
An Introduction to Responsive Web Design

With mobile devices and tablets becoming popular for browsing the web, an increasing number of

websites are turning to responsive designs to seamlessly adapt to any screen resolution.

Created by: fasthosts – http://www.fasthosts.co.uk

An Introduction to Responsive Web Design

Introduction 2

What is a responsive web design? ... 3
Creating a Responsive Web Page..................... ... 5

Getting Started... 6
Introducing Media Queries 10

Web Browser Support .. 11
Creating a simple rule .. 12

Testing Your Responsive Web Page................... ... 15

Use a Website.. 15
Use an Add-on ... 15

Use an Emulator .. 17
Check Your Site on a Mobile Device .. 17

The Page Header and Navigation..................... .. 18

Creating the Header... 18
Creating the Navigation.. 21

The Page Body and Footer 35

Appendix A: Common Mobile Device Screen Sizes...... .. 37

Tablets ... 37
Phones... 37

Appendix B: Responsive Websites.................... .. 38

Appendix C: The Source Code 39

Page 1

An Introduction to Responsive Web Design

Over the last two years, we have noticed a growing trend with visitors to our support websites.

Back in June 2011, when we started recording mobile visits, the vast majority of our customers

visited using a desktop PC or laptop. Just 2.5% of all sessions were from a mobile device. That

figure has steadily grown and, as of February 2013, is now sitting at around 6%. That figure

may not sound impressive, but with over 50,000 total visits in February, it's still over 3,000

mobile visits for the month, or around 107 per day.

We have studied the results from our two support sites - our main support site for our

personal and business users, and our Reseller support site - and compared these to our

corporate website at http://www.fasthosts.co.uk. The percentage of visits from mobile devices

and tablets across these three sites are shown in the graph below.

14
12 10

8

6

4

2

0

Personal / Business %
Reseller %

fasthosts.co.uk %

There are a few different methods of displaying your website on mobile devices. A common

method is to have a separate mobile website, and then either switch your mobile users to that

interface automatically, or offer them a separate URL (such as http;//m.<your domain>). In

fact, our goMobi Mobile Website Builder is the easiest way to get a mobile site online in as

little time as possible.

However, if you choose to use this method and need to make an update to your website, you

face the task of updating two sites. If you plan on keeping the content of your site fresh with

regular updates, this could become a chore. To overcome this more and more sites are opting

for a responsive approach.

Page 2

An Introduction to Responsive Web Design

In a nutshell, a responsive web site responds to different display sizes by resizing dynamically

to fit the screen. The main advantage is that your mobile visitors will receive virtually the same

experience of your website as your desktop visitors. Using a combination of Cascading Style

Sheets (CSS) and JavaScript to adjust the layout of your page you can create an optimal

experience for the display size of your visitor's computer or device.

Responsive web design is becoming increasingly popular, and many large companies have

started to take this approach. Towards the end of 2012 Microsoft released a redesign of their

corporate website.

The website makes good use of the whole screen, with the logo and navigation menu at the

top on the left, and a search box on the right.

Page 3

An Introduction to Responsive Web Design

Here is the same page on a smaller screen.

Microsoft is still making the most of the screen

size, but with a lot less space to play with they have

made some changes. The search box has

disappeared, replaced instead with a search

button.

The same has occurred with the navigation

menu; it's hidden but can be displayed with the touch

of a button when needed.

Other elements on the page, such as images and

titles, also resize to take up less space on smaller

screens.

There are hundreds of other examples of great

responsive websites, and if you need inspiration you can find a list in the Appendix on page 38.

Creating a responsive website is easier than you may think, but you will need to be familiar

with Cascading Style Sheets (CSS), which are used to layout and style your

page.

Page 4

An Introduction to Responsive Web Design

The best way to learn some responsive web design techniques is to dive straight in! Let's

create a typical web page that can dynamically resize on smaller screens. We'll build the design

initially for larger desktop screens, because we want much of the look to be the same or very

similar for any device. We can then add some rules to modify any necessary segments of the

design to optimise them for smaller screens.

Smaller screen sizes present a problem that we must overcome: there is very little room to

display our main page content. Our navigation links must be large enough to be easily pressed

with a finger, but we can't afford to grant much screen space to a large menu. Most sites

tackle this problem by hiding the navigation by default, opting instead to display a navigation

button to show the navigation when pressed.

We will create a sample web page with the following elements:

� A logo - No site is complete without one!

� A navigation menu - This will be shown by default, but hidden on smaller screen sizes.

� A menu button - This will be hidden by default, and displayed on smaller screen sizes.

Pressing the button will display the navigation menu.

� The main page content

� A footer - Can be used to display copyright information, links to a site map or cookie

policy

In order to create this we will need to use three different web technologies. We will use HTML

to create the page and set the content and CSS to create the layout styles. On smaller screens

we will need to display and hide the navigation at the press of a button, and we'll need to use

some very simple JavaScript to achieve this. Our page will consist of the following files.

�

�

�

�

Page 5

index.html - This will contain the content of the page.

layout.css - This style sheet will contain the main layout styles for the page.

resize.css - This style sheet will contain the style changes for the mobile optimised

version of the page.

responsive.js - This JavaScript file will contain a function to display or hide the

navigation menu. We'll call the function when the responsive menu button is pressed.

An Introduction to Responsive Web Design

To start, let's create our HTML file. Using your preferred text editor, create a new text file,

enter the following text into it, and then save it on your computer as index.html .

1 <!DOCTYPE html>
2 <html>
3
4 </html>

The first line of code will tell web browsers what type of document to expect. If the DOCTYPE

is simply set to "html", your browser will expect an HTML5 page. The next line opens the

<html> tag, and the following </html> closes it. All of our remaining HTML code will fall

between these <html> tags.

As you undoubtedly already know, all HTML page content falls between one of two tags,

<head> and <body>. The <head> tag contains items that don't appear on the page, but tell

your browser what properties to apply to the page (such as title, character set, and Meta tags),

or which additional files to use (such as CSS style sheets and JavaScript files).

For now, our document head will only contain the page title, which is displayed on the tabs of

your Web Browser. We will add to the <head> section in a few moments.

Update your index.html file to the following.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>RalphTech</title> 5 </head>
6 </html>

The viewport Meta tag is very important in responsive design. Unless a website specifies

otherwise, when you visit from a mobile phone the browser will show you a greatly zoomed

Page 6

An Introduction to Responsive Web Design

out page. This is because the mobile web browser must assume that you are viewing a website

that has been designed for a larger screen.

The viewport Meta tag can be used to instruct the mobile browser that it should display the

page at a scale of 1:1 - actual size. Add the following code to the <head> section of your

page.

<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" />

Your HTML document should now look similar to this.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>RalphTech</title>
5 <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" /> 6

 </head>
7 </html>

In order to style our page, and to resize and adjust the styling of HTML elements for smaller

screens, we will need to use Cascading Style Sheets (CSS). We will create two style sheets, one

called layout.css which will contain our page layout and general styling, and another called

resize.css which will be used to adjust elements for smaller screens.

In your web browser create a new document, and enter the following text.

1 /* General page layout styles */
2 body {
3 margin: 0px;
4 background: #ffffff;
5 font-family: Arial, sans-serif;
6 font-size: 13px;
7 }

Page 7

An Introduction to Responsive Web Design

These styles, which we are applying to the <body> tag, simply define the page margin, default

font, and background colour. Let's also add a style to set the font size of an <h1> heading

element to 26 pixels.

1
2

3

4

5

6

7

8

9
10

11

12

/* General page layout styles */
body {

margin: 0px;
background: #ffffff;
font-family: Arial, sans-serif;
font-size: 13px;

}

/* Heading */
h1 {

font-size: 26px;
}

Save this file as layout.css in the same folder on your computer as your index.html page.

Back in your index.html file add the following line of code to your <head> section and save

the document. This code simply tells your web browser where to find your layout.css file.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>RalphTech</title>
5 <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" />
6 <link rel="stylesheet" href="layout.css" type="text/css" media="screen" /> 7 </head>

</html>

We also need a <body> tag, which contains all elements that are displayed on the page, such

as text, headings, and images. In your index.html file add your <body> tag, and the closing

</body> tag after your </head> closing tag.

1 <!DOCTYPE html>
2 <html>
3 <head>

Page 8

An Introduction to Responsive Web Design

4
5

6

7

8

9
10

</html>

</head>
<body>

</body>

<title>RalphTech</title>
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" />

<h1>Welcome to RalphTech</h1>

We've also added a heading tag to allow us to display a title. Save the file, and open it in your

web browser.

You should now see a title, which should inherit the font we set on the <body> tag in our

layout.css file, and a font size of 26 pixels.

We have now created the basis of our page. Any page elements that we will add from now on,

such as our logo, navigation, page content, and footer will be added to our <body> section.

Page 9

An Introduction to Responsive Web Design

Cascading Style Sheets (CSS) were first used in 1996, and since then their use has become

more and more widespread. They are managed and developed by the World Wide Web

Consortium (W3C), which constantly adapts and improves their specification. In the early days

of the Internet, web browsers were updated infrequently and standards such as CSS were slow

to develop. Generally new CSS features that became standardised were slow to be added to

web browsers, due to the length of time between software updates.

More recently, competition between browsers such as Microsoft Internet Explorer, Mozilla

Firefox, and Google Chrome has become fierce, resulting in more frequent software updates.

As a result new CSS features take less time from conception to becoming fully supported

features in modern browsers, leading to faster innovation.

Other technologies are having a large effect on the way Internet technologies are developing,

in particular the uptake of Smart phones and tablets. Most website administrators are seeing

an increase in visitors from, particularly, mobile phones but also tablets and many are

investing extra time and resources into making touch-friendly interfaces. With a growing

desire to address the increases in the use of mobile devices, the W3C introduced a method of

creating conditional rules within CSS style sheets.

These conditions, called Media Queries, allow website developers to apply different styles,

based on the size of the web browser window. It is now possible to create a web page that

adapts, or responds, to the width of the screen.

Page 10

An Introduction to Responsive Web Design

Support for Media Queries was added to the CSS specification for version 3, and became a

standard in June 2012. Most web browsers had added support prior to this date, and all

modern web browsers have support for responsive designs.

Desktop Web Browser

Microsoft Internet Explorer

Google Chrome

Mozilla Firefox

Apple Safari

Opera

First version with media

query support

9

4.0

3.5

4.0

9.5

Released

March 2011

January 2010

June 2009

June 2009

June 2008

Mobile Web Browser

Apple iOS Safari

Google Android Browser

Google Chrome for Android

Mozilla Firefox for Android

Opera Mini

Opera Mobile

Blackberry Browser

First versions with media

query support

3.2

2.1

18.0

18.0

5.0

10.0

7.0

Released

November 2008

January 2010

September 2012

January 2013

March 2010

March 2010

August 2011

Web Browsers are designed for backwards compatibility, and anything that a browser does not

understand is simply ignored. Your website will still display in an older browser, but the

conditions you create to adjust the page will not be triggered if the browser is resized. As a

general rule this shouldn't be a problem, because users visiting your site on a desktop PC or

laptop will generally use the whole screen. Users of mobile phones are much more likely to

Page 11

An Introduction to Responsive Web Design

have a compatible browser, and even if they don't they will be presented with your desktop

page design.

When you created your layout.css file you defined a style for an h1 heading, specifying a font

size of 26 pixels. However, on a mobile device this font size is probably far too large and would

take up a great deal of the screen, particularly for longer titles.

We can use a Media Query to create a CSS style for h1 tags that will only apply if the screen

width is less than a given number of pixels.

We want this rule to take effect on mobile screens and smaller tablets. Many small tablets

have a screen width of 600 pixels or less.

In your text editor, create a new file and add the following to it.

1 /* Screens less than 600px wide (small tablets) */
2 @media only screen and (max-width : 600px),
3 only screen and (max-device-width : 600px) {
4
5 }

Here we have created two conditions, the first:

@media only screen and (max-width : 600px),

All conditional blocks begin with @media, which tells your web browser that the code that

follows is a media query.

This condition specifies that the CSS code following it will only be applied only when the media

type is "screen", so these styles will not be applied when a user prints the page, and when

the width of the page is 600 pixels or less.

The following line is the same condition, again only applied to screens, and is included for

maximum compatibility with older web browsers which may look for a "max-device-

width" property rather than "max-width".

Page 12

An Introduction to Responsive Web Design

only screen and (max-device-width : 600px) {

It is important to remember that any CSS rules that you want to apply to your web page if

these conditions are met must appear between the curly brackets { and }, which are

highlighted below in red.

1 /* Screens less than 600px wide (small tablets) */
2 @media only screen and (max-width : 600px),
3 only screen and (max-device-width : 600px) {
4
5 }

Let's create a CSS rule to reduce the font size of our <h1> heading tags on screens that meet

our conditions.

1 /* Screens less than 600px wide (small tablets) */
2 @media only screen and (max-width : 600px),
3 only screen and (max-device-width : 600px) {
4 /* Reduce heading font size */
5 h1 {
6 font-size: 20px;
7 }
8 }

Here is a very simple rule that sets the font size of any <h1> elements to 20 pixels. We have

not saved this file yet, so save it to the same folder as your index.html and layout.css files. Call

it resize.css . We now need to link to this CSS style sheet from our HTML document, so open

index.html in your text editor.

Page 13

An Introduction to Responsive Web Design

We want this rule to overrule our existing h1 rule from the layout.css file, so we must make

sure the link to this file follows the link to layout.css file. Add the code below to the <head>

section of your HTML file.

3 <head>
4 <title>RalphTech</title>
5 <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" />
6 <link rel="stylesheet" href="layout.css" type="text/css" media="screen" />
7 <link rel="stylesheet" href="resize.css" type="text/css" media="screen" /> 8 </head>

You've just created your first responsive website!

Page 14

An Introduction to Responsive Web Design

Before we continue, we should test the page to make sure the condition we have created

works as we would expect. There are several approaches you can take to test a responsive web

site.

There are several websites available that allow you to check your site in a number of different

screen sizes.

� responsive.is - This website lets you enter your URL, and choose between desktop,

tablet portrait, tablet landscape, phone portrait, and phone landscape sizes.

� studiopress.com/responsive - This site shows common tablet and phone sizes side by

side, allowing you to check multiple devices at the same time.

� responsivedesigntest.net - Just like with the previous site, this one shows you several

common device sizes on the one page.

� screenqueri.es - This one has the largest list of devices to choose from, and allows you

to switch any of the devices between landscape and portrait mode.

If you use a web browser that supports add-ons (sometimes called plugins or extensions), a

faster approach is to install an add-on specifically designed to help you develop responsive

websites. One of the best and most readily available is the Web Developer toolbar by Chris

Pederick. It's available for both Mozilla Firefox and Google Chrome.

The Web Developer extension allows you to resize the screen from the toolbar, and also

includes an option to view responsive layouts. The option is found in the Resize menu.

Page 15

An Introduction to Responsive Web Design

Figure 1: Web Developer add-on in Firefox

Figure 2: Web Developer add-on in Google Chrome

When selected, you will be taken to a page containing several versions of your site at different

sizes. You can also add your own custom sizes in the add-on options if you need to.

Page 16

An Introduction to Responsive Web Design

When designing a web site it makes sense to use a web site or an add-on to preview your site

at different sizes to check how your site resizes. However, it is important to remember that

these methods will still use your web browser's rendering engine. It is always a good idea to

check your web site in a range of web browsers, and the same should be said of mobile

devices.

Most mobile phone operating system manufacturers offer tools to help developers create apps

or websites for their browser, and these tools undoubtedly include an emulator. An emulator

allows you to view your web pages on your desktop PC as though you were using a mobile

device itself, which can be useful for testing devices that are not accessible to you. They also

give a better idea of how your page will look because they use the same page rendering

technologies employed on the devices themselves.

However because they come as part of a larger set of development tools they can take up a

great deal of disk space, and can be complex to set up. Another disadvantage is that there are

several mobile operating systems, and you may need to install a different emulator for each.

If you have access to one or more mobile devices, you simply can't beat testing your site on it.

While an emulator will give you an accurate idea of how the page will turn out, it is still only a

simulation of the real thing.

Before launching a new site, you should find family members, friends, or colleagues with

different phones to test your site for you. Make a note of the phones tested, along with their

operating system and version, and web browser. If any issues are raised you can log the issue

against the phone, and test again when you have resolved the issue.

Page 17

An Introduction to Responsive Web Design

We have created the files that will make our web page, and introduced our first media query.

At this stage our web page is looking very bare, so let's start by creating a header for our logo,

and then a navigation system to help our visitors browse our site.

The first thing we need to do is create our header in our HTML page. We can then style the

header, and when we're happy with it we can create our responsive styles to restyle and resize

it for smaller screens.

Open the index.html file in your text editor. The header for our example site is going to be

very simple, and contain one image - our site logo. In our example we are going to use an

image file called "logo.png", and this file will be saved to the same folder as our index.html file.

Add the following code to the <body> section.

1
2

3

4

5

6

7

8

9
10

11

12

13

14

15

<!DOCTYPE html>
<html>

<head>

</head>
<body>

</body>

</html>

<title>RalphTech</title>
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" />
<link rel="stylesheet" href="layout.css" type="text/css" media="screen" />

<link rel="stylesheet" href="resize.css" type="text/css" media="screen" />

<!-- Header -->
<div class="header">

</div>

This code is nice and simple; we've created a <div> division with the CSS class name of

"header". We've given it the "header" class so that we can refer to this element in our CSS

code shortly when we need to set its style and position properties.

Page 18

An Introduction to Responsive Web Design

This <div> tag contains an image, which has a class name of "logo" and points to an image

file called "logo.png". Again, we can use the class name "logo" to refer directly to this image in our

CSS code.

Now let's add some styling to our layout.css file. Add the code below to the end of the file.

1
2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

/* General page layout styles */
body {

margin: 0px;
background: #ffffff;
font-family: Arial, sans-serif;
font-size: 13px;

}

/* Heading */
h1 {

font-size: 26px;
}

/* Header */
div.header {

float: left;
position: relative;
width: 96%;
padding: 10px 2%;

}
div.header img.logo {

float: left;
max-width: 75%;

}

The first CSS style is applied to all <div> tags with the class name "header". We float the

HTML element because it will be easier to manipulate, and it will fit better with other elements

that will need to be floated later.

We need the header to fit the full width of the page. It is important to remember that padding

is included in the width of an element. We set the padding of the div.header element to 10px

and 2%, the 10px will give the top and bottom of the element a padding of 10 pixels, and the

2% gives the left and right edges of the element a padding of 2% of the page. Because 4% of

Page 19

An Introduction to Responsive Web Design

the width of the element is now taken by the padding, we set the width to the remaining 96%

of the page.

You may also notice that we set the position of the header to "relative". This will allow us to

position child elements within this tag later on.

Following this rule is another rule, which we apply to an image with the class name "logo"

within the "header" div element. We float the image left, and set a maximum width of 75%. This

property ensures that the width of the logo image can never take up more than 75% of

the full width of the screen, so the logo will be reduced in size to fit smaller screens

automatically.

We have selected a maximum width of the image for a reason - we need to use the right-hand

side of the page, next to the logo, for a menu button. However, if you did not want to display

anything other elements in the header you could easily set the maximum size to 100%.

Don't forget that the web browser will need to download the full image before it can resize it,

so always make sure you have optimised any images with specialised image manipulation

software, such as PhotoShop or Paint Shop Pro, to reduce their file to the smallest possible

size. If you don't have access to image manipulation software, the online Web Photo Resizer at

http://webresizer.com/ is a useful alternative for reducing your image sizes.

Important: http://webresizer.com is a third party website with no affiliation
with

Fasthosts. We are unable to provide assurances upon the use of security of this

website and do not recommend this site over any other image re-sizing tools that

are available.

Because we are using a very simple header and the logo image is already styled to resize

gracefully to within 75% of the page width, there are no specific styles that we need to add to

modify the header for smaller screens. If you preview the page in a web browser, and try

resizing the screen you should see the image starts to resize automatically when you drag the

width of the browser window close to the right-edge of the image.

Page 20

An Introduction to Responsive Web Design

The navigation menu is perhaps the most complex part of any website design. You have to get

the navigation right otherwise visitors will get frustrated and may leave your site prematurely

to explore elsewhere.

For simplicity we are going to create the navigation as an unordered menu, using the

tag, and tags for each menu item. Add the following code to index.html after your

header.

10
11

12

13

14

15

16

17

18

19

20

21

22

<!-- Header -->
<div class="header">

</div>

<!-- Navigation menu -->
<ul id="navigation">

Home
Our Products

Our Services
About Us
Contact Us

You may notice that instead of applying a class name to the navigation, we've given it the ID

"navigation". We will need to be able to refer to this navigation element using

JavaScript, and creating an ID is the easiest way to do this.

If you preview the site, you'll see

something that looks a little like this.

The navigation list is not styled and

therefore looks a little messy. Ideally it

should fill the width of the page, and

needs to be more obvious as a method of

browsing the site.

Add the following code to your layout.css file, after the existing code.

Page 21

An Introduction to Responsive Web Design

26
27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

/* Navigation menu */
ul#navigation {

float: left;
width: 96%; margin:

0px;
padding: 0px 2%;
background: #eeeeee;

}
ul#navigation li {

float: left;
list-style: none;
margin: 0px; padding:

0px;
}
ul#navigation li a {

float: left;
padding: 5px 10px;
font-size: 18px; color:

#009900;
text-decoration: none;

}
ul#navigation li a:hover {

background: #dddddd;
color: #006600;

}
ul#navigation li a:active {

background: #009900;
color: #ffffff;

}

Let's break this code down into chunks.

27
28

29

30

31

32

33

ul#navigation {

float: left;
width: 96%; margin:

0px;
padding: 0px 2%;
background: #eeeeee;

}

The first CSS rule is applied directly to the element. The hash (#) is used to apply a name

to the rule, instead of a dot, because we are using an ID rather than a class name. In this case

the rule will apply to the tag with an ID of "navigation".

Page 22

An Introduction to Responsive Web Design

We float the navigation left, and set the width to 96%. This is because we are setting padding:

left and right padding is set to 2%, making a total of 100% width. Unordered lists have a top

and bottom margin by default, so we set the margin to 0 pixels to ensure these are removed,

and set a background colour (#eeeeee is the hexadecimal code for light grey).

34
35

36

37

38

39

ul#navigation li {

float: left;
list-style: none;
margin: 0px; padding:

0px;
}

The second rule is applied to the individual list elements within the navigation list.

Again, we float them left to ensure they appear side by side, rather than vertically, and ensure

there is no margin or padding. We also set the list-style property to "none" to ensure

there are no list bullets.

40
41

42

43

44

45

46

ul#navigation li a {

float: left;
padding: 5px 10px;
font-size: 18px; color:

#009900;
text-decoration: none;

}

We then set the properties for link elements (<a> tags) that are contained within the

elements within the navigation . For the links to display correctly we must float them

left, because their parent element is floated left. We also set some padding to ensure

the text for each link is adequately spaced apart, and change the font size and text colour

(#009900 is the hexadecimal value for green). The text-decoration is set to none to remove the

underlining.

47
48

49

50

51

52

ul#navigation li a:hover {

background: #dddddd;
color: #006600;

}
ul#navigation li a:active {

background: #009900;

Page 23

An Introduction to Responsive Web Design

53 color: #ffffff;
54 }

Finally we set the link properties for the hover and active states. We are simply changing the

background colour when the mouse is hovered to a slightly darker grey (#dddddd), and the

text to a darker green (#006600). When the link is clicked the active state is triggered, and our

rule above changes the link background to green (#009900) and the text to white (#ffffff).

Save the file and preview it in your web browser. You should see something similar to the

image below.

Feel free to play around with the styles, changing the colours to match your logo. When you

are happy with the look, let's create the styles that will modify our navigation for smaller

screens.

The navigation we've created is great for desktop computers, laptops, and maybe even larger

tablets. However, the text is large and on smaller screens may wrap onto several lines. This not

only looks confusing, but takes up a lot of space on a screen where space is hard to come by.

We'll combat this by creating a media query that will restyle the navigation on screens with a

width less than 480 pixels. 480 pixels is a good width because this is a fairly standard size for

mobile devices in landscape view.

Start by opening your resize.css file and copying or pasting the following into it after the

existing code.

1 /* Screens less than 600px wide (small tablets) */
2 @media only screen and (max-width : 600px),
3 only screen and (max-device-width : 600px) {
4 /* Reduce heading font size */

Page 24

An Introduction to Responsive Web Design

5 h1 {
6 font-size: 20px;
7 }
8 }
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

/* Screens less than 480px wide (landscape mobile) */
@media only screen and (max-width : 480px), only

screen and (max-device-width : 480px) {
ul#navigation {

padding: 0px; width:

100%;
}
ul#navigation li {

width: 100%;
}
ul#navigation li a {

width: 100%;
padding: 10px 0px;
text-align: center;
border-top: solid 1px #ffffff;
border-bottom: solid 1px #dddddd;

}
}

Let's break the code we've just added down into chunks.

11 @media only screen and (max-width : 480px),
12 only screen and (max-device-width : 480px) {
… …
27 }

Here we have created a second media query. The CSS rules contained within the curly brackets

{ and } will execute only when the page width is less than 480 pixels.

13
14

15

16

17

18

19

ul#navigation {

padding: 0px; width:

100%;
}
ul#navigation li {

width: 100%;
}

Page 25

An Introduction to Responsive Web Design

We have re-styled the navigation menu and list items contained within to fit a width of 100%.

Because there is a high likelihood that this version of our navigation menu will be displayed on

a touch screen device, we need to consider the size of each link and how easy it will be to

press with a finger. Our navigation list has a left and right padding of 2% when displayed on a

larger screen, but on a touch screen we want to remove this to maximise the width of the

links.

20
21

22

23

24

25

26

ul#navigation li a {

width: 100%;
padding: 10px 0px;
text-align: center;
border-top: solid 1px #ffffff;
border-bottom: solid 1px #dddddd;

}

Finally we resize the <a> tags contained within each list element to again fit the full

width of the page, and provide a top and bottom padding of 10 pixels. We also centre the text

using the text-align property (note the American spelling of "center"), and add a white

border to the top of the link (#ffffff) and a darker grey border to the bottom (#dddddd). This

gives a nice bevel effect and helps distinguish between the links. Remember that on a touch

screen device, there is no mouse

and therefore any hover styles

you create will not get triggered, so it's

important to present clear links.

If you load your web page in your

browser and resize the window to a

width of 480 pixels or less,

you should see something similar

to the image on the right.

You may notice, however, that

before you get to 480 pixels your navigation may drop down to a second line on the menu bar.

Page 26

An Introduction to Responsive Web Design

We don't want our web page to do this, because it looks messy. One way to combat this would

be to add another rule to resize this navigation text. We've already got a media query in our

resize.css file for pages with a width less than 600 pixels. Our navigation menu is not large, so

we could add our CSS rule to this. If your navigation menu has more entries in it, you may need

to add another Media Query for a more appropriate page width.

Add the following code within the first media query you created, for a page width of 600

pixels.

1
2

3

4

5

6

7

8

9
10

11

12

13

14

/* Screens less than 600px wide (small tablets) */
@media only screen and (max-width : 600px), only

screen and (max-device-width : 600px) {
/* Reduce heading font size */
h1 {

font-size: 20px;
}

/* Reduce the navigation menu text size */
ul#navigation li a {

font-size: 13px;
font-weight: bold;

}
}

This will resize the navigation menu text to a font size of 13 pixels, preventing our navigation

menu from wrapping onto a second line.

Page 27

An Introduction to Responsive Web Design

We've styled our navigation, and it resizes gracefully for mobile devices. However, when we

resize our page to 320x480 pixels, a common mobile phone screen size, you can see that the

header and navigation takes up well over half of the screen, leaving very little available for the

page without having to scroll down.

Ideally we want to tuck the navigation menu

out of the way until the user needs it. A

common method adopted by websites is to hide

the navigation by default, and present the user

instead with a menu button. Tapping the button will

display the navigation menu.

In order to achieve this, we will need to adjust

our existing CSS code slightly to hide the

navigation on smaller screens. We'll need to add a

link to our header for the button, and

we'll need to add some JavaScript to show and hide

the navigation menu.

First, let's add some CSS code to our resize.css

file to hide our navigation menu. Add the

following line of code to the existing CSS rule

ul#navigation.

20
21

22

23

24

div.header a#menu_button {

display: block;
}
ul#navigation {

display: none;

Page 28

An Introduction to Responsive Web Design

25 padding: 0px;
26 width: 100%;
27 }

28 ul#navigation.visible {
29 display: block;
30 }

If you save the file and load index.html in your web browser, you will see that the navigation

menu now disappears when the page width is resized to 480 pixels or less.

Now let's add a link to show or hide the menu. Open index.html in your text editor, and add

the following line of code within the header <div>, just after the logo image.

10
11

12

13

14

<!-- Header -->
<div class="header">

 Menu
</div>

We've simply created an <a> link tag with the ID "menu_button". We have set the link to

point to "sitemap.html". However, our JavaScript code will show or hide the navigation menu

and force the web browser to ignore this link, because we want visitors to stay on the page

while they peruse the menu. We've added it because there is a small chance that a visitor may

have disabled JavaScript in their web browser. If this is the case the link will work as any other

link, and visitors will still be able to browse your site via the sitemap.html page. If you are not

planning to include a site map, you could set the "href" attribute to point to the URL of your

home page.

Now let's style this link. Open your layout.css file in your text editor, and add the following to

it. It doesn't matter where you add this code, but we've added it after the header rules as this

seems a logical place for it to go, as the button will appear next to the logo on the page.

21
22

23

24

25

26

div.header img.logo {

float: left;
max-width: 75%;

}

/* Menu button */

Page 29

An Introduction to Responsive Web Design

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

div.header a#menu_button {
display: none;
position: absolute;
right: 2%;
border: solid 1px #009900;
color: #009900;
padding: 10px 5px;
font-weight: bold;
text-decoration: none;

}

/* Navigation menu */
ul#navigation {

float: left;
width: 96%; margin:

0px;
padding: 0px 2%;
background: #eeeeee;

}

We have added a rule to style an <a> tag with the ID "menu_button" contained within a

<div> tag with a class name of "header". We're setting the display to none to hide the

button; we'll create a rule in our resize.css file shortly to display the button when necessary.

We also set the position to absolute, which takes the element out of the flow of the page, and

allows us to position it where we would like. In this case we set the value for "right" to 2%,

which positions the link from its right edge with a gap, 2% of the width of the page, from the

right hand border.

Do you remember when we were styling the navigation that we set the position of the <div>

tag with class name "header" to relative? Generally if you position an element absolutely on

the page, any positioning will be set relatively to the page itself. For example, setting the value

of "top" to "10px" will position the element 10 pixels from the top of the page. However, the

parent element has been positioned relatively; any positioning will be set relative to the

parent, not the page. So in our example, setting the height of an element to 10px will position it

10 pixels from the top of its parent element, not the page.

The other rules add padding, border, set the text colour to green (#009900), make the text

bold, and remove the underlining.

Page 30

An Introduction to Responsive Web Design

Now we need to add a rule to the resize.css file to show this button at the same time that we
hide the navigation menu, when the page width reaches 480 pixels and below. In your text
editor, add the following just above your rule for ul#navigation.

16
17

18

19

20

21

22

23

24

25

26

27

/* Screens less than 480px wide (landscape mobile) */
@media only screen and (max-width : 480px), only

screen and (max-device-width : 480px) {
/* Hide navigation and display responsive menu button */
div.header a#menu_button {

display: block;
}
ul#navigation {

display: none; padding:

0px; width: 100%;
}

This code is nice and simple; the rule in the layout.css file sets the display property of the
"menu_button" link to hidden. Our rule above overwrites that rule, setting the display
property to "block" which displays the element. Save the resize.css file and open index.html in
your browser. If you resize the page to a width less than 480 pixels your navigation should
disappear and the menu button should appear to the right of the logo.

We're almost finished with the navigation, but the Menu button is fairly useless at the
moment. If you click it, it will take you to the sitemap.html page which doesn't exist because
we haven't created it yet.

We need to write some JavaScript to display the navigation menu.

Our resize.css file contains a rule that sets the "display" property of our navigation menu to
"none", causing it to disappear when the page width is less than 480 pixels. We'll create a
custom class, which we'll call "visible", which will overrule the "display" property.

We can then use JavaScript to apply our "visible" class to the navigation menu.

This is the safest method of ensuring that the navigation menu stays constantly visible at page
widths of 480 pixels or greater.

Page 31

An Introduction to Responsive Web Design

Let's create the CSS class first, so open resize.css in your text editor and add the following rule

23
24

25

26

27

ul#navigation {

}

display: none;
padding: 0px; width:

100%;

28

29

30

31

32

33

ul#navigation.visible {
display: block;

}
ul#navigation li {

width: 100%;
}

The rule above sets the display property to "block" for the element with an id of
"navigation", and a class name of "visible".

Now we need to create our JavaScript file. In your text editor create a new file and save it as
responsive.js . Make sure you save it to the same folder as your index.html file.

We will write a function, called toggleMenu, which we will call when our Menu button is
pressed. Enter the following code into your responsive.js file.

1 // JavaScript function to toggle the navigation menu on mobiles and tablets
2 function toggleMenu(menu_id, button_id) {
3
4 }

This function asks for two parameters to be passed to it when it's called. The first, menu_id,
will be the ID value of the navigation menu. We've given our navigation tag the ID
"navigation". The second will contain the ID attribute of the button link, which we've set to
"menu_button". We'll pass these parameters when we call the function.

Next we need to find the HTML elements that the supplied ID parameters refer to.

1 // JavaScript function to toggle the navigation menu on mobiles and tablets
2 function toggleMenu(menu_id, button_id) {
3 // Find the navigation menu and button objects
4 menu_obj = document.getElementById(menu_id);

button_obj = document.getElementById(button_id);
}

The code above uses JavaScript's built in function getElementById() to locate the HTML
elements and assigns them each to a variable, which we can use to manipulate them.

Page 32

An Introduction to Responsive Web Design

We'll keep our function simple. First we need to check to see if the navigation tag has
been assigned the class we have just created, "visible". This will allow us to determine whether
we need to show the navigation list, by applying the "visible" class, or hide it by removing the
class. Enter the following into your function.

1 // JavaScript function to toggle the navigation menu on mobiles and tablets
2 function toggleMenu(menu_id, button_id) {
3 // Find the navigation menu and button objects
4 menu_obj = document.getElementById(menu_id);
5 button_obj = document.getElementById(button_id);
6
7 // Check for visible class
8 if((" " + menu_obj.className + " ").indexOf(" visible ") > -1) {
9 // Navigation menu is visible, we need to hide it

10 menu_obj.className = ""; // Remove the "visible" class
11 button_obj.innerHTML = "Menu";
12 } else {
13 // Navigation menu is hidden, we need to show it
14 menu_obj.className = "visible"; // Add the "visible" class
15 button_obj.innerHTML = "Hide";
16 }
17 }

The function now contains a simple if() statement, which uses JavaScript's indexOf()
function to search for the presence of the word "visible" within the className property of our
menu_obj object.

If the word "visible" is found, then the navigation menu is visible, in which case we remove the
class by setting the className property for menu_obj to an empty string. We also set the
innerHTML property of our button_obj property to "Menu", which adjusts the link text.

If the word "visible" is not found, we do the opposite in the else statement. We set the
className property for our menu_obj object to "visible", and change the innerHTML
property for our button_obj link object to "Hide".

Right, now we have written our function we need to do two more things. First, we must
include the JavaScript code in the page, and secondly we must call our function when the
menu link is pressed.

Open your index.html file in your text editor. In the <head> section we need to tell your web
browser where to find the responsive.js file you have just created, so add the following code.

3 <head>
4 <title>RalphTech</title>
5 <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" />
6 <link rel="stylesheet" href="layout.css" type="text/css" media="screen" />

Page 33

An Introduction to Responsive Web Design

7 <link rel="stylesheet" href="resize.css" type="text/css" media="screen" />
8 <script src="responsive.js"></script>
9 </head>

Now, a little further down the page, locate your menu link and add the following to it.

12
13

14

15

<div class="header">

<a href="sitemap.html" onclick="toggleMenu('navigation', 'menu_button'); return false;"
id="menu_button">Menu

</div>

The onclick property defines an event which tells your web browser to execute the
JavaScript code within the quotation marks when the link is pressed. We use it to call our
toggleMenu() function, specifying our two parameters. The first, the ID of our navigation
list, "navigation", which we specify using single quotation marks. The second parameter is the
ID of this link, so our function can find it to change its text, which we set to "menu_button",
again using single quotation marks.

Finally, after calling our function, we use the code "return false", which tells your web browser
not to continue with its default behaviour. In the case of a link, it will halt your browser from
loading the URL defined in the "href" attribute.

That's it! Save your index.html file and open it in your web browser. When you resize the page
to a width of 480 pixels or less your Menu button should appear, and the navigation should
disappear. Clicking the Menu button should show your navigation, and clicking it again should
hide it.

Page 34

An Introduction to Responsive Web Design

With the hardest part of our page - the navigation - complete, the rest of the page should be
easy. All we now need is to create a footer and an area for our page content.

In your index.html file, enter the following code to the <body> section, after your navigation.

17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

</body>

<!-- Navigation menu -->
<ul id="navigation">

Home
Our Products

Our Services
About Us
Contact Us

<!-- Page content -->
<div class="page">

<h1>Welcome to RalphTech</h1>
<p>Page content.</p>

</div>

<!-- Footer -->
<div class="footer">

Copyright 2013 RalphTech Ltd. All Rights Reserved.
</div>

This HTML code should be very straightforward. We are separating our page content and
footer into individual division <div> sections. This helps us separate them, and will make
styling elements within these sections easier.

The CSS code for them will be very simple as well. We need to add padding to match the
header; otherwise they won't line up and will look untidy. Add the following to your
layout.css file, after the existing code.

68
69

70

71

72

73

74

75

/* Page content */
div.page {

float: left;
width: 96%;
padding: 20px 2%;

}

/* Footer */

Page 35

An Introduction to Responsive Web Design

76
77

78

79

80

81

82

83

div.footer {
float: left;
width: 96%;
padding: 10px 2%;
font-size: 12px; color:

#999999;
border-top: solid 3px #eeeeee;

}

We've added a few additional styles to the footer, such a top border to separate it from the
page content, and we've made the font size slightly smaller and a shade of grey (#999999).

That's it, a responsive webpage!

Page 36

An Introduction to Responsive Web Design

The following is a list of common screen sizes for mobile phones and tablets. It is not an
exhaustive list, as new devices are released regularly, but it is a good idea to check your
responsive website at the following sizes.

Portrait
1536 x 2048
1200 x 1920
1080 x 1920
900 x 1600
800 x 1280

768 x 1366
768 x 1024

600 x 1024
600 x 800

Landscape
2048 × 1536
1920 × 1200
1920 × 1080
1600 x 900
1280 × 800

1366 × 768
1024 × 768

1024 × 600
800 x 600

Popular Tablets
Apple iPad 3rd and 4th Generations
Amazon Kindle Fire HD 8.9"
Microsoft Surface Pro
Lenovo Yoga 13
Google Nexus 7, Kindle Fire HD, Samsung Galaxy Note
10.1, Samsung Galaxy Tab 2 10.1
Microsoft Surface RT
Apple iPad Mini, Apple iPad 1st and 2nd Generations,
HP TouchPad
BlackBerry Playbook, Amazon Kindle Fire
AOC Breeze

Portrait
640 x 960
540 x 960
480 x 800
320 x 480
240 x 320

Landscape

960 x 640
960 x 540
800 x 480
480 x 320
320 x 240

Popular Phones
Apple iPhone
HTC Sensation, Motorola Droid RAZR
Samsung Galaxy S II, BlackBerry Torch 9850
Sony Xperia E Dual, Samsung Galaxy Fame
Samsung E900, Nokia 6500 Slide

Page 37

An Introduction to Responsive Web Design

When designing the Fasthosts responsive Support Sites, we took inspiration from a number of
different sources. If you are a little stuck for ideas, take a look at some of the following
responsive websites. These sites are not affiliated with Fasthosts in any way, but stand out as
good examples of effective and creative responsive design.

� Microsoft

http://www.microsoft.com/

� Starbucks Coffee Company
http://starbucks.co.uk/

� Gov.uk
https://www.gov.uk/

� Skinny Ties
http://skinnyties.com/

� Smashing Magazine

http://www.smashingmagazine.com/

� Adobe & HTML

http://html.adobe.com/

� An Event Apart

http://aneventapart.com/

� Food Sense

http://foodsense.is/

Page 38

An Introduction to Responsive Web Design

For your reference, the full source code for the responsive web page created during this guide

is available below. The project consists of four files, index.html , layout.css , resize.css and

responsive.js .

1 <!DOCTYPE html>

<html>
<head>

<title>RalphTech</title>
<meta name="viewport" content="width=device-width, initial-scale=1,

maximum-scale=1" />
<link rel="stylesheet" href="layout.css" type="text/css" media="screen" />

<link rel="stylesheet" href="resize.css" type="text/css" media="screen" />
<script src="responsive.js"></script>

</head>

<body>

<!-- Header -->
<div class="header">

<a href="sitemap.html"

onclick="toggleMenu('navigation', 'menu_button'); return false;"
id="menu_button">Menu

</div>

<!-- Navigation menu -->
<ul id="navigation">

Home
Our Products

Our Services
About Us
Contact Us

<!-- Page content -->
<div class="page">

<h1>Welcome to RalphTech</h1>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam

fringilla risus non nisi accumsan dapibus. Aliquam quis felis
sit amet dolor pretium vulputate quis sit amet nibh. Duis
fringilla nisl purus, nec tristique velit.</p>

</div>

Page 39

An Introduction to Responsive Web Design

<!-- Footer -->
<div class="footer">

Copyright 2013 RalphTech Ltd. All Rights Reserved.
</div>

</body>
</html>

1 /* General page layout styles */
body {

margin: 0px;
background: #ffffff;
font-family: Arial, sans-serif;
font-size: 13px;

}

/* Heading */
h1 {

font-size: 26px;
}

/* Header */
div.header {

float: left;
position: relative;
width: 96%;
padding: 10px 2%;

}
div.header img.logo {

float: left;
max-width: 75%;

}

/* Menu button */
div.header a#menu_button {

display: none;
position: absolute;
right: 2%;
border: solid 1px #009900;
color: #009900;
padding: 10px 5px;
font-weight: bold;
text-decoration: none;

}

Page 40

An Introduction to
Responsive Web
Design

/* Navigation menu */
ul#navigation {

float: left;
width: 96%;

margin: 0px;
padding: 0px 2%;
background: #eeeeee;

}
ul#navigation li {

float: left;
list-style: none;
margin: 0px;

padding: 0px;
}
ul#navigation li a {

float: left;
padding: 5px 10px;
font-size: 18px;

color: #009900;
text-decoration: none;

}
ul#navigation li a:hover {

background: #dddddd;
color: #006600;

}
ul#navigation li a:active {

background: #009900;
color: #ffffff;

}

/* Page content */
div.page {

float: left;
width: 96%;
padding: 20px 2%;

}

/* Footer */
div.footer {

float: left;
width: 96%;
padding: 10px 2%;
font-size: 12px;

color: #999999;
border-top: solid 3px #eeeeee;

}

Page 41

An Introduction to Responsive Web Design

1 /* Screens less than 600px wide (small tablets) */
@media only screen and (max-width : 600px),
only screen and (max-device-width : 600px) {

/* Reduce heading font size */
h1 {

font-size: 20px;
}

/* Reduce the navigation menu text size */
ul#navigation li a {

font-size: 13px;
font-weight: bold;

}
}

/* Screens less than 480px wide (landscape mobile) */
@media only screen and (max-width : 480px), only

screen and (max-device-width : 480px) {
/* Hide navigation and display responsive menu button */
div.header a#menu_button {

display: block;
}
ul#navigation {

/* Navigation menu is hidden until menu button is pressed */
display: none;
/* Remove the padding so the navigation fills the full width of the
screen */
padding: 0px; width:

100%;
}
/* We're creating another class called "visible" to show the menu. */
ul#navigation.visible {

/* JavaScript code to add this class to the navigation list when the
menu button is pressed. */
display: block;

}
ul#navigation li {

/* Make each list item 100% wide, so each entry takes up a full line */
width: 100%;

}
ul#navigation li a {

width: 100%;
padding: 10px 0px;
/* Centre text (note the American English spelling of "center" */
text-align: center;
/* Add borders to visually separate the links, as mobile devices don't

Page 42

An Introduction to Responsive Web Design

have hovers */
border-top: solid 1px #ffffff;
border-bottom: solid 1px #dddddd;

}
}

/* Screens less than 320px wide (portrait mobile) */
@media only screen and (max-width : 320px), only

screen and (max-device-width : 320px) {
/* Reduce heading font size */
h1 {

font-size: 16px;
}

}

1 // JavaScript function to toggle the navigation menu on mobiles and tablets
function toggleMenu(menu_id, button_id) {

// Find the navigation menu and button objects
menu_obj = document.getElementById(menu_id);
button_obj = document.getElementById(button_id);

/* We've created a class called "visible" for the navigation menu. Look to
see if this class is applied, if it isn't, the navigation menu is
currently hidden and we need to show it by adding this class. If the
class is found, we need to remove it to hide the menu. */
if((" " + menu_obj.className + " ").indexOf(" visible ") > -1) {

// Navigation menu is visible, we need to hide it

} else {

}

menu_obj.className = "";
button_obj.innerHTML = "Menu";

// Navigation menu is hidden, we need to show it
menu_obj.className = "visible";

button_obj.innerHTML = "Hide";

// Remove the "visible" class
// Change button text

// Add the "visible" class
// Change button text

}

Page 43

