are bundled into one single file, which is prepared to be in-

stalled and integrated in the operating system. When designing any distribu-

tion, it is very important to provide the tools that are necessary for installing

and managing the packages properly. Tools should also be provided, especial-

ly for software developers, so that other new packages can be created. These

packages usually include the program’s executables and its dependencies and

conflicts with other applications. When a package is installed, the dependen-

cies indicate whether other programs are needed for the application to work

properly, whereas the conflicts tell us about any incompatibilities between the

installed programs and the ones that we want to install. The package systems

are designed so that new applications can be installed easily, as some libraries

are used by more than one program and it would not make sense to have the

applications that use them install them again.

Currently, most distributions use one of the two package formats that are most

widely used in the GNU/Linux world: deb or rpm. On the one hand, the deb

packages are the ones that the Debian GNU/Linux distribution uses in its dis-

tribution, whereas rpm (Redhat Package Manager) is native to RedHat. The

distributions based on one of these two generally adopt the corresponding

package system, although most other distributions have also adopted one of

the two systems, as the great majority of the programs are packaged using

these formats. On the other hand, the programs with a GPL license or similar,

are also usually distributed with their source code (packaged and compressed

with some standard format, such as tar). We can also install the program in

our operating system using this source code, by compiling it and placing the

executables in the corresponding location.

In this section, we will look at how the package system of the distribution

is organised Debian5 due to the large amount of tools that are provided and

the flexibility of its configuration. In the last subsection, we will learn how to

install a program using its source code, as in some cases we might find that

the program that we need is not packaged. This installation method was the

one that was always used before the first packaging systems appeared, which

were created to make the whole process easier.

(5)Debian GNU/Linux was the first
distribution to create a package
system.

GNUFDL • PID_00148393 145 Basic GNU/Linux

8.2. Debian packaging system

The applications that are used to manipulate the Debian GNU/Linux packag-

ing system are basically one of two types: apt (Advanced Packaging Tool) and

dpkg programs (Debian Package). The apt set of applications is used to con-

figure where we obtain the packages from and which packages we want and it

resolves any dependencies and conflicts with others. The dpkg programs can

be used to install packages, configure them, find out which ones have been in-

stalled etc. There are other applications, such as dselect or aptitude, which

can be used to manipulate the apt and dpkg programs, providing, in one sin-

gle environment, interactive tools. The following diagram shows the schema:

Figure 8.1

The programs that, in the last instance, install the applications are the dpkg

programs. These programs decompress the .deb file and install the program.

The apt applications help us to locate the latest versions of the programs that

we need, copy the files from the sources from where we have extracted them

(FTP, CD-ROMs, Internet etc.) to the disk and check for any dependencies

and conflicts between the old and new packages so that they can be installed

properly. The main apt applications are the following:

• apt-config: this application is used to configure some of the apt options

(the architecture of our system, the directory where we save the files, etc).

• apt-setup: this application is used to configure the sources of the pack-

ages (from where we obtain them).

GNUFDL • PID_00148393 146 Basic GNU/Linux

• apt-cache: management of the packages cache (directory where the

.deb files are saved before they are installed).

• apt-cdrom: application for managing the CD-ROMs that contain pack-

ages.

• apt-get: updating, installing or downloading the packages.

The whole configuration of apt is located in the /etc/apt/ directory. The

/etc/apt/sources.list file is where the configuration of the sources (ori-

gins) of the packages is saved. From these sources, a list of the available pack-

ages is generated, which we can consult and install whenever we want to.

Generally, the format of this file uses the following syntax:

deb http://site.http.org/debian distribution section1 section2 section3 deb-src

http://site.http.org/debian distribution section1 section2 section3

dpkg programs

Although the aptapplications can also be used to install packages, the only thing that
they do is call up the programs called dpkg.

The first field in each line indicates the type of file that we are referring to:

binaries (deb) or source code (deb-src). Next, we will find the reference to

the source of the packages, which may be a CD-Rom, an Internet address etc.

The distribution field tells apt which version of Debian GNU/Linux we are

using. This field is important because each version of the distribution has its

own packages. We can use the last fields to specify what types of packages we

wish to use.

If we were to change this file manually, we could use the apt-get update

command to update all the packages available in the system. In order to insert

the packages of a CD-ROM in the list of available packages, we could use apt-

cdrom add, with which we would explore the inserted CD and update the

list of packages in the system. If any of the sources were to contain identical

packages, on installation, the apt application itself will detect which of the

packages is the most recent or which would take the least time to download

and then download it from the corresponding source. In addition, we can use

the netselect program to configure the whole of the download system in

more detail.

Another very interesting option that most distributions provide is that of up-

dating the packages in which any vulnerability or bug has been discovered.

With Debian, all we have to do is add the following line in the /etc/apt/

sources.list file:

Packages from the source
code

The systems of packages al-
so make it possible to create
packages with the source code
of the applications. If all we
want to do is use the appli-
cation, it is not necessary to
download the source code
packages.

GNUFDL • PID_00148393 147 Basic GNU/Linux

deb http://security.debian.org/ stable/updates main contrib

non-free

As critical packages are detected, they are placed in this source, so that by

running apt-get update, we can find out what new updates have to be

performed in the system and the required packages can be reinstalled.

Although the dpkg programs can be used to change any aspect of the packages

installed in the system, create new packages, modify the installed ones etc.,

we will only look at the most important ones at the user-level in this course,

so that we can carry out all the basic operations. The main dpkg programs

are as follows:

• dpkg-divert: can be used to set the place where we will install some

of the installation packages in the system. It is very useful for avoiding

problems with dependencies.

• dpkg-reconfigure: the deb package itself very often includes some

mechanism to configure some of the options of the application interac-

tively. With this application, we can reconfigure the package that we want

using the same mechanisms used during installation.

• dpkg-scanpackages: this program can be used to scan a specific directo-

ry of the system that contains .deb files, so that an index file is generated.

We can use this index file to include the directory as another source of

apt. It is very useful when we download unofficial programs of the dis-

tribution.

• dpkg-scansources: this is an application with the same functions as the

preceding one but for packages of source code.

• dpkg-split: this program is used to divide and unify a package in various

different files.

With these programs, we can manipulate our packages in any way we wish to.

The main application, dpkg, is the one that allows us to install, list or delete

the packages in the system. In order to list the available packages, we can enter

the -l parameter which will show a complete list of the packages and their

installation status (installed, installed but not configured etc.). If we wanted

to see all the information of a specific package, we could use the -p parameter

followed by the name of the package, which would show all the dependencies,

conflicts with other packages, version number, description etc.

GNUFDL • PID_00148393 148 Basic GNU/Linux

To install new packages, we could use the -i parameter followed by the name

of the file. If there are problems with the dependencies, we can ignore them

with --ignoredepends=X, where the X indicates the dependency, although

we must be very careful with the way in which we use this parameter because,

when we ignore dependencies, the installed program might not work properly.

If all we want to do is decompress the .deb file to see what it contains, we

could also use -x. In order to delete the packages, we must enter -r, followed

by the name of the package, which would delete them from the system, but

saves the configuration files (we can use -P to delete everything).

Another very interesting parameter is --force-things X (where X is one of

the following options), which can help us if any of the following situations

arise:

• auto-select: this automatically selects the packages that must be in-

stalled or uninstalled with the new package that we choose.

• downgrade: this installs the package even if there are more recent versions

of it.

• remove-essential: although this package is considered essential for the

system, this will delete it.

• depends: this does not take the dependencies into account, but considers

them as alerts.

• depends-version: this does not take any of the dependencies of the ver-

sion of packages into account.

• conflicts: this installs the package, even if it is in conflict with any other

package in the system.

• etc.

Although all the programs that we have discussed in this subsection have

many options and there are many more programs, the ones we have described

should be enough (with the package system of the distribution that we are

using) to carry out almost any task that is necessary. Although we have already

mentioned that programs such as dselect or aptitude can be used to carry

out the basic installation and deletion procedures on the packages, it is im-

portant to learn about these other commands properly because they can be

very useful for performing specific operations or automating the selection and

installation processes.

The dpkg utility

With dpkg, we can also use
templates to select, install,
delete etc. the packages in the
system.

GNUFDL • PID_00148393 149 Basic GNU/Linux

8.3. Compilation of new programs

When administrating any server, we will probably find that in some cases we

have to use some program that our distribution does not have or that we need

the latest version of an applications server that has not yet been packaged

properly etc. In these cases, we can always download the source of the program

and compile it manually. It is important to understand the difference between

compiling a program to obtain its executable and directly downloading the

binary. When we compile a program, this uses the libraries available in the

system, whereas if we download it directly, what will most probably happen

is that it will not work properly because it will try to use some library that is

not exactly the same as the one installed in the system. For this reason, the

most advisable thing to do when we need to install a new program and we do

not have the corresponding package, is to recompile it.

When we download the sources of an application, we will obtain a file that

has been packaged and compressed with tar and gzip or similar. There will

usually be an added file called README, which explains each of the steps that

have to be taken in order to compile the program properly. Although reading

it is advisable, in most cases the installation process is the same.

The first thing that we must do to compile the new program is to decompress

it and extract it from the package. Once we have done this, we should have

the source code structured into various directories. In its root, we can find

(or not) a file called Makefile. This file tells the compiler which libraries are

used, how the code files must be compiled etc. If we have this Makefile,

we can already compile the program by running make. It is not necessary to

enter any parameter because, by default, it already looks for the makefile file

and executes the actions specified therein. If the process does not result in an

error message, we can then move the executable that has been generated so

as to put it in one of the directories of the configured PATH; by doing this, we

will not have to write the complete path every time we want to run it. Many

makefiles also provide instructions so that we do not have to carry out the

last step. Generally, by running make install, the same program will be in

charge of putting the binaries and the documentation files, if applicable, in

the right place. Finally, if we do not want to save the program’s source code,

we can delete all of the contents of the directories we have created.

Compiling a program

When we compile a program, we will most likely have to have the sources or headers of
the libraries that are used in the system installed. Generally, these packages usually have
the same name as the library, but with an added “-dev” (which stands for development)
at the end.

Compiling time

The compilation process for a program can take from seconds to hours, depending on
the application in question. For example, compiling the Linux kernel will take anything
from 5 or 10 minutes to 2 hours (depending on the version of the kernel and the power
of the computer in question).

GNUFDL • PID_00148393 150 Basic GNU/Linux

If the program does not incorporate the makefile, it usually includes some

form of shell script so that the file can be generated automatically (generally,

this script is usually called configure). When we run this shell script, the

system will be checked to ensure that all the libraries that are necessary for a

proper compilation have been installed and an alert message will be generated

if any library is not present. Once this shell script has run properly, we will

have a makefile, which means that the process that we should then follow

is as described above. The following figure shows how this process occurs.

Figure 8.2

Although most of the source code of the programs is organised as we have

explained here, we might come across other types of installation. There are

some that incorporate menus, environments in X or other more user-friendly

methods. Recently, there are some applications that make it possible to carry

out the whole installation process by downloading the code directly from the

Internet.

GNUFDL • PID_00148393 151 Basic GNU/Linux

9. Workshop on basic configurations

9.1. Introduction

In the second workshop, we have learnt how to install a basic system so that,

on this basis, we can start to assemble a system tailored to our needs. This

will be the subject of these last two workshops. In the first workshop, after

specifying certain aspects concerning the configuration of the package instal-

lation system, we will set the foundations necessary for installing the required

applications. We will then learn how to use the different tools that Debian

provides for package management, in other words, how to install, uninstall,

update etc. the applications and we will configure some of the most frequently

used, which are necessary in most UNIX-type systems. The last workshop will

cover the graphical system. In the workshop, we will learn how to install it,

configure it, adapt it to our preferences and, finally, how to install and use the

applications that make it possible for the system to work.

9.2. Bootloader

Firstly, we must make sure we install a bootloader system that is able to man-

age all the possible operating systems that we have installed in our comput-

er without any problems. This question was already covered superficially in

the preceding workshop, during the installation process. If we have already

installed the bootloader and checked that it works properly, we can go on to

the following subsection; however if this is not the case, in other words, if we

need the backup disk we created during the installation every time we want

to boot up our operating system, it is time to install a startup management

system or bootloader in the hard drive to avoid the tedious procedure of using

the disk every time we start the system up. In any case, it is always in our

interests to install a bootloader, as it will allow us to start up different kernels,

among many other things.

As we have explained, there are different bootloaders, including Lilo and Grub.

Grub is a powerful bootloader from the GNU project, which is known for being

able to manage the booting up process of any operating system that we have

properly installed in our computer; nevertheless, using and configuring this

bootloader is somewhat complicated.

In any case, if we do not have a bootloader and we want to install one, the first

thing that we must do is start up the operating system that we have and check

whether the application is installed; to do this, we can use the man command

for the application, for example.

GNUFDL • PID_00148393 152 Basic GNU/Linux

9.2.1. Installing Grub

Currently, Grub is the default bootloader. In any case, if we need to reinstall it,

we should read the following subsections to learn about the package managing

system, its configuration and how to use it; or, simply, if we have entered the

contents of all the CDs/DVDs into the database during installation or we have

decided to carry out the installation using the Internet, we should run the

following line:

brau:~# apt-get install grub grub-doc

If we do not want to install the documentation package, we can omit the last

parameter from the line above.

One advisable way of working with Grub, is to use, before writing in the MRB,

the tests that we think may be appropriate for the disk and check that it works

properly when booting from it. To do this, we must first copy the necessary

files in /boot/:

brau:~# cp /usr/lib/grub/i386-pc/stage* /boot/ brau:~# cp /usr/share/doc/grub/examples/menu.lst

/boot/

Once we have done this, we will edit Grub’s configuration file, /boot/

menu.lst, and we will tailor it to our needs. This operation can be some-

what complex due to, among other factors, the change in the nomenclature

where the hard disks are concerned; therefore, in order to identify the device

in which a specific file is located, we can use the find command, once we

have entered Grub’s command mode, using grub. Therefore, for example, if

we want to find a file, whose secure location we will have to specify in Grub’s

configuration file, such as /vmlinuz, we should proceed as follows:

brau:~# grub GRUB version 0.91 (640K lower / 3072K upper memory) [Minimal BASH-like line

editing is supported. For the first word, TAB lists possible command completions. Anywhere

else TAB lists the possible completions of a device/filename.] grub> find /vmlinuz (hd2,0)

Grub has many more commands, for a list of some of these, simply press the

Tab key in the command line to obtain the following:

grub> Possible commands are: blocklist boot cat chainloader cmp color configfile deb ug

device displayapm displaymem embed find fstest geometry halt help hide impsp robe initrd

install ioprobe kernel lock makeactive map md5crypt module moduleno unzip partnew parttype

password pause quit read reboot root rootnoverify savede fault serial setkey setup terminal

GNUFDL • PID_00148393 153 Basic GNU/Linux

testload testvbe unhide uppermem vbeprobe grub>

To obtain help on any specific command, all we have to do is enter help on

the keyboard followed by the name of the command. A good way of working

on our Grub configuration file, /boot/menu.lst is to open a new session in

a different tty and to gradually modify the file as we are working on Grub’s

commands interface.

Once we have finished editing the configuration file, and entered a blank disk

in the disk drive, we should use the keyboard to key in the command, substi-

tuting the X with the number of the hard disk, and Y with the corresponding

partition with the following command line:

grub> install (hdX,Y)/boot/stage1 d (fd0) (hdX,Y)/boot/stage2 p (hdX,Y)/boot/menu.lst

With the preceding line, we have transferred the information of the MRB

(stage1), Grub and its command line interface (stage2) and the boot up

menu (/boot/menu.lst) that we have configured in the file to the disk (fd0).

We should then be able to reboot the machine, boot up using the disk that we

have just created and check whether our configuration is correct.

It is very interesting to have a Grub diskette, as, using the command line in-

terface, we can try to start up the different operating systems installed in the

computer directly, so as to perform tests to debug the contents of the /boot/

menu.lst file. As an example, the procedure that has to be followed in order

to boot up a MicrosoftTM system installed as a (hd0,0) is explained here and

we will then discuss the commands necessary to boot up a GNU/Linux system

installed as (hd1,0):

For a Microsoft system:

grub> rootnoverify (hd0,0) grub> makeactive grub> chainloader +1 grub> boot

For a GNU/Linux system:

grub> kernel (hd1,0)/vmlinuz root=/dev/hdc1 grub> boot

Once we have the definitive bootloader that we wish to implement in our

diskette, all we have to do is transfer this same configuration to the MBR of the

booting hard disk; using the same command line of the diskette, we should

key in:

grub> install (hdX,Y)/boot/stage1 d (hd0,0) \ (hdX,Y)/boot/stage2 p (hdX,Y)/boot/menu.lst

GNUFDL • PID_00148393 154 Basic GNU/Linux

As we have seen, using Grub is somewhat complex, which is why we think it

is very advisable to read the man files and documents that have been installed

with the Grub-doc package, which can also be seen at http://www.gnu.org/

software/grub/sto, before attempting to install and configure it. .

9.3. The package system

We will now analyse and learn how to use Debian’s package system, which is

probably the most solid and reliable of those existing in the world of GNU.

In the following subsections, we will learn how to configure its database, how

to use it, install different packages, update them etc. There are often many

different ways of achieving the same result. Some of these methods will be

explained here, with two main objectives: the first is for readers to be able to

choose which one they want to use, and the second is for readers to always

know more than one solution to the same problem, in case any of these meth-

ods does not work.

Activity

9.1 For a comprehensive understanding of how Debian’s package system works, we rec-
ommend reading:

• APT HOWTO: http://www.de.debian.org/doc/manuals/apt-howto/index.en.html
• http://www.de.debian.org/doc/manuals/ debian-faq/ch-pkg basics.en.html
• http://www.de.debian.org/doc/manuals/ debian-faq/ch-pkgtools.en.html
• The man of: apt, apt-cache, apt-get, sources.list, dpkg and dselect.

In order to make reading easier, we could wait until we have configured the printer and
learnt how to print the man.

9.3.1. /etc/apt/sources.list

The file /etc/apt/sources.listis the core of Debian’s package system con-

figuration. As it is a text file, like most configuration files in UNIX-type sys-

tems, we can edit it manually or using some of the tools that the system has

for this purpose. The content of this file will depend to a large extent on the

speed of our Internet connection, supposing we have a connection. However,

we should never forget to run the following command as the root, once we

have modified the file:

brau:/etc/apt# apt-get update

If we neglected to do this, the database of the package system would not be

updated and therefore, none of the changes that we had made would have

any effect. In an installation in which the packages are obtained remotely, this

command must be run regularly, so that the database is kept updated; for this

reason, it is not a bad idea to include it in the cron system.

GNUFDL • PID_00148393 155 Basic GNU/Linux

Each line of this file refers to a source of packages and the fields are separated

by a space. Firstly, we must specify whether the source is binary packages deb

or if it is source code deb-src. The second field is used to specify how these

packages are accessed: CD-ROMs, http, ftp etc. followed by the address. The

remaining fields refer to the type of packages that we wish to access using this

line.

In the most ideal case, we should have a fast Internet connection. This will

probably already have allowed us to carry out the installation of the basic

system using the Internet, as well as provided us with the latest versions of

the packages. In addition, it is the most comfortable way of working with the

packages, as we do not even have to worry about inserting the correct CD in

order to carry out the installation.

However, what we must do, before doing anything else, is to ensure that the

content of /etc/apt/sources.list is correct. For example:

deb http://ftp2.de.debian.org/debian/ stable main non-free contrib deb-src

http://ftp2.de.debian.org/debian/ stable main non-free \ contrib deb

http://non-us.debian.org/debian-non-US stable/non-US main \ contrib non-free deb-src

http://non-us.debian.org/debian-non-US stable/non-US main \ contrib non-free deb

http://security.debian.org/ stable/updates main contrib non-free

All the addresses given above are official; in other words, they are recog-

nised by Debian. Apart from these sources, we can also use unofficial pack-

ages; just because they are unofficial does not mean that their quality is

not good enough to include them in our configuration file. A good address

where information on the location of these packages can be found is http://

www.aptget.org.

Once we have edited and saved the file, we should run the apt-get update

command; after a few moments, during which the package system will recon-

figure its database and display the different accesses performed on the screen,

we should have access to the new packages.

If we do not have an Internet connection or the one that we have is too slow,

we shouldn’t hesitate to use the set of CDs/DVDs of the distribution to install

the different packages. If we have not inserted the CDs or DVDs during the

installation process up to this point, now is the time to do so. We should insert

the first CD-ROM/DVD in the reader and use the apt-cdrom add command

to include its contents in the database:

brau:/etc/apt# apt-cdrom add Using CD-ROM mount point /CD-ROM/ . . . Repeat this process

GNUFDL • PID_00148393 156 Basic GNU/Linux

for the rest of the CD in your set.

Having reached this point, we should repeat the same process for each and ev-

ery one of the distribution’s CDs/DVDs. Likewise, we can use the same proce-

dure to incorporate data from unofficial CDs/DVDs. Once we have configured

our Internet connection, if necessary, we can include the sources of remote

access packages. In order to do this, we should edit the file called /etc/apt/

sources.list and then run apt-get update, to have the new packages.

9.3.2. apts available.

apt is an abbreviation for Advanced Package Tool, which, as we have discussed

on various occasions, is the basic system in charge of administrating the pack-

ages of distributions based on Debian. apt essentially provides us with two

tools: atp-get and apt-cache. The first command can only be used by the

root user of the system, as it is the package management tool: installing, unin-

stalling, updating etc.; whereas, the second, as it is a command used to find

information in the database, whether it concerns installed packages or pack-

ages that have not been installed yet, can be used by any of the users.

In order to make it easier to manage the packages, other applications have

been developed; these run on a level above apt, such as the dpkg middle-end

or the dselect or aptitude front-ends. But before looking at the different

package management systems, we should learn some concepts about these

systems and how the system and the management system relate to each other.

Types of package, according to their priority

Within the package system, there are five distinct types of packages, which are

defined by their degree of dependence on the system itself. In their decreasing

order of priority, they are classified as:

• Required. These are packages that are essential for the system itself to

work properly.

• Important. These are the packages that should be present in any UNIX-

type system.

• Standard. These are packages that are commonly found in a GNU/Linux

system. Generally, they are small applications, which are no longer essen-

tial for the system.

• Optional. These are packages that may or may not be present in a GNU/

Linux system. Among others, this group includes all the packages refer-

ring to the graphical system, as it is not considered essential. In reality,

GNUFDL • PID_00148393 157 Basic GNU/Linux

in many servers, the graphical environment is discarded, with a view to

increasing the system’s performance levels.

• Extra. These are packages that either present conflicts with packages with

a higher priority or that require special configurations that render them

inapt for integrating them as optional packages.

We can determine which group a specific package belongs to, using, for exam-

ple, the sentence apt-cache show <name of the package> and checking

the contents of the Priority field.

The degree of dependency between

apt packages is characterised by the large amount of consistency when it

comes to managing the dependencies between packages. For example, it is

possible that a given application that we want to install depends on a library

and, consequently, on another package that we have not installed. In this case,

apt will tell us about this dependency and will ask us whether we want to

install the package that contains that library, along with the application that

we are installing. The relationships between packages are classified as follows:

• depends. The package that we want to install depends on these packages

and, consequently, if we want this package to work properly, we must

allow apt to install the rest of them.

• recommends. The person in charge of maintaining the package has decid-

ed that the users that are going to install this package will normally also

use the ones that are recommended.

• suggests. The suggested packages make it possible to obtain a better per-

formance than that obtained from the package that we were going to in-

stall.

• conflicts. The package that we will install will not work properly if these

other packages are present in the system.

• replaces. The installation of this package means uninstalling other pack-

ages.

• provides. The package that we will install incorporates all the content

of the abovementioned packages.

We can determine the dependencies of a package with, for example, the sen-

tence apt-cache depends <name of the package>.

GNUFDL • PID_00148393 158 Basic GNU/Linux

Actions performed on the packages

Using the dpkg or dselect flags, we will obtain information on what the user

intends to do with those packages.

• unknown. No reference has ever been made to the package in question.

• install. The package has to be installed or updated.

• remove. The package is going to be uninstalled, but without deleting its

configuration files (which are usually located in /etc/).

• purge. The package will be completely uninstalled, and the configuration

files deleted.

• hold. This is used to indicate that no operation should be performed

on this package (in other words, its version and configuration should be

maintained until such an operation is explicitly commanded).

Status of the package installation

Within the package system, we will find:

• installed. The package has been installed and configured correctly.

• half-installed. The installation of the package began but, for some

reason, it was not completed.

• not-installed. The package has not been installed in the system.

• unpacked. The package has been unpacked, but not configured.

• config-files. Only the configuration files of the package in question

exist in the system.

apt-cache

As we have mentioned, apt-cache is a command used to analyse the package

system and, therefore, as it is not potentially dangerous for the system, all

users can access it. The parameters that are most often used for this command

are as follows:

• search pattern. This searches the database for the packages whose

name contains pattern or packages that contain the word pattern in their

description (if the result is a very long list, given that patterns are very

common, we can use pipes and grep

GNUFDL • PID_00148393 159 Basic GNU/Linux

• show package. Provides information on the package.

• policy package. Provides information on the installation status, the

version and revision number of the package, as well as its origin.

• depends package. This lists the package’s dependencies.

• show package. It shows the direct and reverse dependencies of the pack-

age.

apt-get

apt-get is the command used to manage the system’s packages. This is why

it can only be used by the system’s root user. The parameters that are most

often used for this command are as follows:

• install package. This installs the package. If this depends on packages

that are not found on the system, apt will report this to us and will ask

if we want to install the packages that the package that we want to install

depends on and that are not installed, at the same time; generally, it is in

our interest to follow the advice provided by apt.

• update. This updates the apt database. This command must run every

time that the file is modified. /etc/apt/sources.list.

• upgrade. Forces the upgrading of the packages installed to the latest avail-

able version.

• remove package. This deletes the package, without deleting the config-

uration files, in case any reinstallations need to be performed.

• remove -purge package. This completely deletes the package, including

the corresponding configuration files.

• clean. This eliminates the expired copies of the packages that have been

gradually installed; during the process, a copy of the unpackaged package

is saved automatically in /var/cache/apt/archives whenever a pack-

age is installed. This is a very useful command for freeing up space on the

hard drive occupied by files that, most probably, will never be used again.

• autoclean. This eliminates all the unpackaged copies of the packages,

regardless of the expiry date.

GNUFDL • PID_00148393 160 Basic GNU/Linux

9.3.3. dpkg

dpkg stands for Debian Package Manager and it was conceived as a apt back-

end. The most commonly used parameters are the following:

• -l. To list the packages in the database and their installation status (this

option is generally combined with grep).

• -L package. To list the files contained in the package.

• -r package. This has the same effect as apt-get remove package.

• -P package. This has the same effect as apt-get remove -purge pack-

age.

• -p package. This has the same effect as apt-get show package.

• -s package. Describes the package’s installation status.

• -S file. Searches for the packages to which the file belongs.

9.3.4. dselect

dselect is a GUI (Graphical User Interface) that runs on apt. To enter it,

all we have to do is key in the command dselect and, using the interface’s

menus, go selecting the different packages that we wish to operate on and

specify the type of operation that we wish to carry out.

9.3.5. aptitude

aptitude is another GUI that runs over apt. It is not installed by default,

which means that we have to install it before we can use it.

brau:/etc/apt# apt-get install aptitude

Once it has been installed, we can launch it using the aptitude command

and we will immediately see that using it is just as simple or even simpler than

using dselect, as it has drop-down menus that can be called up pressing F10.

9.4. locales: regional configuration

Although it may appear that our keyboard is working properly, as we can use

accents, umlauts and other characters that are not English, as we adapt the

system to our needs, and especially when we want to install the graphical

GNUFDL • PID_00148393 161 Basic GNU/Linux

interface and make the applications run in it, as we will in the next workshop,

we will observe that this is not the case. At this point, we could proceed to

configure these aspects properly so that we do not have to do so later.

Firstly, we should check whether the locales package has been installed:

brau:/# dpkg -l| grep locales ii locales 2.2.5-11.2 GNU C Library: National Language (locale)

results in

If we do not obtain the last line, we must proceed to install and configure the

package:

brau:/# apt-get install locales

And if we do have it, we should key in the following line to reconfigure it:

brau:/# dpkg-reconfigure locales

Of the many options that we are offered, we choose [*] es ES UTF8, in other

words, we highlight the option and press the space bar. We use the Tab key

to highlight OK and press Enter. In the next screen, we select C. Back in the

command line, we edit the file /etc/environment so that it is left as follows:

LC_ALL=es_ES LANGUAGE=en_US LC_TYPE=es_ES LC_MESSAGES=UTF8 LANG=C

To make the change effective, all we have to do is key in the locale-gen

command and we will come out of all the sessions that we may have opened

to load the new configuration.

9.5. The main booting file, /etc/inittab

Although the process for booting up a GNU/Linux system is complex, this sec-

tion only works on one of the main files of this process: /etc/inittab. Dur-

ing the booting process, this file indicates, among other elements, the runlevel

at which we will start and define the processes that will launch automatically

during the booting procedure. To learn which runlevel we are in, all we have

to do is key in the runlevel command. To change the runlevel, to home, we

use the init <destination runlevel> instruction.

It is interesting to open this file and become familiar with its contents, as

this will provide us with a better understanding of the process for booting a

GNU/Linux system.

Additional reading

To learn more about lo-
cales, we recommend visit-
ing the website:
http://www.uniulm.de/ss-
masch/locale/.

GNUFDL • PID_00148393 162 Basic GNU/Linux

9.6. Assembly of devices, /etc/fstab

/etc/fstab is the file that contains the information on the partitions and

devices that will be set up automatically during the booting process and the

ones that can be set up subsequently, as well as information on who is per-

mitted to carry out these procedures. We will now show the possible contents

of this file and analyse them.

/etc/fstab: static file system information. # # <file system> <mount point> <type>

<options> <dump> <pass> /dev/hdg1 / ext3 errors=remount-ro 0 1 /dev/hdg2

none swap sw 0 0 proc /proc proc defaults 0 0 /dev/fd0 /floppy auto user,noauto 0 0 /dev/hdg5

/usr ext3 defaults 0 2 /dev/hdg6 /var ext3 defaults 0 2 /dev/hdg7 /home ext3 defaults 0 2

/dev/CD-ROM /CD-ROM iso9660 ro,user,noauto 0 0 /dev/hdc1 /mnt/hdc1 ntfs ro,user,noauto,

gid=windows,umask=0007,utf8 0 0 /dev/hde1 /mnt/hde1 ntfs ro,user,noauto,gid=windows,

umask=0007,utf8 0 0 /dev/hde5 /mnt/hde5 ntfs ro,user,noauto,gid=windows, umask=0007,utf8 0 0

/dev/hde6 /mnt/hde6 vfat utf8,user,noauto 0 0 /dev/hde7 /mnt/hde7 vfat utf8,user,noauto 0 0

The first lines were automatically generated by the installation process and

in them we can see how the different directories are distributed within the

GNU/Linux structure. Perhaps the line that will most call our attention will

be proc /proc proc defaults 0 0, which is in charge of setting up the

virtual proc directory, which we already discussed in the first workshop.

The most interesting lines are the ones like /dev/hdc1 /mnt/hdc1

ntfs utf8,ro,noauto,user,gid=windows,umask=0007,utf8 0 0.

These specify the point of origin and the point of assembly of the parti-

tions belonging to the Windows2000TM operating system; in other words,

that of an ntfs type. We cannot write in these partitions from GNU/Lin-

ux, although we can read the contents; this is reflected in the options

ro,noauto,user,gid=windows, umask=0007,utf8 (it is essential not to

leave any space blank in the options, as this character is the one used to sep-

arate the fields in this file). The first indicates that it is a read-only partition;

the second, that it will not be set up automatically during the system booting

process; the third indicates that this partition can be set up by any user; the

fourth indicates that only members belonging to the Windows group will be

able to access it (as defined in the file /etc/group); the second-to-last option

establishes the antimask of the setup and the last, the table of codes that will

be used.

The last lines of the preceding file are used to mount FAT32 partitions, on

which it is possible to write from GNU/Linux. For this reason, it is a good idea

to always have a small partition with this type of format, as it will be accessible

GNUFDL • PID_00148393 163 Basic GNU/Linux

both from GNU/Linux and from WindowsTM. Although it is true that it is

possible to mount a file system from the command line, as, for example, would

happen if we were mounting the CD-ROM,

brau:/etc/apt# mount /dev/CD-ROM /CD-ROM -t iso9660 ro

it is a lot more comfortable to have the information entered in the /etc/

fstab file, as this will allow us to do the same thing simply by keying in:

brau:/etc/apt# mount /CD-ROM

9.7. Device configuration

Having addressed the basics of package administration, we can cover the task

of starting to configure the system so as to tailor it to our specific needs. The

process basically consists of two parts: configuring the different hardware de-

vices that we have installed in the computer, and installing the software that

we will use.

Configuring the system’s hardware is usually the part that requires most effort,

in general, because each computer will have different devices and therefore

each computer can be a world unto itself. Generally, in GNU/Linux systems,

we can configure any device, however unusual it is, although this will be ei-

ther more or less complicated depending on how standardised the devices are.

However, it is also true that these are the processes during which we can learn

the most, as, generally, configuring a device requires certain previous tasks,

such as finding out exactly what type of device we have, reading all the doc-

umentation on these types of devices included in GNU/Linux systems, how

the device in question integrates with the system etc.

Given that not all hardware manufacturers support GNU/Linux systems, and

there are some that do not even provide the information needed so that the

developers of the GNU/Linux community can write the code that is necessary

for integrating these devices in the operating system, it is recommended that,

whenever purchasing new hardware, we should find out exactly which prod-

uct we need (this information should generally be much more precise than

that usually provided by the suppliers of the hardware themselves, which,

sometimes, they do not even have), whether it is fully supported, what infor-

mation we will need to integrate the new product in our system etc. In gen-

eral, when purchasing new hardware, the things that should be considered

are the degree of standardisation and the quality of the product. Where stan-

dardisation is concerned, the more standardised the product, the higher the

number of users who have it and, therefore, it is much more lkely that it is

fully supported. Where the quality of the product is concerned, a few years

ago, hardware manufacturers began to replace functions that would be imple-

mented with hardware with functions implemented by software in order to

reduce costs (the most famous example of this practice is possibly that of the

GNUFDL • PID_00148393 164 Basic GNU/Linux

modems known as winmodems). This results, on the one hand, in reduced

system performance, as it requires burdening the CPU with new tasks, many

of which were not even been designed to carry out, and, on the other hand, in

the need to have the software that replaces the removed hardware and that,

generally, has only been developed for certain types of operating system; for

this reason, it is advisable to avoid any product that is specifically designed

for a particular operating system.

Throughout each subsection covering system configuration, we will discuss

some of the aspects of the different devices that we may come across and the

implicit problems.

Before we start configuring the different devices in our system, we must re-

member some strategies that may be useful for this purpose. Firstly, the lspci

command can be used to obtain a lot of information on how these devices

are recognised by the system during the booting process. If this information

is insufficient, we can always resort to the virtual /proc/ directory, where

all the information on the system’s hardware, among other elements, will be

recorded. Likewise, the log files, located in /var/log/ can be very useful (an

interesting method for seeing how the contents of these files evolve is to use

the tail command with the -f parameter and redirect its output to a tty that

we are not using; as an example, tail –f /var/log/messages > / dev/

tty10).

9.7.1. Configuring the mouse

As was the case in the workshop on KNOPPIX, the deamon that will be in

charge of administrating the mouse will be gpm. We should then install the

package:

brau:/etc/apt# apt-get install gpm

Upon completion of the installation, a script will launch automatically to help

us configure the mouse; The parameters that we must enter are essentially the

same ones that we entered during the workshop on KNOPPIX, but if anything

were to fail, we could always re-launch the configuration program using the

gpmconfig command (generally, the configuration -m /dev/ psaux -t

ps2 should be valid for most PS2 mice with three buttons). The configuration

that gpm will use every time the system is booted is saved in /etc/gpm.conf.

It is helpful for the mouse to have three buttons, as functions will be assigned

to all three, especially in graphical environments. For this reason, if we have a

mouse that only has two buttons, we can press both buttons at the same time,

for the functions that the third button would usually carry out.

GNUFDL • PID_00148393 165 Basic GNU/Linux

Starting up and stopping the gpm

As we have mentioned, the program in charge of administrating how the

mouse works is a deamon. Therefore, we will act as we would with any other

normal deamon in order to start it up or stop it. This subsection will provide

an example of how to start up or stop the daemons.

Both starting and stopping a deamon are performed using a script that is lo-

cated in /etc/init.d/. Generally, if we invoke this script without entering

any parameter, it will show us a help line that will assist us by telling us how

to use it. Let us therefore proceed to stop the gpm deamon:

brau:/etc/init.d# ./gpm stop Stopping mouse interface server: gpm

Using ps aux, we can check whether, effectively, there is no other process

called gpm running, and besides, we can see that if we move the mouse, noth-

ing happens on the screen. Now we can proceed to start it up:

brau:/etc/init.d# ./gpm stop Starting mouse interface server: gpm

Now, when we move the mouse, we will see the arrow appear on the screen.

Now, let us proceed to analyse whether this deamon will launch automatical-

ly when we boot up the computer. The /etc/inittab file will tell us the

runlevel in which the operating system will boot up: by default, it will be 2;

therefore, in this file, we should find a line similar to the following:

The default runlevel. id:2:initdefault:

Let us therefore check whether the directory /etc/rc2.d/ contains a sym-

bolic link to /etc/init.d/gpm:

brau:/etc/init.d# ls -l ../rc2.d/ | grep gpm lrwxrwxrwx 1 root root 13 feb 21 13:03

S20gpm -> ../init.d/gpm

If this symbolic link does not exist, and we want gpm to launch automatically

during the booting process, we should create it manually using ls –s. If, on

the other hand, the link exists and we do not want gpm to launch during the

booting process, all we would have to do is delete this symbolic link; however,

it is not advisable to delete the scripts from /etc/init.d, as they are very

useful for booting up and stopping daemons.

GNUFDL • PID_00148393 166 Basic GNU/Linux

9.7.2. Configuring modems

As occurs with all other hardware, modems can be configured completely

manually, but this practice is generally being forgotten, as over time, tools that

are sufficiently powerful and reliable have been developed, which can help us

to avoid the tedious task of configuring a modem manually. One of these tools

is pppconfig, which is the one we suggest here to configure our modem.

However, before we start configuring our modem, we have to state that not all

the devices that are spoken of or sold as such are actually modems. As we have

discussed, many manufacturers, in order to reduce their costs, have started

replacing physical components with software, and historically, modems were

probably the fist devices to suffer from this practice. We have to be especially

careful with internal modems, as in reality, very few of these incorporate all

the hardware that these devices should have. Real modems are easily recog-

nisable by the difference in price compared to fake modems. For this reason,

many of these devices have been reduced to mere slaves of the software.

For this reason, it is generally recommended that we use external modems,

whenever this is possible. Regardless of whether we have a real mo-

dem or not, we recommend reading http://www.tldp.org/HOWTO/Modem-

HOWTO.html. Given that we will use pppconfig to configure our modem,

unless we installed it during the system installation procedure (you can check

this by trying to launch the application directly, in other words, entering pp-

pconfig on the keyboard or using dpkg -l | grep pppconfig), the first

thing we must do is install the application:

brau:˜# apt-get install ppp pppconfig

Once we are on the main screen of the installation interface, we must select

Create a connection and on the following screen, we will enter the name with

which we will refer to this configuration, as it is possible to configure and

manage more than one connection.

After assigning a name to the new configuration, we must configure the DNS

access: we can choose the default option, static DNS assignment, or a dynamic

DNS assignment, if we are sure that our ISP will provide us with the DNS

addresses during the connection process. If we choose the default option, we

will be asked to enter the IPs of the DNS that we want to use and they will be

stored in the /etc/ppp/resolv/nameofconfiguration file).

On the following screen, we must choose the authentication method for es-

tablishing the configuration. Generally, unless our case is exceptional, we will

choose the first option, PAP. Next, we will enter the user name and the pass-

word for the connection and choose the connection speed; the default speed

is 115200, and with most connections, this should work without a problem.

Bibliography

For more information on
these devices and how they
integrate in GNU/Linux,
please go to:
http://www.tldp.org/HOW-
TO/Winmodems-and-Linux-
HOWTO.html
http://www.tldp.org/
HOWTO/Linmodem-
HOWTO.html
http://www.idir.net/
gromitkc/winmodem.html

GNUFDL • PID_00148393 167 Basic GNU/Linux

After specifying whether our telephone line is dial-based or tone-based (cur-

rently, most are tone-based), we must enter the number that should be rung,

which our ISP should have given us.

Having reached this point, pppconfig will ask us whether we want the mo-

dem to be automatically detected. With the modem working, we can let the

program itself detect the port to which the modem is connected, or we can

do it ourselves manually (always remembering the correspondence: first serial

port, COM1, /dev/ttyS0, second serial port, COM2, /dev/ttyS1, etc).

Once we have entered the ttyS to which the modem is connected, we will ac-

cess a screen summarising the data that we have entered, which also allows us

to establish certain advanced options (these are generally not necessary). If the

data are correct, we can choose the Finished Write files and return to

main menu option, and after confirming the operation, for returning to the

interface’s main menu, if we do not want to configure another connection, we

should choose the Quit Exit this utility option to return to the com-

mand line. Once back in the command line, we can check whether these data

have been saved properly in /etc/ppp/peers/nameofconfiguration. For

users of PPP connections, it might also be interesting to install the pppstatus

package to monitor the traffic over the connection, among other elements.

Establishing and terminating a connection pon, poff

In order to establish a connection, all we have to do is key in the Pon command

followed by the name of the connection that we wish to use; if we have only

configured one connection, it will not be necessary to specify its name. In

principle, if its use is not restricted, Pon can be run by any of the users.

To terminate the connection, all we have to do is run the Poff command.

9.7.3. Configuring DSL modems

As we did in the preceding section for configuring traditional modems, here

we will use a tool for configuring DSL modems: pppoeconf. But before be-

ginning, we recommend reading http://www.tldp.org/HOWTO/DSL-HOWTO

and http://www.tldp.org/HOWTO/ADSL-BandwidthManagement-HOWTO.

PPPoE (Point-to-Point Protocol over Ethernet), which is a protocol that is very

similar to PPP that uses an Ethernet interface instead of a modem. This type

of protocol has been adopted by some ADSL Internet providers.

GNUFDL • PID_00148393 168 Basic GNU/Linux

The ADSL connection is generally part of the telephone service. The signals

(telephone and ADSL signals) are divided in a device called a splitter, which

separates them to their respective frequency ranges. The ADSL signal then

goes into a device called a concentrator that is connected to the computer’s

Ethernet interface with a twisted pair cable with RJ45 connectors.

To configure the connection:

apt-get install pppoeconf

When running pppoeconf, the tool will scan all the network interfaces until

it finds one that accesses a concentrator. We will choose to configure PPPoE

in this interface.

In ENTER USERNAME, we enter the name of the user that the provider has

assigned to us and then the password. In USE PEER DNS we will choose the

automatic modification option, /etc/resolv.conf. We choose to have PP-

PoE run when booting and then select the connection. After a few seconds

you will see something similar to this on the screen,

Every 2s: /sbin/ifconfig ppp0 Sun May 13 12:11:56 2007 ppp0 Link encap:Point-to-Point

Protocol inet addr:200.89.50.138 P-t-P:10.52.0.3 Mask:255.255.255.255 UP POINTOPOINT

RUNNING NOARP MULTICAST MTU:1492 Metric:1 RX packets:5 errors:0 dropped:0 overruns:0

frame:0 TX packets:7 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:3

RX bytes:190 (190.0 b) TX bytes:199 (199.0 b)

9.7.4. Configuration of network cards

If, for any reason, we have not configured the network card during the instal-

lation process, now is the time to do so. Although practically all network cards

are supported in GNU/Linux systems, as they are key components for the net-

work-oriented operating system, again, we would recommend using the most

standardised hardware possible, to avoid complications when it comes to con-

figuring the system. It is possible that our card is supported in two different

ways: the first is that its driver has been directly compiled from the kernel

itself, and the second is that the driver has been compiled in a modular way

so that it can be loaded subsequently. The easiest way of finding out whether

the driver of our network card has been compiled within the kernel itself is

by analysing the dmesg return message, as we did in section 5.4.3.

If, after analysing the output of the dmesg command in detail, we reach the

conclusion that the driver for our card has not been loaded, we can run the

modconf command, which loads modules into the kernel that have been com-

GNUFDL • PID_00148393 169 Basic GNU/Linux

piled by it, and checks whether the driver for this appears in the kernel/

drivers/net subsection. If this is the case, all we have to do is select it to

load it into the kernel.

If our network card is not supported by default, we must resort to recompiling

the kernel.

Once we have done this, we must edit the file /etc/network/interfaces to

enter the parameters corresponding to our network for the card. One possible

configuration would be:

/etc/network/interfaces -configuration file for ifup(8), #ifdown(8) # The loopback interface

auto lo iface lo inet loopback # The first network card this entry was created during the

#Debian installation (network, broadcast and gateway are #optional) auto eth0 iface eth0 inet

static address 158.109.69.132 netmask 255.255.0.0 network 158.109.0.0 broadcast 158.109.255.255

gateway 158.109.0.3

We recommend reading http://www.tldp.org/HOWTO/NetworkingOverview-

HOWTO.html, as well as http://www.fokus.gmd.de/linux/HOWTO/Net-

HOWTO and the man on interfaces. If we do not have the network card and

we need to carry out tests, we can always resort to the dummy; module; in this

case, the device, instead of being called eth0, would be called dummy0.

If we wanted to configure more than one network card in the same computer

(which is very common when using gateways, as well as in other cases), it

is necessary to enter the parameters corresponding to the kernel during the

booting process, to avoid conflicts between devices.

Starting and stopping network services: ifup, ifdown

All the network services (those of /etc/network/interfaces) can be

restarted using the /etc/init.d/networking script with the restart pa-

rameter. ifup, which starts up the network services of a specific interface, and

ifdown to stop them. Therefore, for the abovementioned configuration, if we

wanted to stop and restart the eth0 services, we would proceed as follows (the

ifconfig command can be used to check the results):

brau:~# ifconfig eth0 Link encap:Ethernet HWaddr 00:01:02:B4:3A:61 inet addr:158.109.69.132

Bcast:158.109.255.255 Mask:255.255.0.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX

packets:36409683 errors:0 dropped:0 overruns:221 frame:0 TX packets:35938 errors:0 dropped:0

overruns:0 carrier:0 collisions:0 txqueuelen:100 RX bytes:1489273710 (1.3 GiB) TX

bytes:20116974 (19.1 MiB) Interrupt:5 Base address:0x9400 lo Link encap:Local Loopback inet

addr:127.0.0.1 Mask:255.0.0.0 UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:823 errors:0

dropped:0 overruns:0 frame:0 TX packets:823 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0 RX bytes:3169619 (3.0 MiB) TX bytes:3169619 (3.0 MiB) brau:~#

GNUFDL • PID_00148393 170 Basic GNU/Linux

ifdown eth0 brau:~# ifconfig lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:823 errors:0 dropped:0 overruns:0 frame:0

TX packets:823 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX

bytes:3169619 (3.0 MiB) TX bytes:3169619 (3.0 MiB) brau:~# ifup eth0 brau:~# ifconfig eth0

Link encap:Ethernet HWaddr 00:01:02:B4:3A:61 inet addr:158.109.69.132 Bcast:158.109.255.255

Mask:255.255.0.0 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:36420981 errors:0

dropped:0 overruns:221 frame:0 TX packets:35965 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100 RX bytes:1490867554 (1.3 GiB) TX bytes:20118868 (19.1 MiB)

Interrupt:5 Base address:0x9400 lo Link encap:Local Loopback inet addr:127.0.0.1

Mask:255.0.0.0 UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:823 errors:0 dropped:0

overruns:0 frame:0 TX packets:823 errors:0 dropped:0 overruns:0 carrier:0 collisions:0

txqueuelen:0 RX bytes:3169619 (3.0 MiB) TX bytes:3169619 (3.0 MiB)

Wireless network card

If you have a WiFi network card, you may check the following link:

http://ftp.cl.debian.org/man-es/wlan.html.

9.7.5. Configuring printers

Having the printer configured can be very useful, as it will allow us, among

other things, to print out the man files, the configuration files etc. so that we

can study them better in paper format.

Printing in Linux is based on a queue system that is handled by a daemon

that runs when booting. The printers may be connected directly to the parallel

port or USB connection of the computer (local printer) or connected to the

network (network printer).

Where the preferable type of printer is concerned, in a domestic environ-

ment, the best thing would be to use the parallel port (/dev/lpX, normally

/dev/lp0) so as to guarantee that the printer does not depend on its soft-

ware, as most of the new printers that are appearing on the market, especial-

ly those that connect through the USB port, are printers that are designed

specifically for a determined operating system. These printers are popularly

known as winprinters (and they are similar in this respect to what we call win-

modems). In a professional environment, the best thing would be to have a

printer that incorporates its own network interface, making it, simply, anoth-

er node in the network. For more information on printers and how they inte-

grate in GNU/Linux operating systems, we recommend visiting the site http:/

/www.linuxprinting.org, where you will find an exhaustive list of the print-

ers available on the market and information on the degree to which they are

supported.

GNUFDL • PID_00148393 171 Basic GNU/Linux

CUPS (Common Unix Printing System) is a modular printing system that uses

IPP (Internet Printing Protocol) to handle the queues. This is a modern and

sophisticated system, which can be used in a desktop environment such as

GNOME or KDE. Furthermore, it comes with the option of maintaining the

lpr traditional system of BSD command lines.

The general topology of a printing system in GNU/Linux is that of client-serv-

er. The server, CUPS, is a daemon-type server and we will therefore treat it as

such. The server’s configuration file is /etc/cups/cupsd.conf. In this file,

we will be able to configure as many printers as we wish.

To install the cups system, we must run the command:

apt-get install cupsys cupsys-client cupsys-bsd printconf foomatic-filters-ppds

This last package contains the PPDs (Postscript Printer Definitions) of Adobe,

which is used by CUPS to define the printers.

CUPS-PDF is a virtual printer for printing documents to a PDF file. To install

it in our system, we would run the command:

apt-get install cups-pdf

In CUPS, there are two ways of configuring the printers. One of these is from

the utility provided by the GNOME or KDE desktop. The other is from the

website . In both cases, we need administrator privileges in order to configure

the printers.

Printing text files

Formatters are programs that are used, mainly, to transcribe files in text format

to PostScript format (Postscript language, historically, has been more widely

implemented in the field of printing). These programs can be very useful, as

they allow us to print the help commands, configuration files etc. on paper,

so that they are easier to read. One of these programs is mpager (within the

package with the same name), or another would be enscrip (also packaged

with the same name; this one is more powerful than the first one). A few lines

are given below as an example of how we would use it:

man man | mpage -2 -o |lpr

Using this line, we redirect the output of the man to mpage, which formats

it so that there are two columns per sheet, without margins, and we redirect

its output to the printer client lpr:

GNUFDL • PID_00148393 172 Basic GNU/Linux

endscript /etc/fstab -B -fTimes-Roman7 -r

With this line, we will print out the contents of the file /etc/fstab without

a header, using the Times-Roman font, in size 7 and a wide format.

9.7.6. Configuring soundcards

Due to the large number of soundcards that there are on the market, it is al-

most impossible to provide a description of how all of them should be con-

figured. We recommend reading http://www.tldp.org/HOWTO/Sound-HOW-

TO/ and visiting the websites of the most important sound projects under

GNU/Linux: http://www.opensound.com/ and http://www.alsa-project.org/.

Advanced Linux Sound Architecture (ALSA) is a project that works under a

GNU license, to provide Linux with audio and MIDI devices.

We will now discuss how we should proceed if we need to configure a fair-

ly common soundcard: SoundBlasterPCI (chipset ES1371). For these types of

card, the lspci command will show us a line like the following:

00:0d.0 Multimedia audio controller: Ensoniq 5880 AudioPCI (rev 02)

Firstly, we will load the module corresponding to this soundcard, using the

modconf, kernel/drivers/ sound, es1371 command.

Next, we will create the audio group in /etc/group and we will include all

the users that will require access to the sound device in the group (if we want

all the users to have access to it, we can omit this step and provide all the

permissions to the files /dev/dsp and /dev/mixer); and then associate the

files /dev/dsp and /dev/mixer to the new group we have created.

With this, we will have configured the soundcard. We can now check that

this is the case by directing an audio file directly to /dev/dsp, as suggested

in http://www.tldp.org/HOWTO/Sound-HOWTO/ or using the audio applica-

tions that run on this. We will have to wait until we have the graphical envi-

ronment configured, before we can install it.

9.8. Conclusion

In this workshop, we have learnt how to work with Debian’s package system,

which is essential, as it allows us to learn how to install, uninstall and gen-

erally manage the applications. We have also learnt how to configure differ-

ent hardware devices and, with this, a basic point: that GNU/Linux is not

as simple as other operating systems, as it requires, generally, more in-depth

knowledge of the actual device as well as the system itself. But, to compensate

this aspect, we can guarantee that once the device has been configured, it will

work properly and we will not have to worry about it again. And we should

GNUFDL • PID_00148393 173 Basic GNU/Linux

not forget that we have not even configured the graphical environment yet.

Nevertheless, to encourage those of you who may be beginning to think that

stepping into the world of GNU/Linux may not have been such a good idea,

a failed attempt and a waste of time, we would like to quote one paragraph

from the book Debian GNU/Linux 2.1 by Mario Camou, John Goerzen and

Aaron Van CouWenberghe, part I, chapter 1, Why Linux Is Better:

"Windows NT, however, learned to speak the language of the Internet just a few years ago.
It is not refined by any stretch imagination, but plagued with bugs and inconsistences.
Bussinesses need a solution that they can put online and expect to remain available
100% of the time, but Windows NT cannot meet this need. On the contrary, a Windows
NT administrator's most common job is crash recovery; he wastes too much time doing
busywork, such as booting servers that have gone down[...]".

Aaron Van CouWenberghe

GNUFDL • PID_00148393 174 Basic GNU/Linux

10.X-Window architecture

10.1. What is X-Window?

X-Window is an architecture of windows designed in the mid-1980s to pro-

vide a graphical environment in workstations. Unlike other windows envi-

ronments, the X-Window architecture was designed to be independent of

the platform, so that it could be installed in any computer that worked on a

UNIX-type system. Although the X-Window windows architecture has an ex-

tensive history in which different types of licenses, various implementations

and many different teams of developers have been involved, it currently us-

es, mainly, the implementation developed by the X.Org. project. X.Org is an

implementation of open code of the X Window System that arose as a fork

of the XFree86 project.

X-Window is designed with a client/server architecture. This type of architec-

ture means that the software is structured into two parts that are totally inde-

pendent (client and server), which communicate using a communication link.

Although this means that the design and coding is slightly more complex, the

architecture provides complete flexibility in the sense that the client and the

server can be located in different places and use different platforms and/or

operating systems. In addition, we can take advantage of the same client to a

much greater extent, as the client will be able to provide the service to more

than one server at a time. In this way, the server computers can work with one

graphical environment and the client’s resources. Naturally, this architecture

also allows us to work with XWindow locally on the machine where the client

is located, although this is not essential.

Windows architecture.

A windows architecture (or windows system) is a graphical environment that allows us
to have different applications located in different regions of the screen, generally limited
by some form of window. These environments usually provide mechanisms for moving
and handling these windows so that the work is more interactive and easier to perform.

The components that comprise X-Window are: client, server and communi-

cation link. Client and server are designed to be independent of the platform

and the communication link is designed to be independent of the network

protocol.

Consequently, we can use X-Window in any type of scenario: for example, we

could have the server installed in a computer with WindowsTM, connecting

to a client with GNU/Linux and use Internet as the communication channel

(protocol IPv4). Although configuring each one of these components (espe-

GNUFDL • PID_00148393 175 Basic GNU/Linux

cially the client) does depend, in a certain way, on the platform in which it is

installed, the communication link makes it possible to isolate the components

and give them their own language so that they understand each other.

This link uses its own protocol called XDMCP (X Display Manager Control

Protocol), which is on a higher level than that of the communication network

that is used (which is why it is independent of the network).

Figure 10.1

In this architecture, the server is programmed to register the events that occur

as a result of the input devices, such as the keyboard, mouse etc. and report

them to the client. The client processes these events and replies to the client,

which shows the results in the output devices (usually a monitor). Although

the first impression that this design might give is that the response time must

be very slow, the XDMCP protocol is especially designed to provide a fast link

between the client and the server, so that we can really work interactively.

The only scenarios in which we might notice this inconvenience is in remote

connections using slow communication networks.

To summarise, then, the main characteristics and functions of each one of the

components of X-Window are as follows:

Table 10.1

Manages different servers at the same time.

Platform-dependant.

Client

Processing applications

Control of user display

Independent of platform

Server

Processing input devices

Link Designed to work interactively.

GNUFDL • PID_00148393 176 Basic GNU/Linux

Designed to minimise traffic in the network

Transparent (independent of the network)

As video cards have developed, more and more applications and games have

started needing faster 2D or 3D processing. Although the X-Window windows

architecture provides many advantages, when we need to use these types of

application, the client/server design is not the most appropriate, as we are not

taking advantage of all the extremely fast 2D and 3D processing operations

provided by the video card installed in the server. In order to solve this prob-

lem, a new technology called DRI (Direct Rendering Infrastructure) appeared

in 1998; this makes it possible to take advantage of the cards’ processing chips

to save the X-Window client work. In this way, we continue having all the

advantages of X-Window and take advantage of the specific elements of the

video cards.

Unlike other operating systems where the graphical environment is intimately

integrated with the rest of the functions, the X-Window architecture is com-

pletely independent of the operating system and does not limit us to any

one GUI (Graphic User Interface). In fact, the architecture only provides us

with low-level graphical tools to manipulate the monitor’s output. These tools

are included in the Xlib library and mainly consist of functions for creating

and manipulating windows, operations with character fonts, detection of user

events and graphical operations. With these functions, we can provide our

applications with the look and feel that we want, create new GUIs etc. In fact,

this created additional work for the first developers of applications in XWin-

dow, as they now, apart from programming the application, had to develop

their own libraries for the creation of menus, icons etc. As X-Window contin-

ued to grow, what we call toolkits, which are libraries that are generally im-

plemented with Xlib and that provide a particular GUI, began to appear.

In this way, when we design an application, we can use some of these toolkits,

which already provide standard tools for creating menus, buttons, managing

the cut and paste operations etc. and we can focus on programming the ap-

plication itself. Not defining a particular look and feel has been another of the

keys to the success of the X-Window architecture, as each software manufac-

turer or software developer has been able to design their own, which sets it

apart from all the others.

Although there are many different toolkits, the following figure shows some of

the most popular that have been used throughout the history of X-Window:

Look and feel

The look and feel is the de-
sign used for the buttons, the
scroll bars, the menus etc., in a
graphical interface or applica-
tion.

GNUFDL • PID_00148393 177 Basic GNU/Linux

Figure 10.2

The window manager is a special X-Window server that is in charge of man-

aging all the windows, the desktops, the virtual screens etc. Naturally, all the

applications can work with any window manager, as all it does is manage

the window where the program is located. Although programming a window

manager is very different to programming an application, particular toolkits

that provide a specific look and feel are often used. Currently, there are dozens

of different window managers (wmaker, sawmill, olvwm etc.), and the users

themselves can choose which one they like the most.

Another type of software that is strongly linked to X-Window is the one in

charge of providing an environment comprising the applications, the desk-

top, the system administration tools etc. The most popular that currently ex-

ist are KDE (the K Desktop Environment) and GNOME (GNU Object Model

Environment). Both provide a particular toolkit, a desktop environment with

very many different functionalities and configurations and a list of integrated

applications that is constantly growing. Most GNU/Linux and UNIX distribu-

tions provide one of these two desktop environments as they are very user-

friendly and provide their own tools and software, which are of a high quality

and which help the user to configure their own system and desktop to a large

extent. The two may work with any window manager that has a series of basic

features. The following figures show the appearance of the two:

GNUFDL • PID_00148393 178 Basic GNU/Linux

Figure 10.3

Figure 10.4

Finally, another application that is used in X-Window is the session manager,

which consists of a series of programs that make it possible to save the config-

uration of a determined user session so that the applications that have been

GNUFDL • PID_00148393 179 Basic GNU/Linux

configured will load whenever X-Window is started up again. Generally, these

tools are automatically provided in integrated environments; if this is not the

case, we can resort to the one provided by X-Window itself: xsm.

Activity

10.1 Read the history of X-Window in the article: http://www.linux-mag.com/2001-12/
xfree86 01.html.

Activity

10.2 See some examples of the window manager and desktop environments that exist
at: http://www.xwinman.org.

10.2. Configuration

Most video cards on the market are currently supported, but sometimes, when

a new card appears on the market, it takes a few weeks or months before it is

supported in XWindow. In any case, the number of manufacturers that sup-

port GNU/Linux is gradually increasing, and in some cases, they are already

providing their own drivers for this operating system. Nevertheless, before

buying a video card, it is important to check that it has some kind of driver

that is adequate to the distribution that we use. In order to install XOrg on our

computer, we must first download the packages that contain the basic tools

and the software for the client and the server. Generally, these packages are

called xorg, xserver-xorg etc. and they come with various source depen-

dencies and some basic utilities for working on X-Window. Once we have in-

stalled these packages, we must configure the devices that we have properly, so

that we can boot up correctly with the X-Window server and client. Depend-

ing on the distribution we are using, we can use one program or another or,

in certain cases, the installation of the packages itself launches a small con-

figuring application. However, this configuration must always follow certain

steps, which we will describe below, classified according to the type of device

that has to be configured:

• Video card

– Driver: the different families of video cards come with specific micro-

processors and use determined functions in order to carry out their

operations. This is why we must find out the appropriate driver for

our card. If we do not know which it is, we could install some form

of application that automatically detects the hardware; if we were to

use, for example, discover, we would be able to tell which driver our

card would need with the discover --xdriver video command.

– Identifier: the card’s identifier could be any name that we wish to use to

refer to our card. This identifier is used internally to correctly reference

the cards that we have installed in the system.

– Amountofmemory: depending on the card’s amount of memory, we will

be able to start up the graphics with a higher or lower resolution and

GNUFDL • PID_00148393 180 Basic GNU/Linux

with higher or lower levels of colour depth. Although it is not essential

to enter this amount (the system will detect it automatically), it is

advisable to specify it in the configuration.

– Use of the kernel’s framebuffer: The kernel’s framebuffer is a special Lin-

ux driver that makes it possible to perform certain operations on X-

Window. Although it is not obligatory to use it, it is generally used so

that the X-Window server can communicate directly with the system’s

kernel. In any case, if it creates any problems, we can always disable it.

• Keyboard

– Rule XKB: for the X-Window server to handle the keyboard correctly, it

needs to know what rules apply to it. For most standard PC keyboards,

the rule “xfree86” is used and the “sun” rule is usually used for Sun

workstations.

– Keyboard model: the keyboard’s model is usually identified by the num-

ber of keys it comes with. Standard PC keyboards that have menu

and logo keys usually have 104 keys (we identify them with the name

"pc104"). Keyboards that do not have these keys are identified as key-

boards with 101 keys ("pc101").

– Keyboard layout: in this section, we must identify the country of origin

of the keyboard using the ISO 3166 standard. The code for a Spanish

keyboard is “es”, “fr” is for a French keyboard etc.

– Keyboard options: option for personalising some of the keys on the key-

board.

• Mouse

– Port: the mouse’s port is the connection that it uses to communicate

with the computer. When we buy a mouse, it will always indicate

whether it is PS/2-type, serial-type, USB etc. If the mouse is a PS/2-type

mouse, the port will be /dev/psaux; for a serial mouse the port will

be /dev/ttyS0 (COM1), /dev/ttyS1 (COM2) and so forth, consec-

utively.

– Type: A list is usually provided, so that we can specify the type of

mouse, from which we must choose the one with the model and man-

ufacturer most similar to our mouse. Generally, once we know the

model of the mouse, we can choose the right option.

– Emulation of 3 buttons: if our mouse were only to have 2 buttons, we

would be provided with the possibility of emulating the third (the one

in the middle) by pressing the two buttons at the same time. If our

GNUFDL • PID_00148393 181 Basic GNU/Linux

mouse does not have a central button, we should enable this option,

because some X-Window programs need a mouse with 3 buttons.

• Monitor

– Identifier: as occurs with the video card, the monitor identifier is used

so that the system can reference it internally. We can assign any name

we want to it.

– LCD-type monitors: in most configuring processes, we will be asked

whether or not our monitor is an LCD-type monitor (TFT screen). It

is important to answer this question correctly because how one or an-

other monitor is used varies considerably.

– Features: when configuring the features, we will be asked about the

maximum resolution of our monitor, the refresh rate etc. Although

more or less questions of this nature will arise depending on the pro-

gram used to configure X-Window, it is important to have the moni-

tor information available and to answer the questions properly to take

advantage of all the features.

– Available resolutions: at this point, we must enter the resolution at

which we want our monitor to operate when we start up X-Window. It

is also normal for the system to ask us to define the colour depth that

we wish to use by default; the most advisable thing is to use a high

one (16 or 24 bits) so that we can see all the colours sharply. Once we

have answered these questions, of which there may be more or less

depending on the program that we use, the whole configuration is

saved in the file /etc/X11/XF86Config-4.

All the different sections that we have looked at are organised in this file and

if we look at the manual, we will see that we have very many more possibili-

ties that provide us with complete flexibility for configuring our X-Window

how we want it to be. To check whether they really work, we can run X, at

which point a screen with very small black and white boxes should appear

and the mouse should appear as an “X” (to come out of this screen, press

Ctrl+Alt+Backspace).

If we have installed some form of window manager, what we will usually

do when starting up X-Window is to use one of the shell scripts xinit or

startx. These will launch the configured window manager and will carry out

some other actions required to start X-Window up properly. Once the screen

is in graphic mode, we can change the resolution using the Ctrl+Alt++ and

Ctrl+Alt+- keys, or return to the text consoles with Ctrl+Alt+F1, Ctrl+Alt+F2

etc. (with Ctrl+Alt+F7, we would return to the graphical environment).

xsession

When we use startx or
xinit, the instructions of file
/etc/X11/Xsession will
run . If the home directory of
the user that starts up X-Win-
dow contains an .xsession
file, it will be the commands in
this file that will run, instead of
those in the other file.

GNUFDL • PID_00148393 182 Basic GNU/Linux

Another important feature in the configuration of X-Window is the configu-

ration of the Xwrappers. The Xwrappers allow us to control which users can

start their sessions with X-Window. The file /etc/X11/Xwrapper.config

contains the allowed users command, with which we will specify who is

allowed to start up X-Window with various values:

• console: any user that is in the local console can start up X-Window.

• rootonly: only the root can start up X-Window.

• anybody: any user of the system can start up X-Window (even if they are

not connected locally).

This is very useful, especially for administrating a server in which users are not

generally allowed to work with the graphical environment due to the amount

of resources that this consumes.

10.3. X display manager

In the previous subsection, we saw how to configure X-Window locally. As

we have mentioned throughout the section, the architecture of the X-Win-

dow windowing system allows the client and server to be installed in different

computers. In order to configure our computer so that it carries out the func-

tions of an X-Window client, we must install some kind of X display manag-

er. These programs open a communications port with which the clients can

communicate with the client and work with X-Window remotely. Although

there are many programs of this type, one of the first to appear and on which

many of the others are based, is xdm.

The X display managers can work both locally and remotely. Among other

functions, these show the screen (in a graphical environment) so that the users

can identify themselves with their login and password. They work like any

other daemon of the system, so that we can configure them to start and stop as

we choose (using the runlevels that the system provides). We must remember

that if we configure it to work locally, when we boot up the system we will

find ourselves on the graphical login screen and not with the consoles that

we are used to (although they will still be available). With this configuration,

we will no longer be able to use startx or xinit to start up X-Window, as

it will be running by default.

When we install xdm, all its configuration files will be placed in directory /

etc/X11/xdm. We will now go over what each of these files contains:

Table 10.2

xdm-config Location of the configuration files of xdm.

GNUFDL • PID_00148393 183 Basic GNU/Linux

xdm.options Global configuration options.

Xaccess Definition of the remote equipment that we no longer access.

Xservers Local servers of xdm.

Xresources Configuration of the login screen: colours, sources, sizes etc.

Xsetup Script that will run when we start up xdm.

Xstartup Script that will run when a user enters XWindow. There will usually be ac-
tions related to the xdm.

Xsession Script that will run when we enter a user session. There are usually special
actions for the users, although the file’s execution is usually called up. /
etc/X11/Xsession.

Xreset Script that will run when a user’s sessions ends.

We will find the configuration of the local servers in the file Xservers. If we

wanted to disable the local server, we could comment all the lines in this file.

In this way, even if we had an X-Window client installed, by default, it would

not start up in the local machine. If, on the other hand, we wished to install

more than one, we could edit the file and add directives such as the following:

:0 local /usr/X11R6/bin/X :0 vt7 :1 local /usr/X11R6/bin/X :1 vt8

These two directives indicate that we want to have two instances of X-Win-

dow, one in console 7 (vt7) and the other in console 8 (vt8), accessible with

Ctrl+Alt+F7 and Ctrl+Alt+F8 respectively. Let us examine how each directive

includes a :0 or :1, depending on the instance of X-Window referred to. By

default, we will always use 0, but we must reference it in this way if we want

more than one local server. At the end of each one of these lines, we could

add special parameters for each server of X-Window (we will find all the pos-

sible ones in man X), such as the colour depth that we want for each one, the

screen resolution etc. In this way, we could work with different open sessions

of X-Window, as we did with the consoles.

Security of X-Window

If the file Xaccess contains a line with the character “*”, this indicates that we will allow
any server to connect to the server’s X-Window. Using X-Window remotely without any
type of encryption could create a hole in the security, which is why it is very advisable
that users inform themselves adequately on this point, before using it.

Generally, the default setting of xdm does not allow remote connections for

security reasons. If we wished to enable these connections, we could edit the

file Xaccess and, using the syntax that is indicated, add the servers to which

we wish to provide this service. We should also comment on the line Dis-

playManager. requestPort: 0 of file xdm-config, which, by default, dis-

GNUFDL • PID_00148393 184 Basic GNU/Linux

ables all the connections that are received. Having performed these changes,

if we reboot the daemon of xdm, the client would already be prepared to serve

X-Window to any server that requested it.

For machines in which we only wish to install the XWindow server, we must

install X-Window just as we saw in the preceding section and use the X -

query IP command, where the IP should be that of the client. In the same

way as when we had more than one X-Window server on a local machine, if

we already had another instance of X-Window running on the machine, we

would have to use X -query IP :1 for the second instance, :2, for the third

and so on, consecutively.

Xnest

Xnest is an X-Window server
that allows us to open anoth-
er instance of X-Window in a
window.

GNUFDL • PID_00148393 185 Basic GNU/Linux

11.X-Window workshop

11.1. Introduction

In the second workshop, we discussed the basic aspects for manipulating and

managing packages properly and we learnt how to configure some devices.

Nevertheless, due to its complexity, we did not cover the configuration of the

video card, or, rather, the installation of the X graphical environment. Due to

the complexity of its structure and configuration, we have decided to dedicate

one whole workshop to the X Window System. In this workshop, we will learn

how to install, configure and personalise this system. But we will not try to

provide an exhaustive examination of the whole system, as doing so would

probably be impossible for many different reasons. What we will do is provide

some basic knowledge so that each person should be able to configure their

own system, depending on the type of video card that they have and their

personal tastes and preferences. By the end of the workshop, we should be able

to install an X environment and know how to take advantage of its incredible

power.

Activity

11.1 Due to the complexity of the X system, it is helpful to read the following documents
to get an idea of the basic concepts, before working on the system. In addition, these
documents will provide additional knowledge, which we will be able to put into practice
during the workshop.

a) XWindow-Overview-HOWTO. This is a simple document that can be read to assimilate
the basic concepts related to the system.

b) XWindow-User-Howto. This is a document with more advanced contents than the
previous one, but it is also helpful.

11.2. Installation and configuration of X server.

As we have mentioned, the X Window System is a very complex system that

integrates very many libraries and applications, some of which are essential

for it to work, although most only have to be installed if we really need them,

due to our particular necessities. This is one of the reasons why, in Debian,

the system is distributed in many different packages, of which we will only

install the ones we need.

11.2.1. Different strategies for installing the packages

Due to the fact that there are strong interdependencies between the different

packages, we can take advantage of this so that the actual package manage-

ment system installs all those that it believes to be necessary for a high-level

application to work, among which it will find, obviously, all of the system’s

GNUFDL • PID_00148393 186 Basic GNU/Linux

basic packages. Consequently, we could use dselect or apt-get to install

one of these applications. But this is not a good strategy, because it involves

the loss of control of the packages that we are installing and it can also mean

that some essential packages are omitted, because no reference has been made

to them when the dependencies were calculated, for any reason. Therefore, we

recommend building the system step-by-step, so that we know which pack-

ages are being installed during each stage and understand why.

11.2.2. Installation of basic packages

Chipset and device

The first step is to determine the chipset of the video card and the device

that supports it. Run the lspci command in a terminal and search for the

words VGA compatible controller:. The information that follows nor-

mally identifies at least the brand of the video card and possibly the device

that you will need. For example,

$lspci 01:03.0 VGA compatible controller: ATI Technologies Inc ES1000 (rev 02)

The first column shows the number of the PCI bus to which the card is con-

nected in the format <bus>:<slot>:<func>.

By running

$lspci -n -s bb:ss.f

we identify the PCI bus numbers to the vendor and device ID of the card.

For example,

$lspci -n -s 01:03.0 01:03.0 0300: 1002:515e (rev 02)

The vendor and device ID have the format vvvv:dddd in hexadecimal

numbers. In this case, the vendor and device ID of the card is 1002:515e.

With this information, we search the video cards (http://www.calel.org/pci-

devices/xorg-device-list.html) for the device that we need to use. In this case,

the device is radeon.

We also need to know the monitor’s horizontal and vertical scan rates. The

scans are usually found in the specifications section of the monitor’s manual.

These data are very important and incorrect values can cause the monitor to

stop working properly and can even cause damage.

GNUFDL • PID_00148393 187 Basic GNU/Linux

Installation of X.org

From the commands interpreter, from the root account, we key in:

#apt-get install xorg

This is a metapackage that, when using the dependencies system, installs a set

of X11 packages, such as X.Org server, a set of basic tools and fonts.

We will now go over a step-by-step configuration of the xserver-xorg pack-

age, carried out with debconf. If we do something wrong, we can undo it

with "Crtl+C" and reconfigure it with,

#dpkg-reconfigure xserver-xorg

X Device

We will choose the device that most suits the video card from the list, in ac-

cordance with how we identified the chipset at the beginning. For example, .

We will then give it a name, such as the default one, for example Generic

Video Card.

We then identify the card in the PCI bus, for example, PCI:1:0:0.

It almost always automatically detects it. We should leave the amount of mem-

ory blank so that the server automatically detects it. We should choose not to

use the kernel’s “framebuffer” device.

Keyboard

We should set it so that the keyboard is not automatically detected. We select

the keyboard’s default language (us by default, es for Spanish). We select the

keyboard rules xorg (by default). We select the type of keyboard (pc104 by

default). Other options are pc101, pc102, pc105. The last two are for Euro-

pean keyboards. We leave the variant and options of the keyboard blank.

Mouse

We select the mouse device, for example, /dev/input/mice.

If the mouse is connected to a serial communication port, /dev/ttyS0 corre-

sponds to port COM1, /dev/ttyS1 to port COM2 etc. The unit /dev/psaux

is for PS/2-type mouse and /dev/input/mice for USB-type mice.

We select the mouse’s protocol, for example, ImPS/2.

GNUFDL • PID_00148393 188 Basic GNU/Linux

We select the option for emulating a three-button mouse

Modules

We select the default modules

File path

We select the default configuration of the section "Files".

Monitor

We choose to automatically detect the monitor. We will then give it a name,

such as the default one, for example Generic Monitor.

Using the spacebar, we choose the resolutions that the video card and monitor

support, typically 1280 x 1024 or 1024 x 768. We select the advanced mode for

configuring the monitor. We enter the horizontal scan rate and then the ver-

tical scan rate. These values or ranges are usually found in the technical speci-

fications section of the monitor’s manual. If we do not have this information,

it is better to enter a higher range, such as 28-100 for the horizontal scan rate

and 40-100 for the vertical. We select the colour depth, typically 24 bits.

Running scripts

After unpacking the packages, the configuration scripts of several of them will run au-
tomatically. It is always possible to interrupt the execution of these scripts by pressing
Ctrl+C, and then restart the process, by running the previous command.

11.3. Configuring X

The file /etc/X11/xorg.conf contains the configuration of X.Org and is

divided into sections:

Files # Path of the Module files # Dynamic modules InputDevice # Description of the peripheral

devices Device # Description of the video devices Monitor # Description of the Monitor Screen

Configuration of the ServerLayout screen # Global DRI scheme # Configuration specific to DRI

Each section begins with the Section command followed by the name of the

section in inverted commas and ends with EndSection. There are commands

that are specific to each section. We will proceed step-by-step, not necessarily

in the order of the file, describing the sections and explaining the meaning

of each command, so that we can then modify the configuration using a text

editor (nano for instance) with the parameters that are appropriate for the

hardware.

GNUFDL • PID_00148393 189 Basic GNU/Linux

In order to make the changes to /etc/X11/xorg.conf effective, we must

reboot the display manager using

#/etc/init.d/gdm restart

11.3.1. “Device” section

This section is the one that defines and configures the video card device.

The Identifier entry is simply a name to identify each section.

Section "Device" Identifier "Generic Video Card" Driver "sis" BusID "PCI:1:0:0" EndSection

The Driver entry specifies the device. In this example, the device sis sup-

ports many types of video cards with the SiS chipset. Other common devices

are: cirrus, ati, r128 (ATI Rage 128), radeon (ATI Radeon), s3virge, savage, tri-

dent, tseng. We can use the method described at the beginning to determine

what type of device we are using.

The BusID entry identifies the video card in the PCI bus, which we can deter-

mine with lspci.

11.3.2. "Monitor" section

This section defines the monitor.

Section "Monitor" Identifier "Generic Monitor" Option "DPMS" HorizSync 28-100 VertRefresh

40-100 EndSection

The Identifier entry is similar to that of the "Device" section. There

may be various "Monitor" sections in the file, each with a different identifi-

cation. This is convenient if, for example, we have various monitors, say one

at home and another at work. In this way, we can easily define a configura-

tion for when the computer is in the home and another for when it is at the

workplace.

The HorizSync entry specifies the monitor's horizontal scan rate in kHz

units. It may be a fixed rate [31.5], multiple fixed rates, [31.5,35.2], a

range, [30-64], or ranges, [15-25,30-64]. The VertRefresh entry speci-

fies the vertical refresh rate in Hz units and the values have the same format

as HorizSync.

GNUFDL • PID_00148393 190 Basic GNU/Linux

11.3.3. "Screen section"

This section defines the screen, combining the configuration of the device

and the monitor.

Section "Screen" Identifier "Default Screan" Device "Generic Video Card" Monitor

 "Generic Monitor" DefaultDepth 24 Subsection "Display" Depth 1 Modes "1024x768"

 "800x600" "640x480" EndSubsection Subsection "Display" Depth 4 Modes "1024x768"

 "800x600" "640x480" EndSubsection Subsection "Display" Depth 8 Modes "1024x768"

 "800x600" "640x480" EndSubsection Subsection "Display" Depth 15 Modes "1024x768"

 "800x600" "640x480" EndSubsection Subsection "Display" Depth 16 Modes "1024x768"

 "800x600" EndSubsection Subsection "Display" Depth 24 Modes "1024x768" EndSubsection

 EndSection

We should note that the Device and Monitor entries have the same value

as the Identifier entry in the "Device" and "Monitor" sections. This

means that the configurations of the different sections are interlinked.

The DefaultDepth entry specifies the default colour depth, which in this ex-

ample is 24 bits. There may be various "Display" subsections. The Depth

entry specifies the colour depth of the subsection. The possible values are 8

(256 colours), 16 (64K colours) and 24 bits. This means that the Default-

Depth will specify the default "Display" subsection.

The Modes entry specifies the resolutions. A resolution of ["640x480"] or a

list of resolutions ["1600x1200" "1280x960" "1152x864" "1024x768"

"800x600" "640x480"], may be specified.]. Normally, the first in the

list is used, if it is supported; if not, the next one, and so on.

Generally, the greater the colour depth, the less maximum resolution will be

available. We can reduce the colour depth if the image on the screen is bad for

a certain resolution, or we can maintain the depth by reducing the resolution.

11.3.4. ''InputDevice'' section

This is the section that configures the peripheral devices such as the keyboard,

mouse, trackpad, touchscreen etc. The most common input devices are key-

boards and mice; obviously, each one is separate.

Configuring the keyboard:

Section "InputDevice" Identifier "Generic Keyboard" Driver "kbd" Option "CoreKeyboard"

Option "XkbRules" "xorg" Option "XkbModel" "pc105" Option "XkbLayout" "es" EndSection

GNUFDL • PID_00148393 191 Basic GNU/Linux

All keyboards have a common device called kbd. The Option "CoreKey-

board" entry indicates that the keyboard defined by the section is the main

keyboard. The Option "XkbModel" entry specifies the type of keyboard.

The most common values are "pc101", "pc102", "pc104", "pc105" or "mi-

crosoft" for the Microsoft Natural keyboard. The Option "XkbLayout"

entry defines the keyboard's language: "es"for a Spanish keyboard "us"for

an English keyboard

Configuring the mouse:

Section "InputDevice" Identifier "Configured Mouse" Driver "mouse" Option "CorePointer"

Option "Device" "/dev/input/mice" Option "Protocol" "ImPS/2" Option "Emulate3Buttons"

"true" Option "Buttons" "5" Option "ZAxisMapping" "4 5" EndSection

The common mouse device will support four types of mouse: serial, Bus, PS/2

and USB. In the first example, we configure a USB IntelliMouse (with wheel).

The Option "CorePointer" entry indicates that the mouse defined by the

section is the main mouse.

The Option "Device" entry specifies the mouse's device unit. Some exam-

ples are /dev/ttyS0 (serial), /dev/psaux (PS/2) and /dev/input/mice

(USB). Generally, there is a symbolic link /dev/mouse that points to this de-

vice.

The Option "Protocol" entry defines the type of mouse. Other protocols

are:

"MouseMan" "Mousesystems" "IntelliMouse" "ExplorerPS/2" "ThinkingMouse" "ThinkingMousePS/2"

"NetScrollPS/2" "NetMousePS/2" "GlidePoint" "GlidePointPS/2" "MouseManPlusPS/2"

Old serial mice with two or three buttons are normally supported by the pro-

tocol "Microsoft" or "MouseMan". Serial mice with a wheel are support-

ed by protocol "IntelliMouse" and PS/2 ones by "ImPS/2". The "auto"

protocol sometimes helps if the hardware is able to automatically detect the

mouse.

The Option "Emulate3Buttons" entry emulates the middle button if we

press both the left and right buttons at the same time. We can also use this

system in mice with three buttons.

11.3.5. "ServerLayout" section

This section is the one that relates the screen with the peripheral devices.

GNUFDL • PID_00148393 192 Basic GNU/Linux

Section "ServerLayout" Identifier "Default Layout" Screen "Default Screen" InputDevice

"Generic Keyboard" InputDevice "Configured Mouse" EndSection

We should particularly note how this section combines everything using the

identifiers of each section defined with Identifier.

11.3.6. "DRI" Section

Some modern cards have what is called a direct rendering infrastructure (DRI).

To use this, you must load modules "glx" and "dri" in the "Modules" sec-

tion.

The DRI section, by default, is

Section "DRI" Mode 0666 EndSection

Although cards that do not support DRI may make X hang.

11.3.7. ''Files'' section

This section defines the file path necessary for X. In particular, it defines the

path of the fonts in the "FontPath" entries.

11.3.8. Starting up the server

The time has come to check whether the server's configuration file is correct

and, consequently, whether the server starts up as it should. In order to do

this, all we have to do is run the startx command.

If everything works properly, after a few moments, a grey mesh with a cross

in the middle will appear on our screen. This represents a large step forward,

as configuring the server for startup is the most difficult thing about the X

environment. Now it is just a question of the time required to finish giving the

environment the appearance that we want it to have. If we move the mouse,

the cross will move and we can explore some more possibilities in this rather

rudimentary graphical environment by pressing the middle and left buttons.

To exit this screen and continue configuring the system, we have to press the

left button of the mouse, highlight the Exit option Yes, reallyquit, or

simply press the Ctrl+Alt+Backspace keys together.

If, on the other hand, we return to the alphanumeric console after a few mo-

ments, this means that the server was not able to startup properly. We should

now study the log file (/var/log/Xorg.0.log) in detail and try to detect

possible sources of the errors. The most common are usually: bad choice of

driver that has to be loaded (if we have left the selection process to the script,

we must check the page mentioned above to ensure that the driver that the

GNUFDL • PID_00148393 193 Basic GNU/Linux

script has chosen is the right one), in the directive UseFBDev the true option

has been selected, whereas it should be false, resolutions or scan rates that

are higher than those supported by the cards have been used etc.

Having reached this point, we can use the following command to avoid en-

tering the graphical mode every time we boot up the computer:

brau:~# rm /etc/rc2.d/S99xdm

This will be useful, whilst we have not yet configured this environment com-

pletely. Once we have finished, it will be down to each individual user whether

or not they start up the computer in the graphic mode. To do this, all we have

to do is create the symbolic link that we deleted again, using the preceding

command:

brau:~# cd /etc/rc2.d brau:/etc/rc2.d# ln -s ../init.d/xdm S99xdm

11.3.9. The log file

Although the process for starting up the server was successful, that should

not stop us from analysing the contents of the main log file of the X system,

/var/log/Xorg.0.log, as this will help us to solve any bugs and minor er-

rors that have not interrupted the server's booting process, but that might re-

duce its performance. Some typical examples of these are: delete the line of

the configuration file that refers to the Cyrillic fonts, if we are never going to

use them, as we had not even installed them. delete everything that refers to

the Generic Mouse from the same file, as it makes it incompatible with the

one we have configured etc.

11.4. Window managers

The window managers are client programs (in reality, they are called meta-

clients), in charge of managing the different windows that run on the graph-

ical environment and their presentation, as well as launching other clients

(applications). By this stage, we already have a window manager installed,

twm, as a complete installation of an X system requires at least one window

manager, even if it is not part of the server, for it to run on. As we have seen,

twm is very rudimentary, which means it might be in our interests to install

one of the more complex ones, such as WindowMaker, BlackBox, qvwm etc.

We will install some of these and try them out. The final objective, in accor-

dance with the GNU philosophy, is for every user to end up using the software

that they want. Effectively, this means that, once students have learnt about

certain window managers, they will be able to choose which one they want

to use themselves. Obviously, it is possible to have more than one window

GNUFDL • PID_00148393 194 Basic GNU/Linux

manager installed, although only one can run during each session. (However,

we can, as an example of the flexibility of the X system, have two window

managers running on the same computer, each in a different terminal).

Firstly, we should install, as an example, qvwm. It is, as we shall see when we

launch it, a window manager that simulates an environment we are probably

familiar with. To do this, all we have to do is run the command:

brau:~# apt-get install qvwm

By now, we will have two window managers installed: twm and qvwm. To run

one or another, all we have to do is indicate the complete path of the location

of the window manager that we wish to use, after the startx command (we

should remember that the whereis command can be very useful if we need

to locate a file). Therefore, to run the window manager that we wish to install,

all we have to run is:

brau:~# startx /usr/bin/X11/qvwm

To use the twm, we must have specified its complete path, as follows:

brau:~# startx /usr/bin/X11/twm

Having to specify which window manager we wish to use, once we have de-

cided on one particular one, can be rather tiring. To specify which window

manager should be used if after the startx command, no particular one has

been specified, we will create the file .xsession in the root user directory

with the following contents, in case we need the default window manager to

be twm, for example:

#˜/.xsession exec twm

If we wanted qvwm to be the default window manager, we would simply

change twm for qvwm. Running the different processes involved in the booting

of the graphical environment and the configuration files that will be read dur-

ing the process are strongly determined. Effectively, if we create the preceding

file, what we have done is to edit one of the last files (those that are in the user

root directory) that are read before entering the graphical environment. This

file, therefore, allows us to modify some of the aspects that are determined by

default within the system and that are defined in the files in /etc/X11 and

their subdirectories. To end this subsection, we will install a window manager

that is very widely used in the GNU/Linux world and that is famous for its ver-

satility and the fact that it consumes very few resources: the WindowMaker:

brau:~# apt-get install wmaker

GNUFDL • PID_00148393 195 Basic GNU/Linux

We have already installed three window managers, and we will surely install

more. Apart form the method described above for pre-establishing which one

we want to run by default, we can also use the menu of the update-alter-

natives command to establish it:

brau:~# update-alternatives x-window-manager

Additional reading

We would urge students to become a little familiar with this window manager and to
visit its website to obtain more information: http://www.windowmaker.org.

11.5. X Session manager

The session managers are programs that can run on a graphic session and that

allow us to establish and modify its parameters. xms is the session manager

that comes by default with the installation that we have made of the graphic

server. We may launch it from an X terminal (to launch an xterm, we should

press the mouse's middle button and select Programs/Xshells/ Xterm), using

the xsm command. Having launched xsm using Checkpoint, we can save the

configuration of the current session (essentially referring to the applications

that we have running), manage the processes that are running using Client

List, check the log of the session or close the session whilst saving the current

configuration. Apart from xsm, there are other session managers. These tend to

be another part of the desktop managers, and the degree of integration is so

high that recognising their actions can be quite difficult. A typical example of

this is the question that we are asked with regard to whether we want to save

the session when we close KDE.

11.6. X Display manager

When we finished installing Xserver, we suggested deleting the symbolic link

/etc/rc2.d/S99xdm to avoid, when rebooting the system to enter runlevel 2

having to have the xdm, which stands for X display manager, run again. This

is the default display manager that the X-Window-System installs. The display

managers are the programs in charge of managing which users can enter the

graphical environment and from where and how. To launch it, we will proceed

as we would with any other daemon:

brau:?# /etc/init.d/xdm start

To stop it, we would also use the same procedure as we would follow with

any other daemon, with the exception that we would have to press the keys

Ctrl+Alt+F1, to come out of the graphical environment and use tty1, for exam-

ple, instead of using the combination that is used to change ttys in alphanu-

meric environments.

GNUFDL • PID_00148393 196 Basic GNU/Linux

brau:?# /etc/init.d/xdm stop

As we have seen, the display manager asks us for a login and a password, which

are the same as the ones we use in order to access the system with the ttys,

unless we have imposed some form of restriction. After we have authenticated

our account, we enter the graphic mode in the same way as we did using the

startx command. The difference is that, when we end the graphic session,

the server will not stop, but continue running xdm.

One of the inconveniences of xdm is that it does not allow us to select which

window manager we want to work with. But there are other display managers,

such as wdm (by WindowMaker), gmd (by the GNOME project) or kdm (by the

KDE project), which do allow this.

We can install wdm, to see its appearance and to get to know a different display

manager:

brau:?# apt-get install wdm

When the post-installation script runs, we will be asked which display man-

ager we wish to use, xdm, which we had already installed, or wdm. We will se-

lect the latter in order to create the link required to launch wdm com display

manager during the system boot up process (if the file /etc/rc2.d/S99xdm

exists, it is better to delete it to avoid warning messages when the system boots

up). If we do not want any display manager to launch automatically when

we boot up the system, all we have to do is delete the required links, in other

words, the file /etc/rc2.d/wdm.

Once an X session has started from the display manager, in other words, once

we have launched the corresponding window maker, it can be interesting to

run the pstree command to see the dependencies and relationships between

the different processes that are running at that moment, along with the in-

formation that we obtain from the line ps aux.

11.7. Desktop managers

The appearance of the different toolkits, along with the development of var-

ious projects that developed or used libraries for the graphic interface, result-

ed in the creation of projects that had the aim of unifying all of these opera-

tions. At this point, a new concept appeared in the X environment: the desk-

top manager. The desktop managers are projects that are designed to lay the

foundations for the unification and standardisation of the presentation and

the policies on programming and developing applications. One of the first to

appear was the CDE (Common Desktop Manager), although the two most im-

portant projects currently existing in this area are: GNOME and KDE, which

GNUFDL • PID_00148393 197 Basic GNU/Linux

we will cover individually in separate subsections, due to their high degree of

implementation and development. Before that, however, we can name some

other desktop managers, such as: GNUStep, ROX, GTK+Xfce or UDE.

11.7.1. GNOME

GNOME is a project that is part of GNU, which is characterised by the fact that

it does not strictly need a specific window manager, although it is advisable

to use one to ensure that it works properly (a GNOME-compliant window

manager) such as: IceWM or Sawfish. Nevertheless, in order to guarantee the

preferences and freedoms of the user, GNOME's control panel always has a

window manager selector that allows us to choose which window manager

we want to use. GNOME is based on Gtk toolkit, the actual libraries developed

within the project, known as specific gnome-libs.

Like all desktop managers, GNOME has its own panel, for managing Nautilus

files and its control panel. GNOME Control Panel. In order to carry out a basic

installation of GNOME, we will install the following package along with its

dependencies:

brau:~# apt-get install gnome-session

As we have mentioned, although GNOME does not require users to use any

specific window manager, it is recommended that the one used should be a

GNOME-compliant window manager. We will now install Sawfish, which was

developed solely to fulfil this requirement. We will install the package and all

its dependencies:

brau:~# apt-get install sawfish-gnome

Consequently, we now have another window maker installed. We will stop the

display manager and relaunch it so that this new window maker is integrated

into it (GNOME also has its own display manager, gdm, which we can install if

we want). We now have two options for achieving our objective, which is to:

run GNOME. The first is to launch Sawfish, from the display manager or using

startx and, once in the program, launching gnome-session from an X ter-

minal. The second consists of carrying out the same operation but the other

way around; in other words, launching GNOME with the same procedures as

Sawfish, and then launching sawfish from an X terminal. We recommend

proceeding as follows if we want Sawfish to run next time we start GNOME

up (the session manager of GNOME itself will be in charge of carrying out and

logging the changes that are necessary for this to occur).

GNUFDL • PID_00148393 198 Basic GNU/Linux

Once we have familiarised ourselves with GNOME, what we can do is install

some packages that can be useful, specifically gnome-help and gnome-ter-

minal; the first provides us with an interface where we can read the manuals

(mans), the text files in a graphic environment, and the second installs the

GNOME's own xterm.

11.7.2. KDE

Unlike GNOME, KDE does need a specific window manager, which is kwm,

based on Qt toolkit and the actual kdelibs. It also has its own launcher panel:

kpanel, for its own file manager: Konqueror and its own configuration util-

ity: Control Panel. Obviously, KDE can be installed in the same system in

which we have installed GNOME and there are even applications belonging

to a desktop manager that can run in the other system. Besides, KDE also has

its own display manager (kdm) along with very many applications. Again, we

recommend readers to visit the respective websites to learn about their pos-

sibilities: http://www.kde.org. Likewise, we can run the following line to see

how KDE integrates in Debian:

brau:~# apt-cache search kde

The basic KDE packages are in the kdebase package. This, therefore, will be

the first that we install:

brau:~# apt-get install kdebase

Again, we must reboot our window manager in order to access the desktop

manager that has just been installed. Once we have done this, we can proceed

to install the file manager, the package called konqueror. Using the package

kde-i18n-es, we can install the files required for KDE to work in Spanish.

As of this point, each user will be able to install the different packages of the

project that they want. As we have seen, in order to pre-establish the default

window maker, we will use the menu of the update-alternatives com-

mand to select the session manager:

brau:~# update-alternatives x-session-manager

11.8. Personalising some of the aspects

The design of the X graphic environment is due to the ambitious aim of get-

ting the best performance possible from the available hardware, using the least

resources possible, whilst providing the greatest flexibility. The structure of

the client server on which this system is based makes it possible to achieve

these objectives, and the apparent difficulties that inexperienced users will

come across will disappear quickly with a bit of practice, allowing the many

advantages that this design provides to flourish. The aim of this subsection is

GNUFDL • PID_00148393 199 Basic GNU/Linux

only to provide a cursory idea of the power of this system, which is completely

evident when working on a network, although it is somewhat overshadowed

when working on a stand alone system, such as the one on which this course

is based. In any case, we will discuss some of the concepts that may be useful

when working on a network.

11.8.1. Personalisation of local aspects

Generally, the configuration files are located in the directory /etc/X11/ or

in one of its subdirectories. Each user can personalise and redefine the config-

uration parameters and add new ones by creating or editing the files in their

home directory that have the same name as those of a general configuration,

but preceded with a ".". It will be possible to redefine or establish all those

parameters that do not require superuser permissions, as the home files will

be processed after those of the general configuration, and the parameters will

always take the last value that are assigned to them.

Xsession

/etc/X11/Xsession is a script that runs when a user starts a session.

This script is the one that governs the whole of the process of starting a session

until we can start to work, and it is also in charge of managing the error mes-

sages that may occur during this process, which are logged in $HOME/.xses-

sion-errors.

In $HOME/.xsession, we can personalise the booting process for a particu-

lar user. So, if we want the window manager to be blackbox, and we want

bbkeys to launch automatically in the background when we begin the ses-

sion, this will contain the following lines:

bbkeys blackbox

Xresources

In the file $HOME/.Xresources, we can personalise the appearance of the dif-

ferent applications. The syntax is application*parameter: value. There-

fore, if we want to invert the colours of the application xterm, we will add

the following line in the file:

Xterm*reverseVideo: true

GNUFDL • PID_00148393 200 Basic GNU/Linux

The xrdb command is in charge of managing the database of Xresources. Us-

ing xrdb -query, we can learn about all the established properties and their

value, and, using the -display parameter, we will obtain a list of all the pa-

rameters that the command accepts. If we enter the location of a file as a pa-

rameter, this will read all the parameter definitions from here.

Xmodmap

The graphic server uses the table of character codes to convert the signals from

the keyboard (server-independent) to system symbols (server-dependent). The

conversion table that has to be used will have been selected during the key-

board configuration process, but the xmodmap command will allow us to mod-

ify its contents. An example of how it would be used follows:

brau:~# xmosmap -e "keycode 127 = Delete" brau:~# xmosmap -e "keycode 22 = BackSpace"

The -pk, xmodmap parameters will return all the contents of the conversion

table that is being used.

11.8.2. Personalisation of aspects of the network

The aspects discussed here are also interesting for a stand alone system, as,

like the whole operating system, the X system always uses a network-oriented

design.

$DISPLAY

The variable $DISPLAY can be used to tell the client which server it

should communicate with. Its syntax is as follows: hostname:display

number.screen number. Therefore, if we had defined another graphic ter-

minal to system X, adding the following line to /etc/X11/xdm/Xservers:

:1 local /usr/X11R6/bin/X vt8

we could launch a graphic application from an xterm of a graphic terminal to

another by defining the appropriate variable. For these reasons, if we wanted

to launch xeyes from the first graphic terminal, using xterm, and to display

it on the second, we would proceed as follows:

brau:~$ set DISPLAY :0.1; export DISPLAY brau:~$ xeyes

If we enter a graphic session, open an xterm, change the user using the su

command and try to launch a graphic application, we will receive an error

message stating that a connection may be established with the server. A strat-

egy to avoid this problem is to use the -p parameter to export the whole set of

Assignment of symbols

These commands were used
for a very long time due to
the investment of the sym-
bol assignments in the conver-
sion tables; now, however, this
problem has been solved.

GNUFDL • PID_00148393 201 Basic GNU/Linux

variables of the environment, thereby avoiding the server rejecting our con-

nection request. This practice may be very useful for launching configuration

programs that require root permissions, as this will allow us to avoid having to

enter the graphic environment as a root user (a practice that is not very advis-

able and that, although it is allowed by default, is often restricted manually).

xhost and xauth

The xhost command makes it possible to establish which computers can ac-

cess the graphic server remotely, in other words, which client machines can

launch an application that can be displayed on the server. Its syntax is as

follows: xhost +hostname. If we do not specify a hostname, any machine

will be able to launch applications on the server. By default, no connection

is allowed from any remote machine. The xauth command can be used to

determine which users can launch applications on the graphic server. Conse-

quently, using these two commands together allows us to establish the secu-

rity policy with regard to accessing server X, in a fairly reasonable way. xhost

+ for stand alone systems.

11.9. Configuring printers

Configuring printers may be easier from the graphic environment. There are

very many applications that can be used to configure the native printing sys-

tem and others that replace this system for their own, commonly also based

on the client-server structure. In order to install CUPS (Common Linux Print-

ing System), we will have to install the package of the printing server, cup-

sys; and it is advisable to install, along with this package, the printing clients

package, cupsys-client. We can also install the package called cupsys-

bsd so that we have the commands usually found in the BSD printing system.

For example, we could install the printing system using the command:

apt-get install cupsys cupsys-client cupsys-bsd printconf \ foomatic-filters-ppds

This last package contains the PPDs (Postscript Printer Definitions) of Adobe,

which is used by CUPS to define the printers.

In GNOME we can go to "System/Administration/Printers ". We double-click

on New Printer, enter the root password and follow the steps for defining the

printer, depending on whether it is a local or network printer. The second

step consists of finding out the name of the manufacturers and the model of

the printer. Once we have defined the printer, we should highlight it using

the mouse's right button and go to Properties. We then highlight the option

Become the administrator and modify the configuration if necessary.

GNUFDL • PID_00148393 202 Basic GNU/Linux

The following sequence of images shows the process for installing a printer

using the assistant gnome-cups:

Figure 11.1

Figure 11.2

Figure 11.3

Once we have installed the printer, a window will appear; this window corre-

sponds to the tool gnome-cups:

GNUFDL • PID_00148393 203 Basic GNU/Linux

Figure 11.4

If the printer uses the HP JetDirect system, it is better to install the package

hplip,

apt-get install hplip

and use the tool hp-setup to define the printer.

Another way of configuring a printer using CUPS is through the website of

the CUPS service. All we have to do is open our browser and enter the URL:

http://localhost:630, which is the port that our server listens to.

The following screenshots show the appearance of this administrative utility:

Figure 11.5

GNUFDL • PID_00148393 204 Basic GNU/Linux

Figure 11.6

11.10. OpenOffice

In this subsection, although the subject is not within the scope of the main

aims of this course, we will present an office suite, which can be extraordinar-

ily useful for those of us who are used to working with software of this type.

The element in question is OpenOffice.org, a project derived from StarOffice,

by Sun MicroSystems. We must point out that this project is multiplatform

and that it can therefore be implemented in other operating systems that are

not Unix-type.

To install the suite, we can use the following command (all on one line):

brau:~# apt-get install openoffice.org openoffice.org-base openoffice.org-calc

openoffice.org-common openoffice.org-core openoffice.org-draw openoffice.org- evolution

openoffice.org-gnome openoffice.org-gtk openoffice.org-help-en openoffice.org-help-es

openoffice.org-impress openoffice.org-java-common openoffice.org-l10n-es

openoffice.org-math openoffice.org-writer

All we have to do during the installation process (which should be carried out

in a graphic environment) is to remember that we have to install it for the

network. In this way, it will only be necessary for each user's home directory

to contain one small directory, in which their personalised configurations are

saved.

Once we have installed the program for the first time, each user must run the

following program to create their own directory:

GNUFDL • PID_00148393 205 Basic GNU/Linux

/usr/lib/openoffice/program/setup

Once we have done this and we have answered a few questions, the openof-

fice command will open the suite.

Currently the OpenOffice version in Debian Etch is 2.0.4.

11.11. Conclusion

With this workshop, we come to the end of the didactic material of the sec-

ond module of the Masters. In the workshop, we have learnt how to install

the graphic environment in the system, which, as we saw at the time, is not

an essential part within the operating system. But it is evidently very useful

in many cases and many people say that the operating system that we have

studied in this module can be a serious alternative to other systems. For all

of these reasons, we, the authors, would like to express our total conviction

that GNU/Linux is an extraordinary operating system, not only because of

its graphic interface, which is perhaps what most catches our attention when

we first look at the system, but due to many other countless arguments, of

which we would highlight the philosophy behind the system, its reliability,

adaptability, power, potential levels of security etc. We are convinced that this

operating system is an investment for the future, from which we can only ex-

pect positive developments, although it has already proven that it is a serious

competitor in the world of operating systems,. We hope that we have provided

enough knowledge and transmitted the enthusiasm that is needed for readers

to begin their own journey into the world of GNU/LINUX, as well as known

how to open the doors to a community in which everyone is welcome and

respected.

Appendixes

PID_00148394

GNUFDL • PID_00148394 Appendixes

Copyright © 2010, FUOC. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License"

GNUFDL • PID_00148394 Appendixes

Index

1. Appendix A. Command tables.. 5

2. Appendix B. Editor vi... 10

3. Appendix C. The Fedora 7 installation process.......................... 13

4. Appendix D. Administration tools.. 23

5. GNU Free Documentation License... 30

GNUFDL • PID_00148394 5 Appendixes

1. Appendix A. Command tables

A.1.�Filesystem

Figure A.1

A.2.�System's�help�function

Figure A.2

A.3.�File�permissions

GNUFDL • PID_00148394 6 Appendixes

Figure A.3

A.4.�Copying�and�deleting�files

Figure A.4

A.5.�Shutdown�or�restart

Figure A.5

A.6.�Operations�with�files

GNUFDL • PID_00148394 7 Appendixes

Figure A.6

A.7.�File�compression�and�security�copies

GNUFDL • PID_00148394 8 Appendixes

Figure A.7

A.8.�Disk�operations

Figure A.8

A.9.�Users�and�groups

GNUFDL • PID_00148394 9 Appendixes

Figure A.9

A.10.�Manage�processes

Figure A.10

GNUFDL • PID_00148394 10 Appendixes

2. Appendix B. Editor vi

B.1.�Introduction

Knowing how to use a text editor is essential for users who want to edit or

modify the system's files. Although there are hundreds of different editors,

editor vi has always been the default editor in systems like UNIX. Although

editor vi can seem like a very simple editor at first, as we get used to its com-

mands, we will find that it has very many utilities that make it extremely easy

to handle the files. Although there are other editors that are more useful for

long painstaking tasks (such as programming), most system administrators use

editor vi for many of the administration tasks. The fact that it is a text editor

(which means that it can be used in the system's console) and the fact that it is

available for all systems make editor vi the ideal editor in UNIX environments.

To call up vi, we can use any of the methods shown in the following table:

Figure B.1

B.2.�Modes�of�editor�vi

Editor vi can be used in two ways: normal mode and insert mode. In normal

mode, everything that we write will be interpreted by the editor to carry out

specific actions, whereas insert mode is used to modify the contents of the

file. When we open vi, the default mode is normal mode. To change to the

insert mode, we can use any of the keys on the following table:

Figure B.2

Vim

In GNU/Linux, it is more com-
mon to use vim (Vi IMproved),
which is 99.9% compatible
with vi but adds a few more
functionalities.

GNUFDL • PID_00148394 11 Appendixes

We can use the Esc key to return to normal mode. In the insert mode, the only

thing that we can do is write text, delete it or move along the text using the

PgDn and PgUp keys. We can carry out all sorts of operations in normal mode.

The following table shows some of the most common ones:

Figure B.3

Figure B.4

Figure B.5

We will see the commands that we write, which will run when we press the

Return key, in the line under the editor. In addition, most of these commands

can be repeated: all we have to do is write the number of times that we want

GNUFDL • PID_00148394 12 Appendixes

them to run before the command. For example, dd deletes the current line;

If we were to use 3dd instead of the existing line, the three following lines

would be deleted.

GNUFDL • PID_00148394 13 Appendixes

3. Appendix C. The Fedora 7 installation process

C.1.�Introduction

The purpose of this appendix is to provide a general idea of the basic steps

that must be taken in order to install Fedora 7. We assume that readers have

the basic knowledge gained throughout the module and that they are famil-

iar with the installation of Debian Etch. The theoretical knowledge that one

must have in order to install either of these systems is practically identical;

Consequently, this appendix focuses only on putting the theoretical knowl-

edge into practice and we will only highlight the differences between the two

installation processes.

C.2.�Starting�the�installation

As this distribution is very recent, only the English version of the installation

was available at the time, which is why the screenshots are in English, but the

process of the installation would be the same in any other language.

The first thing we have to do is download the DVD iso image from http://

mirrors.fedoraproject.org/publiclist/Fedora/7, record it to a DVD and reboot

the computer, telling it to boot up from the DVD. We must use the startup

prompt to indicate that we wish to carry out an installation or update an ex-

isting system:

Figure C.1

GNUFDL • PID_00148394 14 Appendixes

We would then highlight the correct language and click Next:

Figure C.2

We would then set the keyboard layout:

Figure C.3

C.3.�Hard�disk�partition

The installation system will then propose partitioning the hard drive by de-

fault. Alternatively, we have the option of using Disk Druid to carry out this

operation ourselves. This option is advisable, as the program is easy to use and

GNUFDL • PID_00148394 15 Appendixes

it will help us to structure the partition in accordance with our needs. If we

already have a swap partition, even if it is from another system, we will not

have to create a new one for this installation, as we can use the existing one,

because only volatile-type information is stored on swap partitions.

We will then see a screen with the proposed layout for the partition:

Figure C.4

C.4.�Network�configuration

Figure C.5

GNUFDL • PID_00148394 16 Appendixes

C.5.�Selecting�a�time�zone

A map will then appear, on which we can specify our geographical position

using the mouse.

Figure C.6

We will then be asked to set the root user password:

Figure C.7

C.6.�Selecting�the�software�that�we�want�to�install

GNUFDL • PID_00148394 17 Appendixes

We must then select the families of the applications that we wish to install and,

within these, which applications we want to be installed in our system. Once

again, we would urge users to refrain from installing massive applications,

as these will clearly have a negative effect on the system's performance; we

should only install the ones we know that we will use for certain, and we

will gradually install the rest of the applications, as and when the need arises.

It is advisable to leave the selections that are made for the graphical system

enabled, if it is going to be used.

Figure C.8

Figure C.9

GNUFDL • PID_00148394 18 Appendixes

Once the selection process has finished, we will proceed with the installation

of the whole system: formatting partitions, configuring devices and installing

packages, using the information that has been provided. If we do not have

enough space on the hard drive to install all the applications, we will be di-

rected back to the configuration screen where we will either deselect some of

the applications or allocate more space to the appropriate partition (this is

normally located in the /home directory, which is where most of the data for

repartitioning the disk are located and we will have to restart the installation

process).

Figure C.10

GNUFDL • PID_00148394 19 Appendixes

Figure C.11

C.7.�Installation�of�the�boot�loader

When the data transfer process has finished, the post-installation process will

automatically run and the boot loader will be installed, if applicable, and once

these automatic processes have taken place, we will be asked if we want to

create a boot disk, that will then be used to startup any new installation, if

we have not installed the boot loader or we have not configured the one that

was already installed properly.

Figure C.12

GNUFDL • PID_00148394 20 Appendixes

Completion of the installation:

Figure C.13

C.8.�First�system�boot

Figure C.14

Before booting fully for the first time, we will have to use a setup agent to

configure elements such as: The firewall, SELinux (a Fedora security feature),

the date and time, the soundcard and the new system user account:

GNUFDL • PID_00148394 21 Appendixes

Figure C.15

Figure C.16

After rebooting the computer, we will be asked to enter the user name and

password, before we can enter the system:

GNUFDL • PID_00148394 22 Appendixes

Figure C.17

Figure C.18

We recommend reading the website of the Fedora project to learn how the

package system works and so that you can check all of the available documen-

tation.

GNUFDL • PID_00148394 23 Appendixes

4. Appendix D. Administration tools

D.1.�Introduction

When administrating a GNU/Linux system, it is necessary to be familiar with a

large variety of different programs and applications. Although it is absolutely

essential to read all the documents related to any application that we wish to

install before installing it, in some cases, the configurations may be very, very

complex. For this reason, certain administrative tools have been appearing

over recent years, which are more intuitive and user-friendly and that allow

us to handle many applications and services, in an easier way.

Generally, these global administration tools incorporate mechanisms for con-

figuring and managing the basic aspects of the system and configuration files

for the applications that we use. Although it is interesting to know that these

tools exist, we should not rely on them when setting up the whole configura-

tion of a server, for various reasons. Firstly, we need to remember that these

programs do not always take into account all the possibilities available for

these servers. This could mean that we might leave some option that is im-

portant for our needs without the proper configuration, that we could fail to

take some security system into account etc. Secondly, we should not forget

that, although the configuration environment may be more user-friendly and,

generally, easier to use and manage, we should be aware of what is actually

happening when we enable the options of the different programs and services

that we are configuring. Although the environment is very intuitive, this does

not mean that we should not know what each option means exactly. If we

do not have extensive knowledge of the service that we are managing, it is

very easy to create bugs that will lead to the system not working properly,

security vulnerabilities etc. Finally, another reason for not using only these

applications is that the system may fail or have bugs at some point, which will

mean that we cannot use them; we may also have to administrate a system

that simply does not have the applications. If we do not know some of the

details of the configuration files of the applications that we use, we will have

no way of dealing with any small problem that arises.

Security of the administrative tools

When we install some general administration tool, it is important to limit its use and
ensure that it can only be accessed by the system's root user account; otherwise, any
other user could modify some aspect of the system. Furthermore, we should also be very
alert to any possible security vulnerabilities that may appear in them, as, because they
have to manage the programs installed in the system, most of these tools may run with
the root user's permissions, with the dangers that this involves.

For all these reasons, these tools should be used very carefully and by someone

that knows exactly what they are modifying. In some cases, they can be very

useful for us to see how some form of complicated configuration should be

GNUFDL • PID_00148394 24 Appendixes

carried out or for detecting any bugs we have created. We should use them

as additional tools, which assist our administrative tasks, but never rely only

on them.

All GNU/Linux distributions usually incorporate their own automatic admin-

istration tools. This feature clearly differentiates the different GNU/Linux dis-

tributions. In SuSE, for example, there is an application called Yast2, which

allows us to carry out almost any operation that configures the system; RedHat

incorporates very many different programs for configuring the network, the

daemons, the application servers etc.; when installing a package in Debian, we

are already able to startup a configuration based on the answers that we pro-

vide over various dialogue screens; some applications have their own scripts

that make it possible to have faster standard configurations etc. Nevertheless,

if we know what these applications are really doing and what files contain

their configurations, it is much easier to solve any problems that arise with

the system. Apart from these tools, which are unique to the distribution that

we use, there are other more general tools that we can install in most existing

distributions. Although there are a few dozens and each administrator must

choose the one that they most like or that is most appropriate for their needs,

we will discuss some of the most versatile and popular of these tools in this

appendix. linuxconf and webmin.

D.2.�Linuxconf

The general administration application linuxconf is based on an environ-

ment of text menus that we can use from any console in the system. The fol-

lowing figure shows the main menu:

GNUFDL • PID_00148394 25 Appendixes

Figure D.1

As the image shows, linuxconf divides its operations into the following sec-

tions:

• Configuration: this is the main section within linuxconf, where we can

configure most of the system's aspects, such as the network, the users,

the installed peripheral devices etc. The following figures show how the

network configuration and user dialogue screens work:

GNUFDL • PID_00148394 26 Appendixes

Figure D.2

• Control: this section is used to carry out specific actions in the system,

such as mounting or unmounting units, changing the system's date and

time, personalising the menus etc. The following figure shows some of the

actions that can be performed contained in the control panel's menu:

Figure D.3

• Status: if we want to look at the logs or the status of any of the system's

aspects, we can use the menus in this section. Many of the system's basic

commands for seeing the status of the disk, the amount of memory used

etc. are used in these.

GNUFDL • PID_00148394 27 Appendixes

• Tasks: other configuration dialogues for starting up a modem properly, the

network etc.

Another way of using this program is as a web browser. By default, network

access is not available for the browser and therefore, before using it we will

have to enable it using the menu Networking, Linuxconf network access

and enable the Enable network access option. If we open the browser

and go to http://localhost:98/ we will have the same dialogue screens

and menu options of linuxconf in html format. By default, we will only have

access to this service from the same machine, although it is advisable to only

enable it when we want to use it.

Finally, another project that is related to linuxconf is gnome-linuxconf,

which has the same functions as described above, but can be used in X sys-

tems. The following figure shows how it looks:

Figure D.4

D.3.�Webmin

As the name indicates, webmin is a tool for carrying out a configuration using

the internet. It is very well designed and most of the configuration methods

have been thought out carefully. When properly used, it can be a very use-

ful tool. By default, when it is installed it will open port 10000 (https://local-

host:10000) so that we will be able to access it using any browser we want. Be-

fore we can start using the tool, we will be asked for the system administrator's

password, although it also has a very useful system for administrating the ac-

tual users with which we can specify the actions that can be performed by

each user. This option is very interesting because it allows us to configure more

than one system administrator account, creating accounts that are specialised

according to the tasks that each users needs to perform.

GNUFDL • PID_00148394 28 Appendixes

We will now provide a series of screenshots of the different sections, to provide

an idea of what the application looks like:

• System user administration:

Figure D.5

• Configuring the system's boot process:

Figure D.6

• Information on the disk:

GNUFDL • PID_00148394 29 Appendixes

Figure D.7

• File browser:

Figure D.8

GNUFDL • PID_00148394 30 Appendixes

5. GNU Free Documentation License

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 59 Temple

Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy

and distribute verbatim copies of this license document, but changing it is

not allowed.

0) PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional

and useful document "free" in the sense of freedom: to assure everyone the

effective freedom to copy and redistribute it, with or without modifying it,

either commercially or noncommercially. Secondarily, this License preserves

for the author and publisher a way to get credit for their work, while not being

considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the

document must themselves be free in the same sense. It complements the

GNU General Public License, which is a copyleft license designed for free soft-

ware.

We have designed this License in order to use it for manuals for free software,

because free software needs free documentation: a free program should come

with manuals providing the same freedoms that the software does. But this

License is not limited to software manuals; it can be used for any textual work,

regardless of subject matter or whether it is published as a printed book. We

recommend this License principally for works whose purpose is instruction

or reference.

1) APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that con-

tains a notice placed by the copyright holder saying it can be distributed un-

der the terms of this License. Such a notice grants a world-wide, royalty-free

license, unlimited in duration, to use that work under the conditions stated

herein. The "Document", below, refers to any such manual or work. Any mem-

ber of the public is a licensee, and is addressed as "you". You accept the license

if you copy, modify or distribute the work in a way requiring permission un-

der copyright law.

GNUFDL • PID_00148394 31 Appendixes

A Modified Version of the Document means any work containing the Docu-

ment or a portion of it, either copied verbatim, or with modifications and/or

translated into another language.

A Secondary Section is a named appendix or a front-matter section of the Doc-

ument that deals exclusively with the relationship of the publishers or authors

of the Document to the Document`s overall subject (or to related matters) and

contains nothing that could fall directly within that overall subject. (Thus, if

the Document is in part a textbook of mathematics, a Secondary Section may

not explain any mathematics.) The relationship could be a matter of historical

connection with the subject or with related matters, or of legal, commercial,

philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are desig-

nated, as being those of Invariant Sections, in the notice that says that the

Document is released under this License. If a section does not fit the above

definition of Secondary then it is not allowed to be designated as Invariant.

The Document may contain zero Invariant Sections. If the Document does

not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-

Cover Texts or Back-Cover Texts, in the notice that says that the Document is

released under this License. A Front-Cover Text may be at most 5 words, and

a Back-Cover Text may be at most 25 words.

A Transparent copy of the Document means a machine- readable copy, repre-

sented in a format whose specification is available to the general public, that

is suitable for revising the document straightforwardly with generic text edi-

tors or (for images composed of pixels) generic paint programs or (for draw-

ings) some widely available drawing editor, and that is suitable for input to

text formatters or for automatic translation to a variety of formats suitable for

input to text formatters. A copy made in an otherwise Transparent file format

whose markup, or absence of markup, has been arranged to thwart or discour-

age subsequent modification by readers is not Transparent.

An image format is not Transparent if used for any substantial amount of text.

A copy that is not Transparent is called Opaque.

Examples of suitable formats for Transparent copies include plain ASCII with-

out markup, Texinfo input format, LaTeX input format, SGML or XML using

a publicly available DTD, and standardconforming simple HTML, PostScript

or PDF designed for human modification. Examples of transparent image for-

mats include PNG, XCF and JPG. Opaque formats include proprietary formats

that can be read and edited only by proprietary word processors, SGML or

GNUFDL • PID_00148394 32 Appendixes

XML for which the DTD and/or processing tools are not generally available,

and the machine-generated HTML, PostScript or PDF produced by some word

processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such fol-

lowing pages as are needed to hold, legibly, the material this License requires

to appear in the title page. For works in formats which do not have any title

page as such, "Title Page" means the text near the most prominent appearance

of the work's title, preceding the beginning of the body of the text.

A section Entitled XYZ means a named subunit of the Document whose ti-

tle either is precisely XYZ or contains XYZ in parentheses following text that

translates XYZ in another language. (Here XYZ stands for a specific section

name mentioned below, such as "Acknowledgements", "Dedications", "En-

dorsements", or "History".) To "Preserve the Title" of such a section when you

modify the Document means that it remains a section "Entitled XYZ" accord-

ing to this definition.

The Document may include Warranty Disclaimers next to the notice which

states that this License applies to the Document. These Warranty Disclaimers

are considered to be included by reference in this License, but only as regards

disclaiming warranties: any other implication that these Warranty Disclaimers

may have is void and has no effect on the meaning of this License.

2) VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-

cially or noncommercially, provided that this License, the copyright notices,

and the license notice saying this License applies to the Document are repro-

duced in all copies, and that you add no other conditions whatsoever to those

of this License. You may not use technical measures to obstruct or control

the reading or further copying of the copies you make or distribute. However,

you may accept compensation in exchange for copies. If you distribute a large

enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you

may publicly display copies.

3) COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed

covers) of the Document, numbering more than 100, and the Document's

license notice requires Cover Texts, you must enclose the copies in covers that

carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front

cover, and Back-Cover Texts on the back cover. Both covers must also clearly

GNUFDL • PID_00148394 33 Appendixes

and legibly identify you as the publisher of these copies. The front cover must

present the full title with all words of the title equally prominent and visible.

You may add other material on the covers in addition.

Copying with changes limited to the covers, as long as they preserve the title of

the Document and satisfy these conditions, can be treated as verbatim copying

in other respects.

If the required texts for either cover are too voluminous to fit legibly, you

should put the first ones listed (as many as fit reasonably) on the actual cover,

and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more

than 100, you must either include a machinereadable Transparent copy along

with each Opaque copy, or state in or with each Opaque copy a computer-

network location from which the general network-using public has access to

download using public-standard network protocols a complete Transparent

copy of the Document, free of added material.

If you use the latter option, you must take reasonably prudent steps, when you

begin distribution of Opaque copies in quantity, to ensure that this Transpar-

ent copy will remain thus accessible at the stated location until at least one

year after the last time you distribute an Opaque copy (directly or through

your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document

well before redistributing any large number of copies, to give them a chance

to provide you with an updated version of the Document.

4) MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the

conditions of sections 2 and 3 above, provided that you release the Modified

Version under precisely this License, with the Modified Version filling the role

of the Document, thus licensing distribution and modification of the Modi-

fied Version to whoever possesses a copy of it. In addition, you must do these

things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that

of the Document, and from those of previous versions (which should, if there

were any, be listed in the History section of the Document). You may use the

same title as a previous version if the original publisher of that version gives

permission.

GNUFDL • PID_00148394 34 Appendixes

B. List on the Title Page, as authors, one or more persons or entities responsible

for authorship of the modifications in the Modified Version, together with at

least five of the principal authors of the Document (all of its principal authors,

if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version,

as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the

other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the

public permission to use the Modified Version under the terms of this License,

in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-

quired Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an

item stating at least the title, year, new authors, and publisher of the Modified

Version as given on the Title Page. If there is no section Entitled "History" in

the Document, create one stating the title, year, authors, and publisher of the

Document as given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public

access to a Transparent copy of the Document, and likewise the network lo-

cations given in the Document for previous versions it was based on. These

may be placed in the "History" section. You may omit a network location for

a work that was published at least four years before the Document itself, or if

the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the

Title of the section, and preserve in the section all the substance and tone of

each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text

and in their titles. Section numbers or the equivalent are not considered part

of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be

included in the Modified Version.

GNUFDL • PID_00148394 35 Appendixes

N. Do not retitle any existing section to be Entitled "Endorsements" or to con-

flict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that

qualify as Secondary Sections and contain no material copied from the Doc-

ument, you may at your option designate some or all of these sections as in-

variant. To do this, add their titles to the list of Invariant Sections in the Mod-

ified Version's license notice. These titles must be distinct from any other sec-

tion titles.

You may add a section Entitled "Endorsements", provided it contains nothing

but endorsements of your Modified Version by various parties--for example,

statements of peer review or that the text has been approved by an organiza-

tion as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage

of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts

in the Modified Version. Only one passage of Front-Cover Text and one of

Back-Cover Text may be added by (or through arrangements made by) any

one entity. If the Document already includes a cover text for the same cover,

previously added by you or by arrangement made by the same entity you are

acting on behalf of, you may not add another; but you may replace the old

one, on explicit permission from the previous publisher that added the old

one.

The author(s) and publisher(s) of the Document do not by this License give

permission to use their names for publicity for or to assert or imply endorse-

ment of any Modified Version.

5) COMBINING DOCUMENTS

You may combine the Document with other documents released under this

License, under the terms defined in section 4 above for modified versions,

provided that you include in the combination all of the Invariant Sections

of all of the original documents, unmodified, and list them all as Invariant

Sections of your combined work in its license notice, and that you preserve

all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple

identical Invariant Sections may be replaced with a single copy. If there are

multiple Invariant Sections with the same name but different contents, make

the title of each such section unique by adding at the end of it, in parentheses,

the name of the original author or publisher of that section if known, or else

a unique number.

GNUFDL • PID_00148394 36 Appendixes

Make the same adjustment to the section titles in the list of Invariant Sections

in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the

various original documents, forming one section Entitled "History"; likewise

combine any sections Entitled "Acknowledgements", and any sections Entitled

"Dedications". You must delete all sections Entitled "Endorsements".

6) COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents

released under this License, and replace the individual copies of this License

in the various documents with a single copy that is included in the collection,

provided that you follow the rules of this License for verbatim copying of each

of the documents in all other respects.

You may extract a single document from such a collection, and distribute it

individually under this License, provided you insert a copy of this License into

the extracted document, and follow this License in all other respects regarding

verbatim copying of that document.

7) AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and in-

dependent documents or works, in or on a volume of a storage or distribution

medium, is called an aggregate if the copyright resulting from the compilation

is not used to limit the legal rights of the compilation's users beyond what the

individual works permission.

When the Document is included in an aggregate, this License does not apply

to the other works in the aggregate which are not themselves derivative works

of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the

Document, then if the Document is less than one half of the entire aggregate,

the Document's Cover Texts may be placed on covers that bracket the Docu-

ment within the aggregate, or the electronic equivalent of covers if the Doc-

ument is in electronic form.

Otherwise they must appear on printed covers that bracket the whole aggre-

gate.

8) TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-

lations of the Document under the terms of section 4. Replacing Invariant Sec-

tions with translations requires special permission from their copyright hold-

GNUFDL • PID_00148394 37 Appendixes

ers, but you may include translations of some or all Invariant Sections in ad-

dition to the original versions of these Invariant Sections. You may include a

translation of this License, and all the license notices in the Document, and

any Warranty Disclaimers, provided that you also include the original En-

glish version of this License and the original versions of those notices and

disclaimers. In case of a disagreement between the translation and the origi-

nal version of this License or a notice or disclaimer, the original version will

prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications",

or "History", the requirement (section 4) to Preserve its Title (section 1) will

typically require changing the actual title.

9) TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as

expressly provided for under this License. Any other attempt to copy, modi-

fy, sublicense or distribute the Document is void, and will automatically ter-

minate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses ter-

minated so long as such parties remain in full compliance.

10) FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU

Free Documentation License from time to time. Such new versions will be

similar in spirit to the present version, but may differ in detail to address new

problems or concerns. See http:// www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the

Document specifies that a particular numbered version of this License "or any

later version" applies to it, you have the option of following the terms and

conditions either of that specified version or of any later version that has been

published (not as a draft) by the Free Software Foundation. If the Document

does not specify a version number of this License, you may choose any version

ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the

License in the document and put the following copyright and license notices

just after the title page:

GNUFDL • PID_00148394 38 Appendixes

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute

and/or modify this document under the terms of the GNU Free Documenta-

tion License, Version 1.2 or any later version published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-

Cover Texts.

A copy of the license is included in the section entitled "GNU Free Documen-

tation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-

place the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the FrontCover

Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combina-

tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-

mend releasing these examples in parallel under your choice of free software

license, such as the GNU General Public License, to permit their use in free

software.

