
Regular Expressions

Contents

• 1 Introduction
• 1.1 What is a regular expression?
• 1.2 Example applications
• 1.3 Regular expression components
• 1.4 Syntax varies across application programs
• 1.5 Supporting Software

• 2 Syntaxes
• 2.1 Greedy expressions
• 2.2 Comparison table

• 3 Simple Regular Expressions
• 3.1 Examples
• 3.2 Use in Tools

• 4 Basic Regular Expressions
• 4.1 Use in Tools

• 5 Perl Compatible Regular Expressions
• 5.1 Examples
• 5.2 Use in Tools
• 5.3 Links

• 6 POSIX Basic Regular Expressions
• 6.1 History
• 6.2 Syntax
• 6.3 Character classes
• 6.4 Use in Tools
• 6.5 Links

• 7 POSIX Extended Regular Expressions
• 7.1 Use in Tools
• 7.2 Links

• 8 Non-POSIX Basic Regular Expressions
• 8.1 Use in Tools

• 9 Emacs Regular Expressions
• 9.1 Use in Tools
• 9.2 Links

• 10 Shell Regular Expressions
• 10.1 Use in Tools

• 11 Implementation
• 11.1 Implementations and running times

• 12 Examples
• 13 Glossary
• 14 Links

• 14.1 See also
• 14.2 External Links

1

Regular Expressions

Introduction

What is a regular expression?
A regular expression is a method of representing a string matching pattern. Regular
expressions enable strings that match a particular pattern within textual data records to be
located and modified and they are often used within utility programs and programming
languages that manipulate textual data. Regular expressions are extremely powerful.

Example applications
Various software applications use regular expressions to locate, select or modify particular
sections text. For example, a regular expression could be used to:

• replace the word "snake" with the word "serpent" throughout an entire piece of text
• locate pieces of text containing the words "fox" and "sheep" on the same line

Regular expression components
Regular expressions are made up of three types of components:

• anchors used to specify the position of the pattern in relation to a line of text.
• character sets used to match one or more characters in a single position.
• modifiers used to specify how many times a character set is repeated.

Syntax varies across application programs
The syntax of regular expressions varies across application programs. For example the shell
uses a limited form of regular expression called shell regular expressions for filename
substitution, whereas AWK uses a superset of extended regular expressions syntax.

Supporting Software
Regular expressions are supported by various software tools, including command line tools,
plain text editors and programming languages. Most of these tools are available for various
computing platforms, including Linux, Windows and Mac OS X. The tools use slightly different
syntax styles. Let's look at some notable ones.

The tools:

• Command line tools
• grep
• egrep
• sed

• Plain text editors
• ed
• vi
• Emacs

2

Regular Expressions

• Programming languages
• Awk
• Java
• JavaScript
• .NET
• Perl
• PHP
• Ruby
• Tcl
• Python

A regular expression can be considered to be a little computer program that finds or isolates a
subset of a larger set of text. In the same way that an ordinary computer program needs a
computer to execute it, a regular expression needs a software application to interpret it — to
give it meaning.

For example, a regular expression can be used to tell an editor to find the next occurrence of the
word "Chapter" followed by several spaces and digits. Or you can use a regular expression to
tell the UNIX grep command to show only those lines of a file that contain the word "Wiki"
followed by either the word "Books" or the word-fragment "pedia". We will discuss the exact
syntax of such regular expressions in the next chapter.

Syntaxes
There are several variants of regular expressions. These variants differ not only in their concrete
syntax but also in their capabilities. Individual tools that support regular expressions also have
their own peculiarities.

• Simple Regular Expressions - widely used for backwards compatibility, but deprecated on
POSIX compliant systems.

• Basic Regular Expressions - used by some Unix shell tools
• Perl Compatible Regular Expressions - used by Perl and some application programs
• POSIX Basic Regular Expressions - provides extensions for consistency between utility

programs. These extensions are not supported by some traditional implementations of
Unix tools.

• POSIX Extended Regular Expressions - may be supported by some Unix utilities via the
-E command line switch

• Non-POSIX Basic Regular Expressions - provides additional character classes not
supported by POSIX

• Emacs Regular Expressions - used by the emacs editor
• Shell Regular Expressions - a limited form of regular expression used for pattern

matching and filename substitution

3

Regular Expressions

Greedy expressions
Quantifiers such as * and + match as much as they can: they are greedy. For some uses, their
greediness does not fit. For example, let as assume you want to find the first string enclosed in
quotation marks, in the following text:

These words include "cat", "mat", and "pat".

The pattern ".*" matches the italicized part of the text below, that is, "cat", "mat", and "pat"
instead of the desired "cat":

These words include "cat", "mat", and "pat".

To fix this, some flavours of regular expressions provide non-greedy operators such as *?, +?,
and }?. In PHP, adding a "U" at the end of the regexp makes the quantifier non-greedy, as in
/".*"/U. In flavours that support neither of the two options, you can specify what is not to be
matched, as in ("[^"]*") to fix the discussed example. However, when dealing with bracketed
expressions, (\[\[[^\]]*\]\]) fails to match on A B C [[D E] F G]].

Comparison table
A comparison table or matrix that shows which features or flavors of regular expressions are
available in which tool or programming language is available from regular-expressions.info.

4

Regular Expressions

Simple Regular Expressions
The Simple Regular Expression syntax is widely used on Unix based systems for the
purposes of backwards compatibility. Most regular-expression-aware Unix utilities, such as grep
and sed, use it by default while providing support for extended regular expressions with
command line arguments (see below). This syntax is deprecated on POSIX compliant systems
and should not be used by new utilities.

When simple regular expression syntax is being used, most characters, except metacharacters
are treated as literal characters and match only themselves (for example, "a" matches "a", "(bc"
matches "(bc", etc).

Operators
Operator Effect
. The dot operator matches any single character.
[] boxes enable a single character to be matched against character lists or character

ranges.
[^] A compliment box enables a single character not within in a character list or character

range to be matched.
^ A caret anchor matches the start of the line (or any line, when applied in multiline

mode)
$ A dollar anchor matches the end of the line (or any line, when applied in multiline

mode)
() parentheses are used to define a marked subexpression. The matched text section

can be recalled at a later time.
\n Where n is a digit from 1 to 9; matches what the nth marked subexpression matched.

This irregular construct has not been adopted in the extended regular expression
syntax.

* A single character expression followed by "*" matches zero or more copies of the
expression. For example, "ab*c" matches "ac", "abc", "abbbc" etc. "[xyz]*" matches "",
"x", "y", "zx", "zyx", and so on.

• \n*, where n is a digit from 1 to 9, matches zero or more iterations of what the
nth marked subexpression matched. For example, "(a.)c\1*" matches "abcab"
and "abcabab" but not "abcac".

• An expression enclosed in "\(" and "\)" followed by "*" is deemed to be invalid.
In some cases (e.g. /usr/bin/xpg4/grep of SunOS 5.8), it matches zero or more
iterations of the string that the enclosed expression matches. In other cases
(e.g. /usr/bin/grep of SunOS 5.8), it matches what the enclosed expression
matches, followed by a literal "*".

5

Regular Expressions

Examples
Examples:

• "^[hc]at"
• Matches hat and cat but only at the beginning of a line.

• "[hc]at$"
• Matches hat and cat but only at the end of a line.

Use in Tools
Tools and languages that utilize this regular expression syntax include:

• Grep
• sed

6

Regular Expressions

Basic Regular Expressions
Basic Regular Expressions: Note that particular implementations of regular expressions
interpret the backslash symbol differently in front of some of the metacharacters. For example,
egrep and perl interpret unbackslashed parentheses and vertical bars as metacharacters,
reserving the backslashed versions to mean the literal characters themselves. Old versions of
grep did not support the pipe alternation operator.

Operators
Operator Effect
. The dot operator matches any single character.
[] boxes enable a single character to be matched against a character lists or character

range.
[^] A compliment box enables a single character not within in a character list or character

range to be matched.
* An asterisk specifies zero or more characters to match.
^ The caret anchor matches the beginning of the line
$ The dollar anchor matches the end of the line

Examples:
Example Match

".at" any three-character string like hat, cat or bat
"[hc]at" hat and cat
"[^b]at" all the matched strings from the regex ".at" except bat
"^[hc]at" hat and cat but only at the beginning of a line
"[hc]at$" hat and cat but only at the end of a line
Since many ranges of characters depends on the chosen locale setting (e.g., in some settings
letters are organized as abc..yzABC..YZ while in some others as aAbBcC..yYzZ).

The Posix Basic Regular Expressions syntax provided extensions for consistency between utility
programs such as grep, sed and awk. These extensions are not supported by some traditional
implementations of Unix tools.

Use in Tools
Tools and languages that utilize this regular expression syntax include: TBD

7

Regular Expressions

Perl Compatible Regular Expressions
Perl has a richer and more predictable syntax than even the POSIX Extended Regular
Expressions syntax. An example of its predictability is that \ always quotes a non-alphanumeric
character. An example of something that is possible to specify with Perl but not POSIX is
whether part of the match wanted to be greedy or not. For instance in the pattern /a.*b/, the .*
will match as much as it can, while in the pattern /a.*?b/, .*? will match as little. So given the
string "a bad dab", the first pattern will match the whole string, and the second will only match "a
b".

For these reasons, many other utilities and applications have adopted syntaxes that look a lot
like Perl's. For example, Java, Ruby, Python, PHP, exim, BBEdit, and even Microsoft's .NET
Framework all use regular expression syntax similar to that used in perl. Not all "Perl-
compatible" regular expression implementations are identical, and many implement only a
subset of Perl's features.

Examples
Conventions used in the examples: The character 'm' is not always required to specify a perl
match operation. For example, m/[^abc]/ could also be rendered as /[^abc]/. The 'm' is only
necessary if the user wishes to specify a match operation without using a forward-slash as the
regex delimiter. Sometimes it is useful to specify an alternate regex delimiter in order to avoid
"delimiter collision". See 'perldoc perlre' for more details.

 metacharacter(s) ;; the metacharacters column specifies the regex syntax being demonstrated
 =~ m// ;; indicates a regex match operation in perl
 =~ s/// ;; indicates a regex substitution operation in perl

8

Regular Expressions

In the table heading below, "M-c" stands for "Metacharacters".

M-c Description Example
All the if statements return a TRUE value.

.

Normally matches
any character
except a newline.
Within square
brackets the dot is
literal.

if ("Hello World\n" =~ m/...../) {
 print "Yep"; # Has length >= 5\n";
}

()

Groups a series of
pattern elements to
a single element.
When you match a
pattern within
parentheses, you
can use any of $1,
$2, ... later to refer
to the previously
matched pattern.

if ("Hello World\n" =~ m/(H..).(o..)/) {
 print "We matched '$1' and '$2'\n";
}

Output:

We matched 'Hel' and 'o W';

+

Matches the
preceding pattern
element one or
more times.

if ("Hello World\n" =~ m/l+/) {
 print "One or more \"l\"'s in the string\n";
}

?

Matches the
preceding pattern
element zero or
one times.

if ("Hello World\n" =~ m/H.?e/) {
 print "There is an 'H' and a 'e' separated by ";
 print "0-1 characters (Ex: He Hoe)\n";
}

?

Modifies the *, +, or
{M,N}'d regexp that
comes before to
match as few times
as possible.

if ("Hello World\n" =~ m/(l.+?o)/) {
 print "Yep"; # The non-greedy match with 'l' followed
 # by one or more characters is 'llo' rather than 'llo wo'.
}

*

Matches the
preceding pattern
element zero or
more times.

if ("Hello World\n" =~ m/el*o/) {
 print "There is an 'e' followed by zero to many ";
 print "'l' followed by 'o' (eo, elo, ello, elllo)\n";
}

{M,
N}

Denotes the
minimum M and the
maximum N match
count.

if ("Hello World\n" =~ m/l{1,2}/) {
 print "There is a substring with at least 1 ";
 print "and at most 2 l's in the string\n";
}

[...]
Denotes a set of
possible character
matches.

if ("Hello World\n" =~ m/[aeiou]+/) {
 print "Yep"; # Contains one or more vowels
}

9

Regular Expressions

| Separates alternate
possibilities.

if ("Hello World\n" =~ m/(Hello|Hi|Pogo)/) {
 print "At least one of Hello, Hi, or Pogo is ";
 print "contained in the string.\n";
}

\b
Matches a word
boundary.

if ("Hello World\n" =~ m/llo\b/) {
 print "There is a word that ends with 'llo'\n";
}

\w

Matches an
alphanumeric
character, including
"_".

if ("Hello World\n" =~ m/\w/) {
 print "There is at least one alphanumeric ";
 print "character in the string (A-Z, a-z, 0-9, _)\n";
}

\W

Matches a non-
alphanumeric
character,
excluding "_".

if ("Hello World\n" =~ m/\W/) {
 print "The space between Hello and ";
 print "World is not alphanumeric\n";
}

\s

Matches a
whitespace
character (space,
tab, newline, form
feed)

if ("Hello World\n" =~ m/\s.*\s/) {
 print "There are TWO whitespace characters, which may";
 print " be separated by other characters, in the string.";
}

\S
Matches anything
BUT a whitespace.

if ("Hello World\n" =~ m/\S.*\S/) {
 print "Contains two non-whitespace characters " .
 "separated by zero or more characters.";
}

\d
Matches a digit,
same as [0-9].

if ("99 bottles of beer on the wall." =~ m/(\d+)/) {
 print "$1 is the first number in the string'\n";
}

\D Matches a non-
digit.

if ("Hello World\n" =~ m/\D/) {
 print "There is at least one character in the string";
 print " that is not a digit.\n";
}

^
Matches the
beginning of a line
or string.

if ("Hello World\n" =~ m/^He/) {
 print "Starts with the characters 'He'\n";
}

$
Matches the end of
a line or string.

if ("Hello World\n" =~ m/rld$/) {
 print "Is a line or string ";
 print "that ends with 'rld'\n";
}

\A Matches the
beginning of a

if ("Hello\nWorld\n" =~ m/\AH/) {
 print "Yep"; # The string starts with 'H'.

10

Regular Expressions

string (but not an
internal line).

}

\Z
Matches the end of
a string (but not an
internal line).

if ("Hello\nWorld\n"; =~ m/d\n\Z/) {
 print "Yep"; # Ends with 'd\\n'\n";
}

[^...]

Matches every
character except
the ones inside
brackets.

if ("Hello World\n" =~ m/[^abc]/) {
 print "Yep"; # Contains a character other than a, b, and c.
}

Use in Tools
Tools and languages that utilize Perl regular expression syntax include:

• Java
• leafnode
• Perl
• Python
• PHP

Links
• Perl regular expressions at perl.org
• Perl Compatible Regular Expressions library at pcre.org
• Perl Regular Expression Syntax at boost.org
• W:Regular_expressions#Standard_Perl

11

Regular Expressions

POSIX Basic Regular Expressions
The POSIX Basic Regular Expression syntax provided extensions to achieve consistency
between utility programs such as grep, sed and awk. These extensions are not supported by
some traditional implementations of Unix tools.

History
Traditional Unix regular expression syntax followed common conventions that often differed from
tool to tool. The POSIX Basic Regular Expressions syntax was developed by the IEEE, together
with an extended variant called Extended Regular Expression syntax. These standards were
designed mostly to provide backward compatibility with the traditional Simple Regular
Expressions syntax, providing a common standard which has since been adopted as the default
syntax of many Unix regular expression tools.

Syntax
In POSIX Basic Regular Expression syntax, most characters are treated as literals — they
match only themselves (e.g., a matches "a"). The exceptions, listed below, are called
metacharacters or metasequences.

Metacharacter Description
. Matches any single character (many applications exclude newlines, and

exactly which characters are considered newlines is flavor, character
encoding, and platform specific, but it is safe to assume that the line feed
character is included). Within POSIX bracket expressions, the dot character
matches a literal dot. For example, a.c matches "abc", etc., but [a.c] matches
only "a", ".", or "c".

[] A bracket expression. Matches a single character that is contained within the
brackets. For example, [abc] matches "a", "b", or "c". [a-z] specifies a range
which matches any lowercase letter from "a" to "z". These forms can be
mixed: [abcx-z] matches "a", "b", "c", "x", "y", or "z", as does [a-cx-z].

The - character is treated as a literal character if it is the last or the first (after
the ^) character within the brackets: [abc-], [-abc]. Note that backslash
escapes are not allowed. The] character can be included in a bracket
expression if it is the first (after the ^) character: []abc].

[^] Matches a single character that is not contained within the brackets. For
example, [^abc] matches any character other than "a", "b", or "c". [^a-z]
matches any single character that is not a lowercase letter from "a" to "z". As
above, literal characters and ranges can be mixed.

^ Matches the starting position within the string. In line-based tools, it matches
the starting position of any line.

$ Matches the ending position of the string or the position just before a string-

12

Regular Expressions

ending newline. In line-based tools, it matches the ending position of any
line.

BRE: \(\)
ERE: ()

Defines a marked subexpression. The string matched within the parentheses
can be recalled later (see the next entry, \n). A marked subexpression is also
called a block or capturing group.

\n Matches what the nth marked subexpression matched, where n is a digit
from 1 to 9. This construct is theoretically irregular and was not adopted in
the POSIX ERE syntax. Some tools allow referencing more than nine
capturing groups.

* Matches the preceding element zero or more times. For example, ab*c
matches "ac", "abc", "abbbc", etc. [xyz]* matches "", "x", "y", "z", "zx", "zyx",
"xyzzy", and so on. \(ab\)* matches "", "ab", "abab", "ababab", and so on.

BRE: \{m,n\}
ERE: {m,n}

Matches the preceding element at least m and not more than n times. For
example, a\{3,5\} matches only "aaa", "aaaa", and "aaaaa". This is not found
in a few older instances of regular expressions.

Examples:

• .at matches any three-character string ending with "at", including "hat", "cat", and "bat".
• [hc]at matches "hat" and "cat".
• [^b]at matches all strings matched by .at except "bat".
• ^[hc]at matches "hat" and "cat", but only at the beginning of the string or line.
• [hc]at$ matches "hat" and "cat", but only at the end of the string or line.
• \[.\] matches any single character surrounded by "[" and "]" since the brackets are

escaped, for example: "[a]" and "[b]".

Character classes
The POSIX standard defines some classes or categories of characters as shown in the following table:

POSIX class similar to meaning
[:upper:] [A-Z] uppercase letters
[:lower:] [a-z] lowercase letters
[:alpha:] [A-Za-z] upper- and lowercase letters
[:alnum:] [A-Za-z0-9] digits, upper- and lowercase letters
[:digit:] [0-9] digits
[:xdigit:] [0-9A-Fa-f] hexadecimal digits
[:punct:] [.,!?:...] punctuation
[:blank:] [\t] space and TAB characters only
[:space:] [\t\n\r\f\v] blank (whitespace) characters
[:cntrl:] control characters
[:graph:] [^ \t\n\r\f\v] printed characters
[:print:] [^\t\n\r\f\v] printed characters and space

13

Regular Expressions

Use in Tools
Tools and languages that utilize this regular expression syntax include:

• W:TextPad

Links
• POSIX Basic Regular Expressions at regular-expressions.info
• POSIX Basic Regular Expression Syntax at boost.org

14

Regular Expressions

POSIX Extended Regular Expressions
The more modern "extended" regular expressions can often be used with modern Unix utilities
by including the command line flag "-E".

POSIX extended regular expressions are similar in syntax to the traditional Unix regular
expressions, with some exceptions. The following metacharacters are added:

Metacharacter Description
. Matches any single character (many applications exclude newlines, and

exactly which characters are considered newlines is flavor, character
encoding, and platform specific, but it is safe to assume that the line feed
character is included). Within POSIX bracket expressions, the dot character
matches a literal dot. For example, a.c matches "abc", etc., but [a.c]
matches only "a", ".", or "c".

[] A bracket expression. Matches a single character that is contained within the
brackets. For example, [abc] matches "a", "b", or "c". [a-z] specifies a range
which matches any lowercase letter from "a" to "z". These forms can be
mixed: [abcx-z] matches "a", "b", "c", "x", "y", or "z", as does [a-cx-z].

The - character is treated as a literal character if it is the last or the first (after
the ^) character within the brackets: [abc-], [-abc]. Note that backslash
escapes are not allowed. The] character can be included in a bracket
expression if it is the first (after the ^) character: []abc].

[^] Matches a single character that is not contained within the brackets. For
example, [^abc] matches any character other than "a", "b", or "c". [^a-z]
matches any single character that is not a lowercase letter from "a" to "z". As
above, literal characters and ranges can be mixed.

^ Matches the starting position within the string. In line-based tools, it matches
the starting position of any line.

$ Matches the ending position of the string or the position just before a string-
ending newline. In line-based tools, it matches the ending position of any
line.

BRE: \(\)
ERE: ()

Defines a marked subexpression. The string matched within the
parentheses can be recalled later (see the next entry, \n). A marked
subexpression is also called a block or capturing group.

\n Matches what the nth marked subexpression matched, where n is a digit
from 1 to 9. This construct is theoretically irregular and was not adopted in
the POSIX ERE syntax. Some tools allow referencing more than nine
capturing groups.

* Matches the preceding element zero or more times. For example, ab*c
matches "ac", "abc", "abbbc", etc. [xyz]* matches "", "x", "y", "z", "zx", "zyx",
"xyzzy", and so on. \(ab\)* matches "", "ab", "abab", "ababab", and so on.

15

Regular Expressions

BRE: \{m,n\}
ERE: {m,n}

Matches the preceding element at least m and not more than n times. For
example, a\{3,5\} matches only "aaa", "aaaa", and "aaaaa". This is not found
in a few older instances of regular expressions.

• + — Match the last "block" one or more times - "ba+" matches "ba", "baa", "baaa" and so
on

• ? — Match the last "block" zero or one times - "ba?" matches "b" or "ba"
• | — The choice (or set union) operator: match either the expression before or the

expression after the operator - "abc|def" matches "abc" or "def".

Also, backslashes are removed: \{...\} becomes {...} and \(...\) becomes (...). Examples:

• "[hc]+at" matches with "hat", "cat", "hhat", "chat", "hcat", "ccchat" etc.
• "[hc]?at" matches "hat", "cat" and "at"
• "([cC]at)|([dD]og)" matches "cat", "Cat", "dog" and "Dog"

The characters (,),[,],.,*,?,+,^, and $ are special symbols and have to be escaped with a
backslash symbol in order to be treated as literal characters. For example:

"a\.(\(|\))" matches with the string "a.)" or "a.("

Modern regular expression tools allow a quantifier to be specified as non-greedy, by putting a
question mark after the quantifier: (\[\[.*?\]\]).

Use in Tools
Tools and languages that utilize this regular expression syntax include:

• AWK - uses a superset of the extended regular expression syntax

Links
• POSIX Basic Regular Expressions at regular-expressions.info
• POSIX Extended Regular Expression Syntax at boost.org

16

Regular Expressions

Non-POSIX Basic Regular Expressions
Non POSIX Basic Regular Expression Syntax: An additional non-POSIX class understood by
some tools is [:word:], which is usually defined as [:alnum:] plus underscore. This form of regular
expression is used to reflect the fact that in many programming languages these characters may
be used in identifiers.

Operators
Operator Effect
. The dot operator matches any single character.
[] boxes enable a single character to be matched against a character lists or character

range.
[^] A compliment box enables a single character not within in a character list or character

range to be matched.
* An asterisk specifies zero or more characters to match.
^ The caret anchor matches the beginning of the line
$ The dollar anchor matches the end of the line
The editor vim further distinguishes word and word-head classes (using the notation \w and \h)
since in many programming languages the characters that can begin an identifier are not the
same as those that can occur in other positions.

Use in Tools
Tools and languages that utilize this regular expression syntax include:

• vim

17

Regular Expressions

Emacs Regular Expressions
Notes on regular expressions used in text editor Emacs:

• For backslash escaping (magic vs literal), Emacs uses a mixture of BRE and ERE. Like in
ERE, Emacs supports unescaped +, ?. Like in BRE, Emacs supports escaped \(, \), \|, \
{, \}.

• GNU extensions to regular expressions supported by Emacs include \w, \W, \b, \B, \<,
\>, \` , \' (start and end of buffer)

• No "\s" like in PCRE; whitespace is matched by "\s-".
• No "\d" like in PCRE; use [0-9] or [[:digit:]]
• No lookahead and no lookbehind like in PCRE
• Emacs regexp can match characters by syntax using mode-specific syntax tables ("\sc",

"\s-", "\s ") or by categories ("\cc", "\cg").

Use in Tools
Tools and languages that utilize this regular expression syntax include:

• Emacs

Links
• Regular Expressions at emacswiki.org
• Perl and Emacs regular expressions compared at lemoda.net

18

Regular Expressions

Shell Regular Expressions
The Unix shell recognises a limited form of regular expressions used with filename substitution:

Operators
Operator Effect
? The hook operator specifies any single character.
[] boxes enable a single character to be matched against a character lists or character

range.
[!] A compliment box enables a single character not within in a character list or character

range to be matched.
* An asterisk specifies zero or more characters to match.
Some operators behave differently in the shell: The asterisk and hook operators do not not need
to follow a previous character in the shell and they exhibit non traditional regular expression
behaviour.

Unsupported Constructs: Within the shell, a compliment box is formed using the pling symbol.
The shell does not support the use of a careted box for character list exclusion. In the shell, a
caret symbol within a box will simply be treated as one of the characters within the character list
for matching.

Use in Tools
Tools and languages that utilize this regular expression syntax include:

• Bourne compatible shells

Implementation

Implementations and running times
There are at least 3 different algorithms that decide if (and how) a given string matches a
regular expression. They are based on different representations of the regular expression as a
Finite Automation and on the amount of functionality present in the matcher.

1. An NFA based matcher without back-references and look ahead/behind. An input of size
O(n) can be tested against a regular expression of size O(m) in time O(nm), and
additional O(m) extra space by simulating an NFA using Thompson's algorithm. If c sub-
match capture groups are to be recorded, then the running time increases to O(nm log c),
but the space requirement remains O(m).

2. An NFA based matcher with back-references and look ahead/behind. Such a matcher
needs to be implemented using backtracking. An input of size O(n) can be tested against
a regular expression of size O(m) in time O(2mn) using backtracking. Some effort is
needed to ensure that the backtracking based matcher doesn't enter an infinite loop,
testing the same path over and over again.

19

Regular Expressions

3. A DFA based matcher. DFA based matchers can't support back-references, sub-match
captures, or look ahead/behind. This is the oldest and fastest kind of matcher and relies
on a result in formal language theory that allows every nondeterministic Finite State
Machine (NFA) to be transformed into a deterministic finite state machine (DFA). The
algorithm performs or simulates this transformation and then runs the resulting DFA on
the input string, one symbol at a time. The latter process (DFA matching) takes time that
is proportional to the length of the input string. More precisely, a regular expression of
size m on an input alphabet of size S can be converted into a DFA in time O(2mS), and
subsequently an input string of size n can be tested against a DFA of any size in time
O(n).

The DFA based algorithm is fast to match input against a regular expression, but can be used
only for matching and not for recalling grouped subexpressions. There is a variant that can
recall grouped subexpressions, but its running time slows down to O(n2m).

The running time of the backtracking based algorithm can be exponential, which simple
implementations exhibit when matching against expressions like "(a|aa)*b" that contain both
alternation and unbounded quantification and force the algorithm to consider an exponential
number of subcases. More complex implementations identify and speed up various common
cases where they would otherwise run slowly.

Even though backtracking implementations only give an exponential guarantee in the worst
case, they allow much greater flexibility and provide more expressive power. For instance any
implementation that allows the use of backreferences, or implements the various improvements
that Perl introduced, must use a backtracking implementation.

Some implementations try to provide the best of both algorithms by first running a fast DFA
match to see if the string matches the regular expression at all, and only in that case perform a
potentially slower backtracking match.

20

Regular Expressions

Glossary
This is a glossary of the book.

\A
In some flavors, the beginning of a string but not of a line in the string

\b
In some flavors, a word boundary

\B
In some flavors, a complement to \b

BRE
Basic regular expressions

\d
In some flavors, a digit

\D
In some flavors, a complement to \d

Emacs
A scriptable text editor with support for regular expressions

ERE
Extended regular expressions

GNU
A project to create a free-as-in-freedom operating system, which provides extensions to
regular expressions used in tools such as Grep or Sed

Greedy
Of an operator, matching as much as it can

Grep
A command-line tool for finding lines in a text files that match a regular expression

Java
A byte-compiled programming language with support for regular expressions in its
standard library since version 1.4

JavaScript
A scripting languages for the web supported by web browsers, with built-in support for
regular expressions

Metacharacter
A character or sequence of characters with a special meaning, such as "." or "\+".

PCRE
Perl compatible regular expressions

Perl
An interpreted scripting language noted for its regular expressions

PHP
An interpreted scripting language with support for regular expressions

Regex
A regular expression

Regular expression
A string containing special characters indicating patterns, intended to match literal strings

\s
In some flavors, a whitespace character: space, tab, newline, form feed

21

Regular Expressions

\s-
In Emacs, a whitespace character

\S
In some flavors, a complement to \s

Sed
A non-interactive editor or command-line tool noted for its "s" command substituting strings
that match a regular expression with other strings

\u13F
In some flavors, the character with the hexadecimal Unicode value of 13F.

Vim
A scriptable text editor with support for regular expressions

\w
In some flavors, an alphanumeric character, including "_"

\W
In some flavors, a complement to \w

\xF7
In some flavors, the character with the hexadecimal ASCII value of F7.

\x{13F}
In some flavors, the character with the hexadecimal Unicode value of 13F.

\Z
In some flavors, the end of a string but not of a line in the string

\<
In some flavors, an empty string before the beginning of a word

\>
In some flavors, an empty string after the end of a word

^
The beginning of a line

$
The end of a line

.
Any single character, but possibly not a newline

[
The opening of a character class

]
The closing of a character class

(
In some flavors, the opening of a group

)
In some flavors, the closing of a group

\(
In some flavors, the opening of a group

\)
In some flavors, the closing of a group

{
In some flavors, the opening of a match-count iterator

}

22

Regular Expressions

In some flavors, the closing of a match-count iterator
\{

In some flavors, the opening of a match-count iterator
\}

In some flavors, the closing of a match-count iterator
|

In some flavors, a marking of an alternative
\|

In some flavors, a marking of an alternative
\1

In some flavors, a backreference to the 1st group
\2

In some flavors, a backreference to the 2nd group
*

Any number of the previous
+

In some flavors, one or more of the previous
\+

In some flavors, one or more of the previous
 ?

In some flavors, one or none of the previous
\?

In some flavors, one or none of the previous
*?

In some flavors, a non-greedy version of *
+?

In some flavors, a non-greedy version of +
}?

In some flavors, a non-greedy version of }

23

Regular Expressions

Links

See also
• JavaScript/Regular Expressions
• Perl Programming/Regular Expressions Reference
• Regular Expressions using R

External Links
• regular-expressions.info - a regex tutorial site
• Text and Data Manipulation with Regular Expressions in .NET Development — tutorial,

reference and Ready to use Regular Expression patterns for VB.NET, C#.NET and
ASP.NET development

• Emacs regular expressions at cs.utah.edu
• W:Regular expression
• W:Comparison of regular expression engines
• W:List of regular expression software

:

24

